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A B S T R A C T   

Archetype Building Energy Models (ABEMs) are representations of buildings in a certain region that enable the 
assessment of energy use across building stocks in a bottom-up manner, playing an important role in building 
energy policy making, energy efficiency measure evaluation, and sustainable urban planning. However, the 
selection of the suitable modeling approach can be up to various factors due to the diversity of available methods 
and the specific requirements of application scenarios. This review aims to address this issue by analyzing and 
comparing different approaches in ABEM, namely the building codes-based approach, data-driven approach, and 
hybrid approach, and present the strengths, weaknesses, and real-world applicability of the modeling ap-
proaches. The fitness of each method to different research purposes and contexts is explored. This study sheds 
light on key factors influencing the choice of the ABEM method, including the objectives of the research, 
available data quality, computational resources, and model accuracy. By gathering and synthesizing available 
information from the state of art studies, an overview and guideline for researchers and decision-makers who 
intend to leverage ABEM for various purposes is provided. It not only helps in the better understanding of 
existing modeling methods but also identifies challenges faced with ABEMs and the potential in future 
improvement. This work also identifies opportunities in future ABEM and its flexibility in various application 
scenarios, and it is anticipated that ABEMs will continue to play important roles in informing engineering design, 
influencing regulations, optimizing energy systems, guiding policy decisions for sustainable building 
development.   

1. Introduction 

Building sector plays an important role in energy consumption and 
greenhouse gas emissions, accounting for approximately 36 % of the 
total energy consumption and 40 % of CO2 emissions worldwide [1]. 
The importance of developing accurate and reliable building energy 
models (BEMs) cannot be overstated, as these models are essential tools 
for understanding building energy consumption (BEC) patterns, identi-
fying energy-saving potentials, and informing decision-making in 
energy-saving measures [2]. Archetype building energy models 
(ABEMs) are a set of BEMs that aim to represent a group of buildings 
with similar characteristics, which provides a generalized or represen-
tative understanding of energy consumption for the built environment 
[3]. This work aims to present a comprehensive analysis of various 
methods and approaches for constructing engineering-based archetype 
building energy models and their applications. 

The idea of ABEMs emerged from the need to simplify and generalize 

the analysis of large building stocks [4]. Analyzing each individual 
building within a region or city would be computationally expensive, 
particularly when considering the numerous variations in building 
characteristics, usage patterns, and construction details. ABEMs address 
this issue by representing a group of buildings that share common fea-
tures, such as age, construction type, size, or BEC characteristics [5]. The 
primary objective of ABEMs is to provide a simplified yet representative 
model of BEC, which can be used for purposes such as estimation of the 
overall energy performance of building stock, identification of potential 
energy-saving measures, and assessment of energy-saving strategies [6]. 
ABEMs are increasingly being recognized as an essential tool for urban 
energy planning, energy-saving measures and policy evaluation, and 
building stock analysis, which offers several advantages over 
building-per-building energy modeling, such as reduced computational 
complexity, increased scalability, and ease of integration with other 
urban planning tools. ABEMs have been applied to a wide range of 
purposes, including urban energy planning [7,8], climate change miti-
gation [9] and strategies [10], policy evaluation [11,12], and building 
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stock retrofit analysis [9,13–16]. They can be used to assess the potential 
impact of energy conservation measures (ECMs) on different building 
typologies [17,18] and to evaluate the energy-saving potential of 
various technologies, such as building envelope improvements and 
renewable energy systems under a changing climate [19–21]. 

However, there is no universally recognized standard for obtaining 
building archetypes for thermal and energy use modeling. In different 
contexts, different terms are coined and used, such as reference building, 
prototype building, representative building, and typical building, and 
they may even refer to different implications as some of the building 
archetypes are developed based on building codes while others are 
extracted through survey or national level database to represent the 
status quo or reality of building stocks. This work provides a compre-
hensive review of the state-of-the-art methods and approaches involved 
in constructing such archetype buildings for various research purposes 
and attempts to offer critical perspectives on challenges and limitations 
of different methods as well as guidelines in how to make better choices 
and use of ABEMs with different contexts and research purposes. Our 
analysis provides insights into the global implications of adopting 
diverse ABEMs for industry stakeholders, policymakers, and researchers 
across various regions and countries, underscoring the practical rele-
vance of ABEMs in driving sustainable urban development and shaping 
international energy policies and standards. 

2. Contribution of this review 

While several review papers have been published in the field of 
building energy modeling, our review aims to provide a more compre-
hensive and up-to-date analysis of methods and approaches for con-
structing ABEMs. Previous reviews have focused on specific aspects of 
building energy modeling, such as bottom-up building stock models [22, 
23], urban-level building energy use modeling [7,24,25], residential 
end-use energy consumption modeling techniques [3,5,26], and the 
application of machine learning techniques in ABEM generation 
[27–29]. However, a review that encompasses the methodologies for 
constructing physics-based ABEMs for various building types other than 
residential buildings and compares their advantages, limitations, and 
applications is lacking in the studies [3,5,7,22–26,28]. To show the most 
recent progress in the related fields, pertinent literature is selected in 
this review and most of the research works were conducted in the past 
decade as shown in Fig. 1. 

The goal of this review is to offer a more comprehensive and in-depth 
examination of the various methods and approaches for constructing 
ABEMs based on engineering methods, comparing different approaches 
including building codes-based approaches, data-driven approaches, 
and hybrid approaches. This review provides a detailed comparison of 
these methods, considering factors that influence the choice of method, 
practical considerations, and applications. It shall be noted that the 
scope of this review is restrained to the building engineering model, 

Abbreviations 

ABEM Archetype Building Energy Models 
AIC Akaike Information Criterion 
ASHRAE American Society of Heating, Refrigerating and Air- 

Conditioning Engineers 
BEC Building Energy Consumption 
BEM Building Energy Model 
BETSI Building Energy, Technical Status and Indoor Environment 
BIC Bayesian Information Criterion 
BIM Building Information Modeling 
CBECS Commercial Building Energy Consumption Survey 
CCI Climate Change Impact 
CEN European Committee for Standardizations 
CIM City Information Modeling 
CRECS China Residential Energy Consumption Survey 
DBSCAN Density-Based Spatial Clustering of Applications with 

Noise 

DOE Department of Energy, U.S 
ECM Energy Conservation Measure 
EU European Union 
EUI Energy Use Intensity 
HVAC Heating, Ventilation, and Air Conditioning 
IECC International Energy Conservation Code 
ISO International Organization for Standardization 
GIS Geographical Information System 
NECB National Energy Code of Canada for Buildings 
PCA Principal Component Analysis 
RC Thermal Resistance and Capacitance 
RECS Residential Energy Consumption Survey 
TABULA Typology Approach for Building Stock Energy Assessment 
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ZERH NREL’s Zero Energy Ready Home  

Fig. 1. Distribution of publication years of the reviewed papers.  
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which is usually adopted in bottom-up modeling. The challenges and 
future research directions in the field are also identified. This review 
aims to provide researchers, practitioners, and policymakers with a 
better understanding of the different methods and approaches available, 
their strengths and weaknesses, and their applicability to various energy 
analysis and policy evaluations. 

3. Engineering-based archetype building energy models 

3.1. Overview of the engineering method 

The engineering method for constructing archetype building energy 
models (ABEMs) is based on a detailed analysis of individual building 
characteristics, such as building geometry, envelope properties, HVAC 
systems, and occupancy patterns [30]. This approach involves the use of 
building energy simulation tools to create representative models of 
building typologies that share similar BEC characteristics. The 
physics-based engineering archetype modeling method is widely adop-
ted in building energy modeling, as it provides a high level of detail and 
accuracy, allowing for a better understanding of the underlying factors 
influencing BEC [31]. 

The process of constructing ABEMs using the engineering method 
typically involves several steps. First, a building stock analysis is con-
ducted to identify the most common building typologies, based on fac-
tors including vintage, construction type, size, and geometry. Next, 
representative buildings for each identified typology are selected or 
developed, and their characteristics are either gathered from available 
data sources, such as building codes, energy audit reports, statistical 
analysis, or data-driven methods. BEM tools [32] are then employed to 
create detailed energy models of the representative buildings consid-
ering various model input parameters. The engineering method can 
provide detailed and accurate results with hourly granularity, allowing 
for a comprehensive understanding of energy performance in different 
building types [18,33]. However, the approach can sometimes be 
time-consuming and computationally intensive [24], as it requires the 
modeling of individual building characteristics and the simulation of 
building energy performance. This can be a factor that leads to diffi-
culties and challenges when dealing with large building stocks or when 
data availability is under challenge. Despite these challenges, the engi-
neering method remains an essential approach to provide reliable and 
detailed insights into BEC as different ABEM approaches can be 
employed to facilitate this modeling process. 

