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a b s t r a c t

Global climate change is making California’s mild Mediterranean climate significantly warmer, and

a substantial impact on building energy usage is anticipated. Studies on building cooling and energy

demand have been inaccurate and insufficient regarding the impacts of climate change on the peak load

pattern shifts of different kinds of buildings. This study utilized archived General Circulation Model

(GCM) projections and statistically downscaled these data to the site scale for use in building cooling and

heating simulations. Building energy usage was projected out to the years of 2040, 2070, and 2100. This

study found that under the condition that the cooling technology stays at the same level in the future,

electricity use for cooling will increase by 50% over the next 100 years in certain areas of California under

the IPCC (Intergovernmental Panel on Climate Change)’s worst-case carbon emission scenario, A1F1.

Under the IPCC’s most likely carbon emission scenario (A2), cooling electricity usage will increase by

about 25%. Certain types of buildings will be more sensitive to climate change than others. The aggre-

gated energy consumption of all buildings including both heating and cooling will only increase slightly.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The energy consumption of commercial buildings accounts for

about one third of California’s total electricity consumption, which

costs about $9 billion per year. The energy consumption associated

with space cooling accounts for a significant proportion of

commercial building electricity use in California, and it is increasing

at a significant rate, particularly in the hotter inland areas. Space

cooling plays amajor role in determining themagnitude and timing

of peak electrical demand.

Global climate change warming trends are shifting California’s

mild Mediterranean climate to a significantly warmer climate, and

a particularly large impact on building cooling electricity usage is

anticipated. It is important to estimate and predict the impacts of

climate change on statewide building energy usage because this

information may help policy-makers, utilities, and other stake-

holders to respond to concerns about the impact of climate change

on energy production, distribution, and consumption in the

building sector.

Title 24, the existing building code in California, is based on old

weather data and does not reflect future climate change. As a result,

to prevent building energy consumption per unit from increasing,

the building code may need to become stricter in certain climate

zones. Climate change could also change the balance between

cooling and heating requirements in the code. For example,

because the weather is getting warmer in winter, the insulation

level could be made less strict. However, because cooling energy

consumption plays amore important role in overall building energy

usage, the requirements for shading devices, windows, and glazing

materials could be made stronger. In this paper, “cooling energy

use” refers to the electricity consumption of building cooling, while

“heating energy use” refers to the gas consumption of building

heating.

Many other existing national codes are based on weather data

generated from observations from previous years. For example,

Typical Meteorological Year (TMY) data were prepared by the US

from hourly data files of the Weather Services from 1954 to 1972.

Typical months were identified by their closeness to long-term

cumulative distribution functions. The current widely used TMY2

data are derived from the 1961e1990 National Solar Radiation Data

Base (NSRDB).

Engineers use the TMY2 data not only for building code

compliance calculations but also for equipment sizing and selecting

an appropriate HVAC (Heating, Ventilation, and Air Conditioning)

system. Some low-energy-use cooling systems, such as natural
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ventilation and radiant cooling ceilings, may not work in the future

when the temperature is higher.

Because of climate change, the energy demand in various

regions of California could change at different rates. In general, the

demand for gas for heating could decrease, and the demand for

electricity could increase. The demand for cooling energy in the

coastal area of California is relatively low now because of the mild

weather in the summer. However, more heat waves and overall

temperature increases could increase the loads more drastically in

these areas than in the inland areas, and if so, the energy distri-

bution requirements for the grid will change. This study will help

the state decide how to respond to climate change in various

regions of California.

The goal of this project is to better understand and predict the

changes in building energy usage due to global climate change. The

primary objective of this project is to develop a detailed analysis of

building space heating and cooling requirements based on climate

change projections. This analysis will provide guidance for needed

changes in California building codes to address global climate

change impacts at the building level.

The central questions addressed in this study are the following:

� How will climate change affect building cooling and heating

energy consumption?