3.2. Simulation tools for ABEM 

BEM enables researchers, designers, and engineers to simulate 
building energy performance [34]. There is a wide range of BEM tools 
available, with differing levels of capabilities and complexity. Some of 
the most widely used tools in the field include EnergyPlus [35], TRNSYS 
[36], ESP-r [37], and DeST [38]. These tools are capable of providing 
hourly dynamic thermal simulation for ABEMs and are widely used in 
ABEM [38–44]. Besides dynamic simulation tools, some studies devel-
oped or used steady-state simulation tools for ABEM. Li et al. adopted a 
reduced-order RC (thermal resistance and capacitance) model to simu-
late DOE commercial reference buildings [45] and further considered 
urban heat island (UHI) impacts on ABEM simulation [46]. Dall’O et al. 
reported that they used a lightweight steady-state simulation tool called 
CENED + programmed based on European standard (CEN) to create 
statistical relationships for reference buildings constructed in various 
years [47]. Bagle et al. developed a gray-box RC model to facilitate the 
simulation of archetype models of Norwegian apartment blocks [48]. 
Steady-state ABEMs are faster in computation but may lead to a certain 
extent of loss of model confidence. 

The choice of a BEM tool depends on various factors, including the 
required level of detail, available data, computational resources, and 
user expertise. Each tool has its strengths and weaknesses, and 

researchers and practitioners must carefully consider their specific 
needs and requirements when selecting an appropriate tool for ABEM 
[32]. Recently, more interest has been invested in integrating emerging 
tools with other platforms, such as Building Information Modeling (BIM) 
and Geographical Information Systems (GIS), to enable comprehensive 
and efficient analysis of building energy performance at the urban scale 
[44,49–51]. These integrated approaches can help overcome some of the 
limitations of traditional BEM tools and facilitate the construction of 
ABEMs for various energy analysis and policy evaluation tasks. 

3.3. Modeling parameters considered in ABEMs 

In developing ABEMs, various factors need to be considered to 
ensure that the models accurately represent the target building popu-
lation. These factors include but are not limited to, building design and 
configuration, construction materials, energy systems, operational and 
management practices, and occupant behaviors [52]. Simply put, the 
important factors considered in ABEMs can be categorized into 
geometric-related and non-geometric parameters, and the modeling 
parameters of ABEMs are summarized in Fig. 2. 

Factors of building design and configuration are critical factors, in 
which geometric-related information is considered. It includes the 
building’s shape, size, orientation, and layout, which have a notable 
impact on the building energy performance [53,54]. To generate 
representative geometric configurations of buildings, GIS and City In-
formation Modeling (CIM) are gaining popularity in being used to create 
3D building models based on automated generation methods that vary 
in the level of detail [44,49,51,55,56]. However, not all countries and 
regions share high-quality GIS or CIM data publicly [57]. In some 
studies, geometric parameters of archetype buildings are generated 
based on personal expertise and assumptions [58,59]. 

Thermal property of construction material is one of the most 
important factors considered in non-geometric factors, which includes 
the type and quality of the building envelope, thermal insulation, win-
dow, and other envelope components. The thermal properties of these 
materials directly affect heat transfer rates, thereby impacting heating 
and cooling loads [60]. Other important factors include configurations 
of building energy systems, including HVAC, lighting, and appliances, 
which contribute significantly to BEC. The efficiency, control strategy, 
and maintenance of these systems can vary widely, leading to significant 
differences in energy use [6]. Operational and management practices, 
such as HVAC indoor setpoints, lighting control strategies, and main-
tenance practices, can also greatly influence building energy perfor-
mance, and archetypes of these aspects have recently been studied as 
well [61]. 

Lastly, occupant behaviors, which include actions that affect build-
ing energy use, such as window opening, appliance use, and thermostat 
settings, are increasingly recognized as a crucial factor [62–64]. Recent 
research has demonstrated the importance of incorporating realistic 
occupant behavior models into ABEMs to improve their accuracy [62]. 
Studies have shown that variations in these practices can lead to dif-
ferences in energy use of up to 50 % [63]. In recent years, there has been 
a growing interest in incorporating more of these factors into ABEMs to 
better capture the diversity and complexity of real-world buildings. 
Various methods including classic statistical methods and machine 
learning methods have been applied to the characterization of these 
factors for ABEM, which will be further discussed in detail in subsequent 
sections. 

3.4. Thermal zoning in ABEMs 

Thermal zoning is a critical aspect as it allows for the representation 
of variations in thermal conditions within a building [65]. The process of 
defining thermal zones in ABEMs involves the division of the building’s 
interior space into distinct areas that share similar thermal character-
istics, such as temperature, humidity, and solar heat gains. Proper 
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thermal zoning is essential for capturing the complex interactions be-
tween zones having various functions. 

The level of detail in thermal zoning can vary depending on the 
objectives of the energy analysis and the available knowledge. In low- 
detail ABEMs, buildings may be represented as a single thermal zone. 
In urban building energy modeling, single thermal zone building models 
have been widely used in recent years. According to Cerezo et al., they 
used one thermal zone per floor method to reduce simulation time and 
complexity in modeling urban-level building energy use in Boston and 
acknowledged that a more detailed zoning scheme (core-perimeter 
zoning) would have increased accuracy but also simulation time [66]. 
Another urban-level building energy practice conducted by Deng et al. 
also used a single thermal zone model in which each floor was consid-
ered as a single thermal zone and annual BEC was calculated by Ener-
gyPlus [44]. Some studies on energy consumption simulation of building 
stocks in the European Union (EU) also used the single thermal zone 
method for building archetypes [42,43,67]. While this approach can 

provide a quick estimate of BEC, it may not accurately capture the 
variations in thermal conditions within the building or the impact of 
specific energy-saving measures. 

In medium- and high-detail ABEMs, buildings are divided into mul-
tiple thermal zones based on factors such as occupancy patterns, 
building envelope properties, and HVAC system configuration [65]. This 
approach allows for a more accurate representation of the thermal 
conditions within the building and can provide valuable insights into the 
impact of various ECMs and policy interventions. For medium-detail 
ABEMs, the core-perimeter thermal zoning strategy is usually adopted 
as proposed by ASHRAE 90.1–2016 appendix G [68] under the cir-
cumstances that the detailed HVAC system design has not yet been done 
or is not available. For high-detail ABEM, thermal zones are generated 
more complicatedly than the core-perimeter rule for a certain floor [69, 
70]. Research has shown that there can be discrepancies between 
simulation results of the same archetype buildings using different ther-
mal zoning methods. Usually, low-detail thermal zoning leads to 

Fig. 2. Modeling parameters of ABEMs.  
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underestimated thermal loads and energy use as supported by several 
studies [70,71]. 

However, the process of defining medium and high-detail thermal 
zones can be time-consuming and may require a significant amount of 
data and user expertise. Recently, the research community has begun to 
explore automatic techniques for defining thermal zoning in ABEMs, 
leveraging advancements in computational algorithms and increasing 
availability of high-resolution building data [69,70,72–74]. Faure et al. 
designed a core-perimeter thermal zoning method by iterating over 
perimeter zone depth starting from 3 m and simulated urban-level 
building energy use [74]. Using closed boundary representations as in-
puts, Dogan et al. [73] proposed an “autozoner” algorithm that can 
automatically create multi-zone energy models that comply with ASH-
RAE 90.1 Appendix G [68]. The algorithm can simulate annual load 
profiles faster and with similar accuracy as multi-zone thermal models 
that follow ASHRAE90.1 Appendix G guidelines for different types of 
perimeter and core floorplans [72]. Chen and Hong developed a new 
pixel-based algorithm that splits any polygon into perimeter and core 
zones, following the ASHRAE 90.1 standards, which uses a method 
similar to discrete element method that is usually implemented in fluid 
dynamic simulations [70]. They named this algorithm “Autozone” and 
conducted EnergyPlus simulation on DOE commercial reference build-
ings [45], and found that the AutoZone method and the Prototype 
method differ in source energy use by − 12.1 %–19.0 %, and more so in 
thermal loads and equipment capacities [70]. Another research has 
developed a more computationally heavy automated thermal zoning 
method called the grid/cluster method and conducted simulation 
comparing the results calculated by one zone and core-perimeter zone 
methods [69]. 

The recent advent of automatic techniques for defining thermal 
zoning in ABEMs has led to new horizons in the realm of energy 
modeling. The development of these techniques, which make use of 
cutting-edge computational algorithms and rich building datasets, 
marks a significant shift from traditional manual processes that are time- 
consuming and expertise dependent. With different methodologies such 
as the core-perimeter thermal zoning and the recently proposed methods 
such as the autozoner algorithm, autozone method, and grid/cluster 
method, previous research has demonstrated the capability to create 
multi-zone energy models with higher efficiency and better accuracy to 
conventional multi-zone models in ABEM. 

4. Building codes-based approach 

4.1. Building codes-based approach and its application 

The building codes-based approach, or the so-called reference 
building approach, refers to the method of constructing ABEMs that 
relies on the specifications and requirements set forth in national or 
regional building codes and standards. Building archetypes constructed 
based on this method are called reference buildings or prototype 
buildings. This approach adopts standardized guidelines for building 
geometry, envelope properties, and mechanical systems. The building 
codes-based approach also incorporates occupant behavior archetypes 
to better represent the actual BEC. Occupant behavior archetypes can be 
developed based on field surveys, time-use studies, or expert opinions 
and then integrated into the building codes-based ABEMs [75], which is 
an indispensable component in ABEMs [76]. Many studies have 
demonstrated the application of the building codes-based approach for 
constructing ABEMs to support energy-saving measure analysis [67], 
climate change impact (CCI) [9], and urban building energy modeling 
[16]. Some building codes-based archetype models have been adopted 
in studies around the world, such as ASHRAE 90.1 [68], International 
Energy Conservation Code (IECC) [77], National Energy Code of Canada 
for Buildings (NECB) [78], and models conforming to national or EU 
building codes [59,79]. 

The DOE reference model represents a set of archetype building 

models that conform to the commercial building energy consumption 
survey (CBECS) data and residential energy consumption survey (RECS) 
data [80,81], which have been widely used for evaluating ECMs in 
residential and commercial buildings [82]. ASHRAE Standard 90.1 [68] 
and the IECC [83] are integrated into DOE reference models. The two 
sets of codes have served as a benchmark for energy-efficient building 
design in the United States. They define the baseline energy perfor-
mance, including specifications for building envelopes, HVAC systems, 
lighting, and other energy-related equipment. The adoption of this set of 
ABEMs has been widely applied to, but not limited to, the purpose of the 
assessment of CCIs on regional residential [20,84] and commercial en-
ergy consumption [85,86], green roof impact on building performance 
[87], CCIs on building renewable systems [19,88], building sector 
retrofit scenarios [16,89], and urban level energy use simulation [16,90, 
91]. Moreover, DOE reference buildings are also adopted in other places 
when reference buildings are not available in specific places for research 
purposes including energy efficiency optimization integrated with 
renewable energy systems in Hong Kong, China [92], heat island 
modeling in Shenzhen, China [93], model predictive control opportu-
nities in commercial buildings in Canada [94], sensitivity analysis of 
office building cooling demand in the UK [95], etc. 

Building codes-based ABEMs predicated on other national building 
codes also have been developed and used to fulfill various research 
purposes. The NECB is a standard that provides minimum energy effi-
ciency requirements for new and retrofit buildings in Canada. It is used 
by Girgis-McEwen and Ullah to model a ten-story Large Office archetype 
with a 13,380 m2 floor area. This research grouped measures into tiers 
for future NECB editions (2020, 2025, and 2030). Without cross effects, 
these measures could save 50 % of energy compared to NECB 2015 [96]. 
Another research evaluated the CCI on a single family archetype 
building meeting the NCEB codes and revealed that the archetype 
houses consume less energy in all zones [97]. NREL’s Zero Energy Ready 
Home (ZERH) is a building code that prescribes extra insulation, air 
sealing, windows, and efficient HVAC equipment and ducts in condi-
tioned space in order to reach the goal of zero energy. Munankarmi et al. 
modeled a residential community based on their developed archetype 
house conforming to ZERH and assessed its responsiveness to ECMs and 
demand management strategies [98]. d 

On ABEMs developed based on local building codes, studies have 
also been carried out around the world. Chen et al. developed prototype 
buildings based on California Title 24 to simulate urban-level energy use 
in San Francisco and energy-saving potential by applying various ECMs 
[99]. Another case study by Ballarini et al. investigated the energy 
performance of Italian residential buildings by using a set of archetypal 
buildings constructed based on the national building code. The study 
analyzed the impact of different ECMs on BEC and identified the most 
cost-effective strategies for building retrofit [59]. 

In Asia, research recently conducted by Alhamlawi et al. applied 
Dubai’s green building system - Al Sa’fat to statistically generated 
building archetypes to understand the energy-saving effectiveness of the 
building code in various building types [100]. In China, Xiong et al. 
developed four typical archetypes of residential buildings in China that 
comply with the national building code GB 50096–1999 and evaluated 
the CCI on them in China’s five representative climate zones by DeST 
[20]. Deng et al. developed an automated prototype building generator 
called AutoBPS-OSS given that a building geometry is provided based on 
non-geometric modeling information including envelope property, 
building system, program, and schedule stipulated in the Energy Effi-
ciency of Residential Buildings in Hot Summer and Cold Winter Zone 
(JGJ 134–2001, 2010), and Design Standard for Energy Efficiency of 
Public Buildings (GB 50189–2005, 2015). It can then be used for 
urban-level building simulation and energy policy evaluation [16]. In 
Saudi Arabia, Alardhi et al. developed a residential archetype based on 
the Saudi energy conservation code (SBC-602) to test its energy reduc-
tion impact in three climate zones of Saudi Arabia and found that 
decreasing wall U-value is the most efficient way to reduce total 
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electricity consumption [101]. All these studies demonstrate the utility 
of the building codes-based approach for constructing ABEMs and 
evaluating energy efficiency strategies. With the help of the established 
building codes-based ABEMs, people are allowed to provide insights into 
the potential energy savings associated with code compliance, as well as 
identify opportunities for further efficiency improvements. 

4.2. Advantages and limitations 

Using building codes as a basis for constructing ABEMs has several 
benefits. It is capable of providing a consistent and standard framework, 
which ensures that the developed models meet regulatory standards and 
minimum performance benchmarks. This uniformity aids in comparing 
energy performance across various buildings, regions, climates, and 
scenarios, which purveys a standardized modeling process, making the 
modeling and simulation more efficient and time-saving. This simplicity 
is especially beneficial when working with large quantities of buildings 
or when data resources for model development are scarce [3]. 

However, building codes-based ABEM also comes with certain 
drawbacks. One significant downside is the potential failure to capture 
the real-world diversity and complexity of buildings, as models con-
structed based solely on this method depend only on model assumptions 
and standardized parameters. Consequently, the energy performance of 
ABEMs based on building codes might not accurately depict the real 
performance of buildings, which can vary due to differences in building 
vintage, construction quality, maintenance, and occupant behavior 
[102]. Another limitation is that building codes might not always keep 
up with the latest energy-efficient design technologies and best prac-
tices, which could lead to underestimating potential energy savings. 
Also, this approach might not be suitable for modeling older or unique 
buildings that don’t comply with current codes or that deviate from 
standard assumptions [103]. 

5. Data-driven approach 

The data-driven approach in ABEM makes use of extensive datasets 
to analyze building energy performance, aiming to improve model 
precision and real-world representation through empirical data utiliza-
tion. These methodologies rely on extracting insights and predictions 
from real-world data. The data-driven approach aims to identify repre-
sentative building archetypes that capture the main features of the 
building stock and accurately estimate its energy performance [104]. It 
usually involves a five-stage workflow, which includes data collection, 
data segmentation, characterization, scaling, and modeling and simu-
lation [27]. There is a growing trend in recent research that during the 
characterization stage, the application of machine learning algorithm is 
conducted. Within this framework, traditional statistical techniques 
refer to a subset of data-driven methods, focusing on regression analyses 
to discern patterns and correlations in data. This approach is particularly 
effective for structured data, offering clear insights into the energy usage 
and characteristics of different building types. Machine learning 
methods, also under the data-driven methods umbrella, stand for 
emerging algorithms which utilize supervised and unsupervised 
methods, including clustering algorithms, neural networks, decision 
trees, to process and learn from data. Classified under machine learning, 
clustering methods can be employed to handle unstructured or complex 
datasets, adeptly identifying intricate, non-linear relationships of data-
set. Together, these methods underpin the data-driven approaches in 
ABEM, ranging from traditional statistical analysis to advanced machine 
learning modeling. 