� How will climate change affect the energy consumption of

different types of buildings in the different regions of California

and in the state as a whole?

In previous studies, Huang estimated that energy use for space

cooling, when averaged over the four IPCC global climate change

scenarios, will increase in Los Angeles by as much as 42% in resi-

dential buildings and 31% in commercial buildings [14], whereas

heating will go down by 62% and 24%, respectively. For more

information about these scenarios, see reference [3,19,33,44].

In addition, changes in the patterns of extreme weather events,

such as the intensity, persistence, and extent of heat waves, will

have a significant impact on peak cooling electricity demand.

General Circulation Model (GCM) analyses of extreme heat and

energy demand by Miller [27] have shown that the number of

summer days in Los Angeles in the hottest 10% will increase from

the present 12 days to 28e96 days toward the end of this century.

This increase in extreme days was shown to correspond with

energy demand peaks that may result in capacity shortages.

Studies to date on building cooling and energy demand have

been based on simplified analyses using constant increases in

annual average temperature or changes in cooling degree-days.

These results are insufficient in detail and, hence, may be inaccu-

rate for predicting the climate change impacts of different building

energy technologies. For example, the lack of information on

changes in humidity, diurnal temperature swings, and solar radi-

ation make it impossible to assess the impact of climate change on

the use of low-energy cooling systems such as natural ventilation,

evaporative cooling, and nighttime cooling.

Recent improvements in global and regional climate modeling

can be combined with detailed building energy simulations to

study the impacts of climate change in much greater detail and

with more discernment. GCM project changes in temperature,

diurnal temperature range, cloud cover fraction, and relative

humidity at 0.5� resolution globally for a range of IPCC emission

scenarios extending out to 2100. Furthermore, Miller’s climate

modeling group at Lawrence Berkeley National Laboratory (LBNL)

downscales GCM output both dynamically via regional climate

models (RCMs) and statistically via regression techniques and

canonical correlations for domains (including California) with

resolution as high as 3 km. These modeling results, in conjunction

with Huang’s adjusted hourly weather data, provide the input

needed for energy simulations of prototypical commercial and

residential buildings to analyze climate change impacts.

In this study, the following research tasks were conducted to

address these important issues:

� Modified hourly weather predictions were created for the 16

California climate zones under four IPCC carbon scenarios.

� Prototypical models were developed for buildings in California.

� Both residential and commercial building stocks in the state

were estimated.

� Building heating and cooling energy use were simulated using

the models for both residential and commercial prototypical

buildings; aggregate energy usage in the future was estimated.

2. Literature review

Scott [39] observed that many studies worldwide have analyzed

the climate sensitivity of energy use in residential, commercial, and

industrial buildings and have used estimated relationships to

explain energy consumption and to assist energy suppliers with

short-term planning (Quayle and Diaz [34]; Badri [2]; Lehman [18];

Lam [16]; Yan [46]; Morris [28]; Pardo [31]; Elkhafif [10]). The

number of studies in the US analyzing the effects of climate change

on energy demand, however, is muchmore limited. In the early and

mid-1990s, there was a handful of studies that attempted an “all

fuels” approach and focused onwhether net energy demand would

go up or down in residential and commercial buildings as a result of

climate change [20](Scott [38]; Rosenthal [35]; Belzer [4]), whereas

some focused on other climate-sensitive uses of energy such as

transportation, agricultural crop drying and irrigation pumping

(Darmstadter [6]; Parker [32]; Scott [39]; Tario [40]; Nelson [41]).

Previous authors have taken different approaches to estimating

the impact of climate change on energy use. Most of these

researchers have used simple uniform increases in annual average

temperature as the “climate” scenario, and they have not focused

on transient temperature increase scenarios from General Circu-

lation Models (GCMs) such as those analyzed by the IPCC [36].