5.1. Statistical data approach and its application 

The statistical data approach for developing ABEM involves the 
analysis of statistical and empirical data related to building stock, 
including building geometry, construction materials, building 

equipment, and BEC. Building archetypes constructed based on this 
method are also called representative buildings or typical buildings. In 
this review, the scope of the statistical data approach only refers to those 
who help in the process of constructing ABEMs, and those studies purely 
focusing on statistical or empirical analysis of building stocks (though 
they might be referred to by other studies for ABEM development in) are 
not considered within the scope of this review. 

The statistical data approach can be extended to include occupant 
behavior archetypes. Field surveys and questionnaires can be adopted to 
collect data on occupant behavior, which can then be statistically 
analyzed to identify patterns and create representative behavior arche-
types [64]. These occupant behavior archetypes can be integrated into 
the statistical data-based ABEMs, providing a more comprehensive 
representation of the building stock’s energy performance by accounting 
for variations in occupant behavior [76]. The key advantage of the 
statistical data approach is its ability to provide a detailed representa-
tion of the building stock based on real-world data, which is particularly 
helpful when assessing the impact of ECMs and policies as well as 
evaluating BEC and carbon emission goals on a regional scale building 
sector [105,106]. 

5.1.1. Statistical data-based residential ABEMs 
The statistical data approach usually involves an analysis of large- 

scale building datasets. Among those many attempts of developing 
statistical-based ABEMs around the world, one of the most well-known 
series of ABEMs is the Typology Approach for Building Stock Energy 
Assessment (TABULA) project in Europe [59]. The TABULA project 
(2009–2012) aimed to create a common structure for building typol-
ogies in Europe to estimate and improve the energy performance of 
residential buildings at the national level. It has developed a set of 
“exemplary buildings” to represent each building type and a “common 
calculation method” to compare their energy demand and potential 
savings. The project involved 13 countries initially and classified 
buildings by climate zone, building size and shape, building vintage and 
other parameters by the year 2013 [59]. Now that there are 21 European 
countries in total have finished their residential building archetypes 
development in TABULA [104]. Due to the heterogeneity of the large 
national-level building stocks, buildings are grouped into different cat-
egories, eventually forming a building typology matrix for each country 
as shown in Fig. 3. 

Most of the counties participating in the TABULA project developed 
their building archetypes using a synthetic average building approach. 
This approach generates a “virtual” building that represents the com-
mon features (average values) of envelope thermophysical properties 
and building system energy efficiency of a group of buildings in the stock 
based on statistical analysis [107]. Ongoing studies have adopted the 
building archetypes in TABULA for regional and national energy con-
sumption analysis and evaluation of energy-saving strategies in the 
building sector, i.e. Czech Republic [108], Italy [59], Greece [109]. In 
these studies, the estimation of the aggregated performance of the res-
idential building sector is usually realized by statistically enlarging the 
energy performance of representative subsets in the building archetype 
matrix based on how often the certain building type appears (frequency) 
in the area. However, the energy use calculation or simulation of the 
TABULA building archetypes is usually achieved by a series of 
steady-state, quasi-steady-state, or simplified dynamic calculation 
methods that use monthly or seasonal time steps [59], which makes the 
calculation procedure computationally efficient while may lead to po-
tential loss of fidelity. 

Considering the fact that the TABULA building archetype may not be 
able to capture the characteristics of the local building stock, many 
studies have developed their statistical data-based residential building 
archetypes. Research conducted by Attia et al. seeks to create an energy 
performance dataset and benchmark archetype model for near-zero- 
energy homes in Brussels, focusing on a post-2010 renovated terraced 
house by walkthrough audit, in-situ measurements, and utility bill 
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[110]. Near-zero-energy terraced homes are the focus of this study, in 
which their actual performance was evaluated. These homes have been 
renovated and have an average energy use intensity (EUI) of 29 
kWh/m2/year, which serves as the benchmark for this type of housing in 
Brussels. Caputo et al. constructed four typical residential buildings 
namely semi-detached, line block, tower block, and central patio 
buildings based on GIS building database and formed an archetype 
building matrix of 56 buildings after taking building vintage into ac-
count in Milan [11], and then used EnergyPlus to evaluate the building 
retrofit strategies on residential building stock for the city. In Sweden, 
research has applied 1400 statistically representative single family and 
multifamily dwellings from the BETSI program [111] to assess the 
effectiveness of different energy-saving measures on residential building 
stock, and the buildings are treated as one thermal zone when con-
ducting BEM using ISO 13790 calculation method [67]. Mata et al. also 
collected 593 archetype buildings covering both residential and 
non-residential building types from France, Germany, Spain, and the 
UK, and validated their choice of archetype building by comparing their 
simulation results to various sources of statistics in the four countries 

[42]. In Greece, Theodoridou developed four typical multifamily resi-
dential buildings according to statistical classifications in four climate 
zones and compared the EnergyPlus simulation results with actual 
measurements [112]. In Switzerland, a study developed an archetype 
database called “SwissRes”, which contains 54 residential archetypes 
generated based on a database of over 25000 buildings. They have 
discerned that the largest contributor to national heating energy con-
sumption is those buildings constructed before 1980, and the model can 
further be harnessed for assessing national-scale energy retrofit strate-
gies [14]. In France, Portella and Ribas developed 54 residential ar-
chetypes for single family dwellings, and private and public multi-family 
dwellings based on statistical data from various international and na-
tional databases, and they further used them to calculate national 
building stock energy consumption [113]. In Sweden, Pasichnyi et al. 
generated residential archetypes buildings for EnergyPlus simulation 
based on statistical models that segmented and characterized the 
building stocks in Stockholm, and estimated energy-saving potential 
from seven retrofitting packages [28]. 

In places other than Europe, Shen et al. developed five residential 

Fig. 3. Residential building archetype portfolio of individual countries in TABULA [104].  
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archetypes according to the RECS database in the United States for the 
state of Texas [9] and New York [89]. The five archetype buildings were 
fine-tuned based on the survey data in the two states in terms of building 
sizes, energy utility type, and HVAC system end-use types, and the 
models were further calibrated on the actual per capita energy use data. 
The validated ABEMs in the two states were then utilized for regional 
energy consumption projection under various scenarios including future 
climate conditions, urbanization and population growth, and adoption 
of ECMs. In Chongqing, China, Li et al. used statistical approach to 
derive the socioeconomic, building vintage, and shape factors from the 
2012 census data of Chongqing Statistics Bureau, and generated 27 
residential archetypes covering three different construction ages [114]. 

5.1.2. Statistical data-based ABEMs for non-residential buildings 
There are studies and examples demonstrating the effectiveness of 

the statistical data approach in constructing ABEMs for various building 
sectors and regions [115]. Table 1 lists studies related to statistical 
data-based non-residential ABEMs in different places around the world. 
Some of those studies produced ABEMs at urban or regional scale [116, 
117], while others at a national level [42,53,113,118–124]. The most 
frequently categorized features for those developed ABEMs are building 
shape-related parameters, followed by building vintage, envelope ther-
mal properties, and operation schedule. Other factors are ad-hoc to 
specific building types such as retail, hotel, and educational building. 
The major purposes for developing the non-residential ABEMs are to 
understand the energy consumption patterns of building stocks, to figure 
out the most sensitive parameters to BEC of certain building type, and to 

Table 1 
Summary of ABEMs of non-residential buildings developed around the world.  

Building Type Reference Year Country Database Number of 
Archetypes 

Data Analyzed Purpose 

Office [119] 2013 Italy 65000 offices from ENEA 
(Italian National Agency for 
New Technologies Energy 
and Sustainable Economic 
Expansion) database 

3 (Type A: 
statistical 
data-based 
ABEM) 

Building form, 
envelope and building 
system features, 
climate zone 

Compare simulation results 
among ABEMs constructed based 
on different methods 

Office [118] 2021 Kuwait 463 buildings in Kuwait 3 Built-up area, number 
of floors, vintage, AC 
type, building 
schedule, EUI, 
thermostat setpoints 

Provide recommendations for 
Kuwait’s addressing educational, 
technological, and policy 
challenges of the building sector 

Office, hotel, mall, 
mixed-use 

[116] 2019 China 200 commercial buildings 6 Building shape and 
zoning, Window-to- 
Wall Ratio (WWR), 
envelope thermal 
properties 

ABEM development and energy 
use analysis 

Educational [120] 2021 England 9551 educational buildings 168 (5 seed 
models) 

area of building 
footprint, number of 
floors, average WWR, 
vintage 

Assessment of national fossil- 
thermal energy consumption of 
primary school and natural 
ventilation performance 

Educational [53] 2021 Brazil 298 schools 7 Building shape, 
vintage, area of floor 
plan, number of 
students 

Point out that building shape can 
be important when generating 
bottom-up benchmarking models 