Previous research has used building energy simulation models to

analyze the impact of climatewarming on the demand for energy in

individual commercial buildings [39] and on energy consumption

in a variety of commercial and residential buildings in a variety of

locations (Loveland [20]; Rosenthal [35]). Additionally, economet-

rics and statistical analysis techniques have been used (most

notably, the Mendelsohn papers discussed below, but also Belzer

[4], Amato [1], Ruth and Amato [37], and Franco and Sanstad [12]).

Another recent study “mapped” the climate changes in four IPCC

scenarios on top of existing weather files for 16 US locations and

then used building energy simulations of prototypical commercial

and residential buildings to analyze the impacts of those climate

changes on building energy use [14].

Mendelsohn performed cross-sectional analyses to determine

how energy use in the residential and commercial building stock

relates to climate (Morrison [29] and Mendelsohn [25]; Mendel-

sohn [23]), and he then used the relationships to estimate the

impact of climate change in the year 2060 on all residential and

commercial buildings. Mendelsohn [24] used a two-step cross-

sectional model of the commercial and residential building stock,

which uses US data and accounts for the probability that a building

is being cooled (which increases with the amount of warming), and

its overall energy consumption as a function of climate (matched on

a county level to the Energy Information Administration (EIA)

buildings in the Residential Energy Consumption Survey (RECS)

[11] and Commercial Building Energy Consumption Survey (CBECS)
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[42,43]). This was further elaborated by Mansur [21] into

a complete discrete continuous choice model of energy demand in

residential and commercial buildings separately. In this analysis,

when natural gas is available, the marginal impact of a 1 �C increase

in January temperatures in their model reduces residential elec-

tricity consumption by 3% and natural gas consumption by 2% [38].

Working with end uses rather than fuels, a 16%e60% reduction in

the demand for residential space heating energy is projected by

about 2080 given no change in the housing stock and winter

temperature increases ranging from 2 �C to 10 �C, or roughly

a 6%e8% decrease in space heating per degree Celsius increase.

Thus far, studies on building cooling and energy demand have

been based on simplified analyses using constant increases in

annual average temperature or changes in cooling degree-days.

These results may be inaccurate and insufficiently detailed to

accurately quantify the climate change impacts of different building

energy technologies. Huang [14] used results from the Hadley

Centre Climate Model (HadCM3). Projected changes in monthly

average temperature, daily temperature range, cloud cover, and

relative humidity by month for 0.5� sectors of the earth’s surface

under four IPCC carbon emission scenarios (A1F1, A2M, B1, and

B2M) for the year 2080 were used to adjust hourly TMY2 (Typical

Meteorological Year) weather files for 16 US locations. These

modified weather files were then used in the DOE-2 building

energy simulation program [9] to simulate the energy demand of

a set of 112 prototypical single-family houses covering 8 vintages in

each of the 16 locations. For the entire US residential sector, the

simulations showed an increase in energy use from 0% to 7%, rep-

resenting up to a 10% increase in space conditioning energy use. At

the regional level, the impacts varied from a 9%e12% decrease in

energy use (12%e16% decrease in space conditioning) in Boston,

to as much as a 29%e58% increase in Miami, with a space

conditioning increase ranging from 46% to 92%. Across the

different building vintages, the impact was most adverse in

newer houses (2%e11% increases of total, 2%e18% of space

conditioning for 90’s vintage houses) and less adverse in older

houses (-1% to 6% increases of total, -1% to 10% of space-

conditioning).

Archived General Circulation Model (GCM) projections were

used and statistically downscaled to the site scale to use as input for

building cooling and heating simulations. The GCM projections

were based on the high temperature sensitivity (HadCM3) and low

temperature sensitivity Parallel Climate Model (PCM) climate

models for the IPCC SRES high-emission (A1F1) and low-emission

(B1) scenarios. The temporal downscaling procedure was based

on a series of third- to fifth-order regression equations that have

parameters using the observedweather station data as predictands.