Retail [117] 2013 Japan 5869 retail facilities 14 Building stock 
category, sales area, 
gross floor area, 
number of stories, 
store hours, lighting 
and equipment load 

Validate the energy simulation 
results of models with surveyed 
mean EUI, and calculate the total 
BEC of the retail sector in 
Keihanshin area 

Mix-use hotel [124] 2017 Italy Tabula and Hellenic Tourism 
Organization (referred from 
Ref. [125]) 

1 Building size, vintage, 
and hotel opening 
period 

Analyzing the energy use patterns 
of the developed archetype 
building 

Commercial, leisure, 
office, sports, culture 
and leisure (SCL), and 
other 

[42] 2014 France, 
Spain, UK 

209 non-residential 
archetype buildings 

45 (France), 
80 (Spain), 84 
(UK) 

Building type, vintage, 
heating system, 
climate zone 

Compare the simulated results of 
archetypes with statistical data 
from various sources and evaluate 
the sensitivity of modeling 
parameters on energy demand 

commercial, office, sports 
and leisure, and others 

[121] 2008 Spain Instituto Nacional de 
Estadística, Ministerio de 
Fomento, IDEA, Eurostat, 
GAINS, IEA 

80 climate zone, building 
vintage, thermal 
properties of envelope, 
HVAC, building 
program 

Cross-database comparison and 
national BEC calculation 

Retail, accommodation, 
restaurant, private 
office, public office, 
hospital, university, 
school 

[122] 2017 Korea Survey of the Ministry of 
Trade, Industry and Energy 
(MOTIE) and the Ministry of 
Land, Infrastructure and 
Transport (MOLIT) in South 
Korea 

8 Floor area, number of 
floors, aspect ratio, 
WWR, EUI 

Develop reference buildings for 
national building stock 

Restaurant, school, 
hospital, office, shop 

[123] 2020 Switzerland 31662 non-residential 
buildings 

45 in total (9 
for each 
building type) 

Floor area, building 
height, and building 
period of all buildings 

Understanding BEC profiles of the 
Swiss building stock and the effect 
of retrofitting strategies on the 
stock 

Office, commercial, 
health, education 

[113] 2012 France Multiple international and 
national database 

45 Floor area, ventilation 
rate, envelope U- 
value, etc. 

Development of residential and 
non-residential building 
archetypes for national building 
stock energy use calculation  
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evaluate the effect of ECMs on building stocks. 
The studies around the world further demonstrate the versatility and 

applicability of the statistical data approach in constructing ABEMs for 
different building sectors and at various scales. By using large-scale 
building data sets to identify representative building archetypes, this 
approach better informs decision-makers of the BEC profiles of various 
building typologies, and supports energy policy evaluation and decision- 
making processes, allowing for the development of targeted ECMs and 
strategies in the non-residential building sector. 

5.2. Applications of machine learning methods 

The application of machine learning techniques has emerged as 
promising approaches for generating ABEMs based on statistical data 

due to their ability to handle large-scale, complex, and diverse datasets. 
These techniques are particularly useful for identifying patterns and 
relationships in data that may not be easily discernible through tradi-
tional statistical methods [52] and are usually implemented during the 
characterization stage of statistical data approach when generating 
ABEM. It should be noted that studies involving the application of ma-
chine learning algorithms to building stocks while didn’t take into ac-
count the engineering-based building archetypes are not included in the 
scope of this review. Generally, machine learning methods applied in 
archetype generation can be broadly categorized into supervised and 
unsupervised learning techniques. 

Supervised learning techniques, such as regression and decision trees 
[126], require labeled data to train models that can predict outcomes 
based on input features. In the context of ABEMs, supervised learning 

Table 2 
Studies applying machine learning methods in ABEMs.  

Author 
(s) 

Country Year Method Used Target Parameters Application and Purpose 

[127] Belgium 2016 Agglomerative hierarchical 
clustering 

Total loss area, building vintage, heated floor 
area, footprint, WWR, number of floors, loss-to- 
floor ratio, compactness, building typology, 
window area 

Develop ABEMs for urban energy modeling 

[132] Italy 2014 Hierarchical Clustering Building form, vintage, heated gross volume, net 
floor area, envelope thermal properties, energy 
demand 

Development of residential building archetypes 

[128] Switzerland 2018 PCA, k-Means Clustering, 
Partitioning Around Medoids, 
Hierarchical Clustering 

building typology information, vintage, building 
usage 

Identification and characterization of representative 
buildings in urban datasets 

[133] United States 
and Denmark 

2012 Gaussian Mixture Models with 
Expectation-Maximization 

Building vintage and EUI Produce synthetic building energy data 

[93] China 2021 Gaussian Mixture Models with 
PCA and BIC 

11 parameters related to buildings geometry and 
number of floors 

Urban climate modeling using GIS data 

[131] Greece 2010 Clustering and Probabilistic 
Techniques 

Heated surface, building vintage, building 
insulation level, number of classrooms, number 
of students, operating hours, heating system 
vintage 

Identification of representative school buildings 

[27] Ireland 2019 k-Means Clustering Construction material, usage patterns, and 
building systems 

Comparing modeling results of multi-scale building 
archetype at building and urban levels 

[54] Italy 2015 k-Means Clustering 12 features including buildings shape and size, 
WWR, envelope thermal properties, heating 
system capacity 

Identification of representative school buildings from 
a dataset of 60 buildings 

[130] Brazil 2016 Hierarchical and k-Means 
Clustering 

16 features related to floor area, information 
related to space function, number of floors 

Obtaining building archetypes for low-income 
housing stock 

[134] Austria 2017  
Hierarchical Clustering, k- 
Means Clustering, and Model- 
based Clustering 

17 variables related to building geometry, solar 
gain, envelope thermophysical properties, and 
usage patterns 

Reductive urban energy modeling 

[44] China 2022 Clustering, Random Forest, 
Convolutional Neural Network 

Building shape, building type, vintage Urban building energy modeling 

[135] China 2022 Stratified Sampling, k-Means 
Clustering 

Building vintage, number of floors, building 
shape, floor areas, WWR 

provide building geometric information and 
characteristic-based evaluations for ABEM generation 
and further analysis on building performance 

[126] China 2023 k-Means Clustering, CART 
Decision Tree 

Occupant behavior pattern, socio-demographic 
characteristics 

Reduce the performance gap between the simulation 
and actual residential buildings’ energy consumption 

[136] China 2022 k-Means Clustering and 
Random Forest Classifier 

Building vintage, typology, floor area, number of 
floors, building volume, surface area, shape 
factor, envelope thermal properties 

Modeling and simulation of urban building energy 
performance 

[57] China 2018 k-Means Clustering and 
Partitioning around medoids 

Building shape Validate with district-level EUI 

[137] United States 2017 k-Modes Clustering and 
Probabilistic Neural Network 

Occupant behavior and schedule Show the difference in energy use of the generated 
archetype against that with the ASHRAE standard 
occupancy schedule 

[138, 
139] 

United 
Kingdom 

2019 k-Modes Clustering Occupancy schedule Showcase the difference in heating demand between 
ordinary building archetypes with uniform occupancy 
schedules and archetypes with occupancy-integrated 
schedule 

[29] Italy 2022 k-Means Clustering Occupancy schedule Develop data-driven schedules for ABEMs in urban 
energy modeling 

[140] Japan 2019 Logistic Regression HVAC system Improve the reliability of urban building energy 
modeling and evaluate energy efficiency technologies 
on HVAC 

[141] China 2021 k-Means clustering Building footprints and primary building type Urban energy modeling 
[123] Switzerland 2020 k-Medoids Clustering Floor area, height of the building, and building 

operation 
Understanding BEC profiles of Swiss buildings and 
retrofitting effects  
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techniques have been used to identify the parameters that are worth 
being featured in unsupervised learning [44,127]. In De Jaeger et al.’s 
research, they conducted a regression analysis and Akaike Information 
Criterion (AIC) to identify the most influential parameters for ABEM 
[127]. In Deng et al.’s research, Random Forest and Convolutional 
Neural Network were utilized to determine the building typologies and 
building vintage based on GIS and historical satellite image data [44]. 

However, the majority of the work done in building archetype gen-
eration is predicated on unsupervised learning. Unsupervised learning 
techniques, such as clustering algorithms, do not require labeled data 
and are used to group similar objects based on their attributes, which are 
gaining popularity in recent studies for the characterization of the 
building stock and building archetype identification. Clustering tech-
niques like k-Means, hierarchical clustering, and k-Modes clustering 
have been employed to identify representative building archetypes from 
large datasets. Since many studies adopted the clustering methods in 
ABEM, they have been listed and summarized in Table 2. For clustering 
problems, the identification of the proper number of clusters can be 
achieved by algorithms such as AIC, Bayesian Information Criterion 
(BIC), and Partitioning around medoids [57,93,127–129]. The normal-
ization and dimensional reduction algorithms for data-preprocessing 
that are generally involved before conducting clustering include 
Z-score [57,130], Principal Component Analysis (PCA) [128,131], and 
Box-Cox [128]. 