Temperature and other weather variables were generated through

this technique, and the resulting climatological fit closely replicates

historical climatology. Sub-daily temporal resolutionwas generated

by shifting from the historical to the projected probability distri-

bution function (PDF) for each variable and mapping this onto the

historical hourly observations to obtain an imperfect high-

resolution time series for application.

The statistically downscaled temperature is an additive term,

whereas precipitation is a multiplicative factor. The minimum and

maximum daily temperatures and the daily cumulative precipita-

tion provided by the GCMs were used as predictands and fitted to

third- to fifth-order regressions based on the daily (and finer)

temperature and precipitation observations from the nearest

measurement sites. The resulting changes in temperatures and

precipitation are based on the samemethods used in the TAR (Third

Assessment Report) and AR4 reports. Variability is not captured

through statistical approaches, and consequently, the upper limits

of daily maximum temperature may be underestimations.

The researchers that applied the statistical methods stress

caution in the interpretation at such high temporal resolution. The

methods show good agreement climatically (i.e., as 10-year mean

values), but hourly results are viewed with concern. Upper limits

values are smoothed out; hence, we request that a second set of

calculations be performed when the dynamically downscaled full-

field values are made available through the California Energy

Commission Public Interest Energy Research (CEC PIER) climate

projections project.

Researchers around the world did research on the impact of

climate change on energy use recently. A research team from China

proposed a new method to develop typical weather years for

different climates and the method has applications for regular

updating of weather years and climate change study [5]. The effects

of climate change on the Norwegian energy system toward 2050.

The impact of climate change is evaluated with an energy system

model, the Market alocation model (MARKAL) Norway model, to

analyze the future cost optimal energy system [8]. Hekkenberg

et al. critically analyze these implicit or explicit assumptions and

their possible effect on the studies’ outcomes. First we analyze the

interaction between the socio-economic structure and the

temperature dependence pattern (TDP) of energy demand [17].

3. Methodology

3.1. Typical year weather files for future time periods

Using the procedure described in the previous section, hourly

weather files were created for 63 California locations that had

sufficient historical data for reliable downscaling [47]. The weather

file for each location consists of hourly records of dry-bulb

temperature, dew point temperature, pressure, and total hori-

zontal solar radiation from 1995 through the year 2100, of which

the data up to and including 2006 are historical, and that from 2007

are downscaled from the GCM model. The report to the California

Energy Commission also lists the 73 California locations included in

the new TMY3 data set based on either 24-year (taken from 1976 to

2005) or 12-year (taken from 1991 to 2005) historical data; the 10

locations included in the TMY2 data set based on 1961e1990

historical data; and the 16 California Thermal Zone (CTZ) loca-

tions based on 1941e1970 historical data. These historical “typical

year” weather files are useful for determining how much climate

change has already occurred in California locations and to what

degree the CTZ weather files used by the Commission to analyze

building energy performance may have already been outdated.

Fig. 1 shows the same locations on a state map of CTZ boundaries

for easier identification.

Plots of the temperature and solar radiation data for four

representative locations (Oakland, Sacramento, Burbank, and San

Diego) are shown in Fig. 2, with the historical data shown in red and

the downscaled data in blue. It is apparent that in all four locations,

the downscaled data show a gradual rise in average dry-bulb

temperature over the time period to 2100, but no evident change

in solar radiation.

3.2. Hourly weather predictions

Future weather data were generated for three carbon emission

scenarios using the IPCC SRES scenarios [30], namely A1F1, A2, and

B1. These scenarios are described in the IPCC’s Third Assessment

Report (TAR) and Fourth Assessment Report (AR4). A1F1 is the

worst carbon scenario, and it is characterized by rapid economic

growth and an emphasis on fossil fuels. The A2 family of scenarios

is characterized by slower and more fragmented technological

changes and improvements in per capita income. B1 is the best
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carbon scenario. It relies on reductions in material intensity and the

introduction of clean and resource efficient technologies.