Machine learning techniques also offer the potential to capture 
occupant behavior patterns more accurately and efficiently than tradi-
tional methods [142,137]. By analyzing large datasets collected from 
field surveys, smart meters, or sensor networks, machine learning al-
gorithms can identify occupant behavior archetypes and their impact on 
BEC [64,143]. By incorporating occupant behavior archetypes in 
building codes-based, statistical data-based, and machine learning 
methods, ABEMs can provide a more accurate and comprehensive rep-
resentation of the energy performance of building stocks. Field surveys 
and other data collection techniques can be employed to construct 
occupant behavior archetypes, which can be integrated into the 
respective modeling approaches [29,62]. This additional layer of detail 
can lead to improved energy analysis and policy evaluation, ultimately 
supporting more effective and targeted ECMs. 

5.3. Advantages and limitations 

The intention behind using a data-driven approach is to facilitate the 
identification and analysis of trends in energy consumption across 

various building sectors and regions. By analyzing large-scale building 
data sets, researchers can identify patterns and correlations between 
different building characteristics and their energy performance. This can 
help decision-makers to develop targeted strategies for improving en-
ergy efficiency in the building sector. Moreover, the data-driven 
approach can contribute to the development of more accurate and 
reliable benchmarking tools for comparing the energy performance of 
different building types. This can be particularly valuable for energy 
service companies and utilities, which often require reliable and detailed 
building energy performance data to support their energy efficiency 
programs and initiatives. 

While machine learning techniques offer several advantages for 
generating ABEMs, some limitations need to be considered. Ensuring 
data quality and availability, addressing the complexity and interpret-
ability of models, managing computational resources, and avoiding 
overfitting are key challenges that need to be addressed when applying 
machine learning techniques to ABEMs. The data-driven approach for 
constructing ABEMs has several advantages and limitations that should 
be considered when evaluating its applicability in specific contexts, 
which is summarized in Table 3. 

6. Hybrid approach 

6.1. Overview of the hybrid method 

The hybrid method combines the strengths of building codes based 
approach and data-driven approach to create more accurate and 
representative ABEMs. This integrated approach leverages the advan-
tages of each method to overcome its limitations, resulting in more 
comprehensive and reliable ABEMs for various applications. One of the 
implementations can be starting with the building codes-based 
approach, which provides a solid foundation based on established 
building regulations and standards for non-geometric modeling pa-
rameters. The resulting archetypes serve as a starting point for further 
refinement using statistical data-based and machine-learning tech-
niques. Then the data-driven approach can be applied to adjust building 
geometry, construction materials, building occupancy and load, and 
system efficiencies based on real-world building stock data. This process 
allows for a better representation of actual building stock characteristics 
and the identification of trends in energy consumption patterns mean-
while providing convenience in ABEM without heavy reliance on data 
sources of existing building stocks. Vice versa, researchers can also 
choose to start their development of ABEMs using a data-driven 

Table 3 
Advantages and limitations of data-driven approach.  

Advantage Limitation 

Real-world data 
representation 

Rely on actual data, which provides a more accurate 
representation of the existing building stock’s energy 
performance compared to other modeling methods based on 
assumptions or idealized building characteristics; It ensures 
ABEMs mirror the actual scenario and models are grounded in 
reality 

Data availability and 
quality 

Rely heavily on the availability and quality of building data, 
which can be limited or inconsistent across different regions 
and building sectors. This can affect the reliability and accuracy 
of the ABEMs developed using this approach 

Scalability and 
adaptability 

Suitable for modeling the energy profile of entire cities or 
regions and be applied to diverse building types and datasets, 
allowing for a more comprehensive understanding of the 
building stock 

Model complexity Most of the data-driven ABEMs are modeled by a single thermal 
zone, which can be computationally light whilst lose real-world 
representation and model predictability 

Identification of 
trends and 
patterns 

Enable the identification of trends, patterns, and correlations 
between building characteristics and energy performance; 
results and data can be analyzed across ABEMs to uncover 
overarching energy usage insights and inform policy under 
“what-if” scenarios 

Model generalizability May not always produce generalizable results, as the ABEMs 
developed are specific to the analyzed building stock, limiting 
their applicability to other contexts or regions without 
additional calibration and validation efforts 

Support for 
benchmarking 

Contribute to the development of accurate and reliable 
benchmarking tools for comparing the energy performance of 
different building types, which is essential for energy 
efficiency initiatives and programs 

Computationally 
intensive and 
overfitting 

Some machine learning techniques (i.e. hierarchical 
clustering), can be computationally intensive, requiring 
significant processing power and time to train and evaluate 
models; some algorithms may sometimes overfit the data, 
capturing noise rather than the underlying patterns, which can 
lead to poor generalization to new, unseen data  
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approach, characterizing the building archetype based on the database 
in the first place. This ensures that factors such as building forms and 
envelope materials of the developed archetype conform to the local 
features of the building stocks. Then building codes-based approach can 
be used to fill out those necessary modeling parameters that are missing 
or difficult to acquire from the existing database. Either of these ap-
proaches have been implemented in the existing studies when gener-
ating ABEMs in various places around the world. 

Moreover, in the hybrid method, machine learning techniques can be 
incorporated to further refine the ABEMs by identifying the character-
istics of building attributes and energy consumption that may not be 
apparent in the building codes or statistical data. Clustering and 
regression techniques can be used to categorize buildings with similar 
characteristics and model the complex interactions between modeling 
parameters and energy performance. This step enhances the accuracy 
and granularity of the baseline building codes-based ABEMs, providing 
insights for energy consumption pattern recognition, targeted energy 
efficiency interventions, and policy development of building stocks. 

6.2. Application of the hybrid method 

Several studies have demonstrated the effectiveness of the hybrid 
method in generating ABEMs. For instance, in Wuhan, China, Ding and 
Zhou used the geometries of DOE reference buildings together with the 
occupancy schedule data extracted from China Residential Energy 
Consumption Survey (CRECS) to construct the residential and office 
building archetypes and validated the EnergyPlus simulation results 
against surveyed mean energy consumption data in CRECS [18]. In 
Changsha, China, Deng et al. utilized machine learning algorithms on 
segmenting building type, vintage, and shape based on GIS dataset and 
generated 22 building archetypes to represent 59332 buildings in the 
city. Later, ASHRAE 90.1 standards are applied to these archetypes and 
used for urban energy use simulation by EnergyPlus [44]. In Chongqing, 
China, Li et al. made use of the clustering technique on categorizing 
buildings based on their geometric information including height, 
compactness ratio, and aspect ratio. Then building code of China’s 
Residential Buildings Design Standards JGJ 134–2001 is referred to in 
assigning non-geometric modeling parameters to the EnergyPlus model, 
such as envelope thermophysical properties, HVAC system coefficient of 
performance and HVAC set points, and internal load gains [57]. More-
over, in another research, when developing residential ABEM, the same 
team also attempted to use statistical methods on the census data from 
the 2012 Chongqing Statistics Bureau to determine the socio-economic, 
building vintage and shape factors, and further integrated the JGJ 
134–2001 on the extracted archetypes for retrofit measure evaluation 
[114]. 

Research conducted in England developed 168 school archetypes 
based on national survey data concerning building footprint area, 
number of stories, average WWR, and vintage. After that, they applied 
building codes (National Calculation Methodology and Building Bulletin 
101 in England) to model parameters such as internal loads, ventilation, 
etc. EnergyPlus is used to simulate building performance regarding BEC, 
indoor air quality, and natural ventilation. In Korea, Kim et al. devel-
oped 11 reference buildings for national building stock covering resi-
dential and non-residential archetypes [122] based on national survey 
data concerning floor area, number of floors, aspect ratio, WWR, and 
EUI. Then they applied building codes to non-geometric parameters 
such as envelope U-value, infiltration, ventilation, internal loads, do-
mestic hot water, and arbitrary parameters including HVAC system ef-
ficiency, and thermostat setpoint [122]. In Italy, a reference hotel 
building is developed based on a hybrid approach integrated with sta-
tistical method (building form and building system) and building codes 
method (building operation from EU 15232 and DOE reference build-
ing) [124]. 