Developing statistically downscaled input requires the avail-

ability of observations of state variables for a time period sufficiently

long that model calibration and verification can be performed for

separate time periods that capture the variability of today’s climate.

Potential obstacles include ensuring that there are adequate data

and the assumption that the projected climate is stationary. Cal-

ifornia has sufficient data available anddoes not pose a problem. The

stationarity of the climate cannot be determined in advance. Testing

to evaluate dynamic climate regimes was performed through an

ongoing California Energy Commission (the Energy Commission)-

supported project, the Regional Climate Model Intercomparison

and Baseline Evaluation (REBI), wherein statistically and dynami-

cally downscaled climate projections were tested [26].

Miller [26,27] has produced climate analyses for the Energy

Commission as a contribution to the California Climate Assessment.

Miller has simulated downscaled climate fields both through

statistical and dynamic procedures using state-of-the-art tech-

niques. This work is representative of the current knowledge base.

Site scale models downscaled at hourly intervals provide an

extension of current techniques. The statistical downscaling tech-

nique applied in this study is based on statistical approaches

developed by Wilby and Dettinger [7] and a projected variance

transform based on mapping distribution functions developed by

Miller and his group. The variance transform is simply an added

temperature or multiplied precipitation ratio based on the statis-

tical downscaling that reflects the climate change sensitivity of

each variable for each location.

The statistical downscaling approach is based on the application

of third- to fifth-order linear equations with coefficients trained

using historical observations. The predictors are the set of single-

point observed temperature and precipitation observations for

each location, and the predictands are the resulting temperature

and precipitation outcomes with high temporal resolution. The

observations only covered 8e15 years, resulting in minimally

trained regression models. We fitted the 3rd- to 5th-order coeffi-

cients using odd years and verified them using even years as shown

in the following equation.

Predictor ¼ A�predictandþB�predictand2þC�predictand3

Statistical downscaling through regression is a common

approach that has been well documented in the literature (Wigley

et al. 1990; Wilby et al. 1998; Huth 1999; Wilby et al. 2002; Wilby

and Dawson 2004). Statistical downscaling procedures have the

advantage of being computationally efficient, but as they rely on

historical relationships between large-scale climate fields and local

variables, partial stationarity (non-changing conditions with regard

to the extreme end-members of the historical period) over time

must be assumed.

Grid-cell values of each predictor and for the reference period

were rescaled by simple monthly regressions. This ensured that

the overall probability distributions of the simulated daily values

closely approximated the observed probability distributions at

selected long-term weather stations located in urban centers.

Observed daily maximum and minimum temperatures, cumula-

tive precipitation, and humidity for each of the weather stations

were used to develop a set of third-order regression equations to

transform the large-scale temperature values from the GCM

simulations into local-scale daily maximum temperatures while

preserving the distribution of the observed mean and variance.

The resulting model was then verified using observations from

Fig. 2. Temperature and solar radiation data for four representative locations.

Fig. 1. California weather stations.
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a separate time period. The downscaled time-series results in

a near-exact fit to observations. The ability of this method to

successfully reproduce observed daily distributions is illustrated in

Fig. 3, which provides a comparison between the observed and the

statistically downscaled annual distributions of maximum daily

temperature for Sacramento and Los Angeles. Although the

modeled distributions tend to be somewhat smoother than the

observations, in general the Geophysical Fluid Dynamics Labora-

tory (GFDL) and PCM-based simulations capture a distribution

very similar to what was observed, whereas the HadCM3-based

simulations tend to show a slightly broader distribution.

The same regression relations were then applied to future

simulations such that the rescaled values share the weather

statistics observed at the five stations. At the daily scale addressed

by this method, the need to extrapolate beyond the range of the

historically observed parts of the probability distributions was rare

even in the future simulations (typically <1% of the future days,

implying that stationarity is valid for this type of analysis) because

climate change involves more frequent warm days more than it

involves warmer-than-ever-observed days [7].