The hybrid method, which combines building codes based, statistical 
data-based, and machine learning approaches, offers a powerful and 

flexible framework for generating ABEMs. By leveraging the strengths of 
each approach, the construction of ABEMs in places with a variety of 
imparities in data availability and quality can be achieved since one of 
the most prominent advantages of the hybrid approach is its flexibility 
when dealing with limited data sources and availability. Nevertheless, 
the selection of which approach to be adopted is subject to the various 
research purposes and factors. 

6.3. Factors influencing the choice of method 

The selection of an appropriate approach for generating ABEMs is a 
critical decision that is shaped by the interplay of several key factors. 
Each approach has its strengths and limitations, which can affect its 
suitability for a given research or policy context. Understanding these 
considerations can help make informed decisions that align with their 
objectives, data availability, and computational complexity. 

Research Purpose and Desired Model Accuracy: The objectives 
driving the ABEM analysis and the precision required from the models 
are closely linked, guiding the selection of the modeling approach. 
Projects aimed at informing policy development or evaluating energy 
efficiency measures demand high accuracy and detailed representation 
of building energy behaviors. In such cases, hybrid methods, which 
combine the building code specified assumptions for less sensitive model 
parameters in the chosen region with the empirical information pro-
vided by data-driven methods, are particularly valuable. They provide a 
comprehensive understanding, suitable for forming the basis of policy or 
strategic energy interventions. Conversely, studies with broader, more 
exploratory, and goal-driven aims, such as future building code devel-
opment compared to the current building code, might prioritize a wider 
overview over granular accuracy. For these purposes, simpler ap-
proaches such as building codes-based methods might suffice, offering 
general insights without delving into the complexities of existing 
building performance. Essentially, the choice between a detailed, high- 
accuracy model and a more generalized overview depends on the 
research’s intended impact. 

Data Availability and Quality: The type, quality, and quantity of 
available data can directly impact the choice of the ABEM approach. 
Building codes-based methods are particularly useful when compre-
hensive building codes exist, while data-driven methods are more 
effective when large, high-quality datasets on building characteristics 
and energy performance are available. 

Computational Complexity and Resources: The computational 
demands of different methods vary. More sophisticated methods, like 
some of the machine learning approaches, may require more advanced 
computing resources and technical expertise. Thus, the selection of a 
method should consider the available computational resources and the 
balance between the complexity of the method and the desired model 
accuracy. 

It can be a concern that while the hybrid method aims to synergize 
the strengths of both building codes-based and statistical data ap-
proaches, it also risks compounding their individual limitations. Recent 
studies suggest that a judicious combination of methods, grounded in a 
deep understanding of their inherent biases and constraints [144] while 
leverage emerging techniques such as GIS technology and smart meter 
for more precise representation of socioeconomic details, can help 
mitigate these risks [143], producing models that more faithfully 
represent actual building stocks without necessarily amplifying the 
limitations of the respective approaches. This balance underscores the 
importance of methodological diversity in the ABEM development 
process. 

7. Summary of modeling approaches 

The summary provided here in this chapter aims to offer a compre-
hensive overview that enhances understanding and delineates their 
applications and potential of these methodologies. 
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7.1. Building codes-based approach 

This method stands out for its use of established regulatory frame-
works as the foundation of modeling, ensuring ABEMs adhere to mini-
mum or required performance standards. Its key advantage lies in its 
ability to facilitate standardized comparisons of energy performance, 
offering an efficient modeling process that is ideal for large-scale ap-
plications. However, its significant limitation is the potential to overlook 
the possible diversity and complexity of the status quo of real-world 
building stocks. 

7.2. Data-driven approach 

The data-driven approach in ABEM generation leverages extensive 
datasets to illuminate building energy performance trends, enabling 
targeted energy efficiency strategies and policy development. This 
approach can be further categorized into classic statistical methods and 
machine learning techniques, each bringing distinct advantages and 
confronting unique challenges. 

7.3. Classic statistical methods 

Rooted in traditional statistical analysis, this segment of the data- 
driven approach focuses on regression analyses and other statistical 
tools to identify correlations and patterns within building data. Its 
strength lies in providing clear, interpretable models that offer insights 
into energy usage and the characteristics of buildings. Classic statistical 
methods are particularly effective for structured datasets and are valued 
for their straightforward analysis and ease of understanding. However, 
they may not be able to fully capture the complexity of energy con-
sumption behaviors, especially in the presence of non-linear relation-
ships or when dealing with large, unstructured datasets. 

7.4. Application of machine learning techniques 

Under the umbrella of data-driven approaches, machine learning 
techniques employ algorithms with various complexities to process and 
learn from data. This includes both supervised and unsupervised 
learning methods, such as decision trees, neural networks, and clus-
tering algorithms. They are good at handling unstructured or complex 
datasets, uncovering intricate, non-linear relationships that classical 
statistical approaches might overlook. They can offer enhanced model 
accuracy and the ability to predict energy performance with greater 
details. The challenges associated with machine learning techniques 
involve ensuring data quality and availability, computational resources, 
model interpretation, and mitigating the risk of overfitting. 

7.5. Hybrid approach 

Aiming to combine the strengths of building codes-based and data- 
driven approaches (including both classic statistical methods and ma-
chine learning techniques), the hybrid method has the potential to offer 
increased modeling flexibility and efficiency. It can represent actual 
building stocks more accurately by mitigating individual method limi-
tations. However, researchers should be cautious with the effectiveness 
of this approach since it depends on balancing the strengths and 
weaknesses of different methods and has a case-by-case nature, which is 
highly contingent upon specific research purposes. 

Considering that each method offers unique advantages suited to 
different research purposes, data availabilities, and computational re-
sources, the selection among these approaches should be informed by a 
careful consideration of these factors, ensuring that the chosen method 
aligns with the specific objectives and constraints of the project at hand 
and catering to the varied needs of analysis and policymaking in pursuit 
of sustainable urban environments using ABEM. 

8. Challenges and future research 

8.1. Data availability and model accuracy 

One of the primary challenges in the development of ABEMs is the 
availability and quality of data used in the modeling process. Data 
availability and uncertainty are closely intertwined with model accu-
racy, as the quality of input data directly influences the accuracy and 
reliability of the resulting ABEMs [145]. The data required for ABEMs 
typically include information on building geometry, construction ma-
terials, energy systems, occupancy patterns, and local climate condi-
tions, among others. However, obtaining accurate and representative 
data for these parameters can be challenging, particularly for large and 
diverse building stocks or in cases where detailed data are protected due 
to privacy concerns [27]. The use of public databases, national surveys, 
and regional or local building registries can help address data avail-
ability issues. However, the quality and granularity of such data sources 
can vary significantly, potentially leading to inaccuracies or un-
certainties in the resulting ABEMs [146]. To mitigate this, researchers 
have developed various approaches to estimate or impute missing or 
uncertain data, including statistical methods, expert judgments, and 
machine learning techniques such as DBSCAN and autoencoders for data 
noise elimination [147]. 

Furthermore, researchers should validate and calibrate their ABEMs 
against measured BEC data or other established benchmarks to ensure 
the accuracy and credibility of their models, and many efforts have been 
made [33,40,51,145,148]. This is extremely important in identifying 
potential errors or inconsistencies in the input data or modeling as-
sumptions, enabling the refinement and improvement of the ABEMs. 
Hence, model calibration and validation are essential steps in ensuring 
the accuracy and credibility of ABEMs. However, these processes can be 
challenging due to various factors, including data limitations, compu-
tational complexity, modeling uncertainties, and the complexity of 
building energy systems. 

One of the main challenges in model calibration is the availability of 
high-quality, measured BEC data to compare against the model’s pre-
dictions [149]. In many cases, measured data may be unavailable, 
incomplete, or protected due to privacy concerns [150,151]. Obtaining 
accurate and representative data is crucial for a successful calibration, as 
discrepancies between the model’s output and the actual BEC can help 
identify areas for improvement in the model. Another challenge is the 
inherent uncertainty in building energy modeling. ABEMs rely on 
numerous input parameters and assumptions, such as building geome-
try, construction materials, energy systems, occupancy patterns, and 
climate conditions. Uncertainties in these inputs can propagate through 
the model, leading to inaccuracies in the predicted BEC [152]. Re-
searchers should conduct sensitivity analyses to identify the most 
influential parameters and prioritize efforts to improve the accuracy of 
these inputs [153,154]. The validity of a calibrated model depends on 
the representativeness of the calibration dataset. Future research could 
focus more on the development of standardized data protocols, which 
would schematize the model creation process, improve the accuracy and 
reliability of models, and facilitate model comparison and validation. 
The standardized data protocols in this case refer to the creation of a 
uniform set of rules and procedures for data collection, treatment, and 
use of survey structure for ABEMs. The focus of this standardization is on 
the assurance of consistency, replicability, and comparability among 
datasets and models from different sources. Data acquired in that 
manner can be consistent as they employ the same methodologies of 
definition and units across various projects. The repeatability of data 
processing will allow researchers and engineers to use similar processing 
and cleansing techniques, which makes it possible to compare models 
built on various datasets. Moreover, the advent of smart meters and IoT 
devices in buildings could pave the way for more precise data collection 
[149], and future research can explore efficient ways to integrate this 
detailed and real-time data into ABEMs. 
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8.2. Computational complexity and scalability 

The energy dynamics of cities and communities are influenced by the 
interaction between numerous buildings, infrastructure systems, and 
environmental factors. Recently, there is a growing number of studies 
focusing on the topic of urban energy modeling [23,24,152]. Future 
research will continue advancing and applying ABEMs at the urban 
scale, enhancing our understanding of urban-level energy use patterns 
and identifying opportunities for energy savings and resilience at 
community-level urban planning. This approach will support policy 
decisions with quantifiable, spatial-temporal data on energy consump-
tion across the building sector in the future. In this context, computa-
tional complexity and scalability are critical aspects to consider when 
developing and applying ABEMS for this purpose, especially when 
dealing with large building stocks or high-resolution simulations. These 
challenges arise due to the increasing amount of data, the complexity of 
building energy systems, and the need for accurate and reliable results in 
a reasonable time frame [155]. Model calibration can also be compu-
tationally demanding, particularly when dealing with large building 
stocks or complex energy systems [66]. Iteratively adjusting model pa-
rameters to minimize the discrepancy between model predictions and 
measured data can require significant computational resources and 
time. 

Advanced optimization algorithms and machine learning techniques 
can help with the calibration process and improve the overall efficiency 
of the modeling workflow (i.e. artificial neural network [156]). The 
computational complexity of ABEMs is influenced by several factors, 
such as the number of modeled buildings, the level of detail and reso-
lution, the simulation timestep, and the choice of modeling techniques 
[155]. For example, detailed BEM tools, such as EnergyPlus, TRNSYS, or 
IES VE, require significant computational resources and time to simulate 
large building stocks, which can become a limiting factor for their 
practical application in urban planning and policy analysis. To address 
the computational complexity issue, previous research has proposed 
various strategies, such as using simplified or surrogate models, parallel 
computing, cloud-based simulation services, and machine learning 
techniques [49,155]. Simplified models, such as engineering equations 
or regression-based methods, can provide faster simulations at the 
expense of reduced accuracy. Parallel computing and cloud-based ser-
vices can help distribute the computational workload across multiple 
processors or servers, significantly reducing the simulation time. Ma-
chine learning techniques, such as artificial neural networks and support 
vector machines, can provide fast and reasonably accurate predictions, 
but they may require extensive training datasets and fine-tuning of 
model parameters [157]. As building stocks continue to grow, and the 
demand for detailed building energy analysis increases, the need for 
scalable modeling solutions becomes more critical. Scalability can be 
achieved by developing modular and hierarchical modeling approaches, 
automating the generation of input data, and adopting standards for 
data exchange and interoperability [56,157]. 

8.3. Advances in modeling techniques and demands 

Recent advances in simulation tools and modeling techniques have 
the potential to address some of the challenges faced in ABEM and 
improve the accuracy, efficiency, and usability of these models. One of 
the developments is the integration of BIM and GIS into BEM tools, 
which can streamline the data exchange process and enhance the ability 
to model complex urban environments [44,49,143,158]. BIM provides 
detailed building data and geometry, while GIS offers spatial context 
and environmental data, such as urban texture, terrain, and sky view 
factor. Combining these tools can help create better quality and 
comprehensive ABEMs. 

As recent research integrates machine learning techniques into the 
ABEM more frequently, the integration of machine learning and artifi-
cial intelligence into ABEMs has the potential to greatly enhance their 

capabilities. They could be used for clustering building characteristics, 
automating the model creation process, optimizing the selection of 
model parameters, and even learning from previous simulations to 
improve future ones. There is also potential for exploring hybrid 
modeling approaches that combine the strengths of building codes- 
based and data-driven methods. Such approaches could provide a bal-
ance between model accuracy, data availability, and research purposes 
and adapt to the specific needs of different applications. 

Looking forward, with the rise of renewable energy technologies, 
buildings are increasingly not merely consumers of resources, but also 
producers. In the future, the integration of renewable energy systems 
and the changing grid dynamics may pose new challenges and oppor-
tunities for ABEMs [159]. Buildings are increasingly becoming active 
participants in the energy grid, with the ability to generate and store 
energy, as well as adjust demand in response to grid conditions. This 
requires ABEMs to not only model the BEC and production within the 
building but also interact with the grid. This could add another layer of 
complexity to the modeling process but also opens up new avenues for 
energy savings and grid resilience. 

9. Conclusion 

This review has provided a comprehensive examination of the 
various methods employed in the generation of engineering-based 
archetype building energy models (ABEMs), detailing their merits and 
limitations, and exploring how different approaches are better suited to 
particular scenarios and objectives. This research investigated the 
various factors that influence the choice of method for generating 
ABEMs, including the specific objectives of the research, data avail-
ability, the required model accuracy, and computational resources. Each 
method brings its unique advantages and constraints, and the choice of 
method should thus be strategically made after a careful evaluation of 
these factors. Future research in ABEMs will undoubtedly deal with 
these factors, but as technological advancements continue to improve 
our capabilities for data collection and processing, further developments 
within the field of ABEMs are anticipated. To summarize, the main 
findings of this review are as follows.  

• The building codes-based approach offers a standardized modeling 
framework aligned with regulatory standards, facilitating energy 
performance comparisons given different external scenarios (e.g. 
climate change impact, population and building stock changes). 
However, it is not able to fully capture the diversity of real-world 
buildings.  

• The data-driven approach, including both classical statistical 
methods and machine learning techniques, allows for the detailed 
representation of real-world building stocks. They are good at 
identifying complex patterns and trends in energy consumption but 
require high-quality and extensive datasets.  

• The hybrid approach can combine the strengths of building codes- 
based and data-driven approaches to improve model accuracy and 
reliability, but users should also be aware of the aggregation of their 
limitations. The hybrid approach can offer balanced and compre-
hensive modeling solution.  

• The technological advancements in leveraging smart metering and 
IoT devices are anticipated to vastly improve the quality and gran-
ularity of data for ABEMs. This evolution could lead to models that 
more accurately reflect real-time energy dynamics and occupant 
behavior, enhancing model precision and applicability.  

• There’s a growing emphasis on addressing computational 
complexity and scalability, particularly for urban-scale ABEM ap-
plications. Future strategies may include the development of more 
efficient modeling algorithms, the adoption of cloud-based simula-
tion platforms, and the exploration of more advanced model cali-
bration methods, aiming to balance accuracy with computational 
feasibility. 
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• The integration of Building Information Modeling (BIM) and 
Geographic Information Systems (GIS) with ABEMs is expected to 
advance the capability to model complex urban energy systems, 
which provides better spatial-temporal analysis and improve the 
understanding of building energy flows within urban contexts.  

• The expansion of ABEMs to incorporate renewable energy systems 
and grid interaction reflects the evolving role of buildings from mere 
energy consumers to active energy participants. This shift necessi-
tates models that can deal with the complexities in onsite energy 
production, storage, and demand response, offering new pathways 
for enhancing energy efficiency and grid resilience. 

As ABEMs evolve, their potential to contribute to sustainable urban 
development and to inform energy policies will continue to grow. The 
ability to generate accurate, representative ABEMs is growing with the 
ongoing improvements in data availability and computational re-
sources. ABEMs will continue to play important roles in informing en-
gineering design, influencing regulations, optimizing energy systems, 
guiding policy decisions, and contributing to finance and environ-
mental, social, and governance strategies by providing a quantitative 
basis for decision-making and strategy development. 

It should also be noted that this review’s scope can be limited by its 
dependence on available literature and existing datasets, which may not 
encompass the latest developments in ABEMs or the full diversity of 
building stocks worldwide. Such constraints could potentially affect the 
comprehensiveness of our analysis and the applicability of our findings 
across different regions and building types. Furthermore, the dynamic 
nature of energy policies, technological advancements, and sustain-
ability practices necessitates ongoing research to ensure the relevance 
and accuracy of our conclusions. Therefore, future work would benefit 
from incorporating emerging studies and data to maintain its timeliness 
and validity in guiding energy-efficient building design and policy. 
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