Future projections were then averaged for three time periods

(2005e2034, 2035e2064 and 2070e2099) to produce near-term,

mid-term, and long-term climatological projections of daily

maximum, average, and minimum temperatures for California on

which to base estimates of future shifts in the timing and magni-

tude of electricity demand.

Because of the stochastic variations inweather fromyear to year,

building energy simulations have generally been done using

“typical year” weather data that reflect average weather charac-

teristics over a selected period of record. Recent data sets devel-

oped by the National Renewable Energy Laboratory (NREL) include

239 TMY2 weather files developed from historical weather data

from 1961 through 1990 [22] and 1020 TMY3 weather files devel-

oped using either 24 years taken from the 1976e2005 historical

data for 226 locations or 12 years taken from the 1991e2005 data

for the remaining 800 or so locations [45].

The above-mentioned “typical year” weather files were created

by splicing together twelve calendar months from the historical

period of record judged to be the most representative using

different criteria and weighting. In developing the original TMY

weather files, NREL established a methodology for selecting

a typical month that is straightforward and flexible. In brief, the

selection is made by calculating the Cumulative Distribution

Function (CDF) of each climate variable (temperature, solar radia-

tion, and wind speed) for each month of historical data and

comparing these CDFs to the long-term CDF using the

FinkelsteineSchafer (FS) statistic as ameasure of the closeness of fit

[13]. The FS statistic is the sum of the differences between the

individual and long-term CDFs. The FS statistic for each variable is

multiplied by its weight and then added to produce a cumulative

FS. The month with the smallest cumulative FS is selected as the

typical month.

There are at least threemethods of creating typical year weather

files for future time periods based on downscaled data, each with

its advantages and disadvantages:

Treat the downscaled data the same as historical data to select

typical months and build “typical year” weather files for future

periods from them. The problem with this method is that the

downscaled data do not contain all the climatic variables needed in

a simulation weather file, such as wind speed and direction.

Although these variables are available in the original GCM data,

they are not regardedwithmuch credibility or relevance. Therefore,

even if such weather files based completely on computer model

results could be created, there would be an open question whether

differences from the historical data are due to the modeled climate

change or are artifacts of the synthetic weather data.

Obtain a long-term CDF from the downscaled data but use the

historical data set to select the typical months. The advantage of

this method is that the future year weather file produced would

still be “real” data, and thus, it avoids the questions mentioned for

the previous method. The two assumptions of this method are (a)

the long-term CDFs predicted up through 2100 are within the range

of variability in the historical data, and (b) climate change does not

affect the underlying climate patterns. The first assumption can be

tested by comparing the CDFs from the downscaled data to those

from the historical data, but the second assumption is impossible to

test. Although this method has its appeal, it was not used in this

project because it was not assured to work in all cases and because

it also requires much more effort than the third method described

in the following paragraph.

Compute the average changes in climatic variables (i.e.,

temperature, humidity, solar) in the downscaled data over time and

then map those changes onto existing “typical year” weather files

such as the CTZ, TMY2, and TMY3 data sets. This method shares the

same assumption as the previous one that climate change would

not cause large changes in the underlying climate pattern. The

Fig. 3. Comparison of observed and statistically downscaled annual maximum-daily temperature distributions for Sacramento and Los Angeles.
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advantage of this method is that it relies on the existing “typical

year” weather files to establish the underlying climate patterns

(such as the occurrence of heat storms, the correlations of wind and

solar with other variables) and uses the downscaled data only to

adjust the average monthly values for dry-bulb temperature, dew

point temperature, solar radiation, pressure, and the diurnal swings

of dry-bulb and dew point temperatures. In other words, this

method uses the downscaled data not to represent future weather

but only to represent the expected deviations in the weather from

the historical record.

For both technical and practical reasons, we chose Method 3 to

generate the future year “typical year” weather files. The same

method was used by Huang for a previous study on the potential

impact of climate change on building energy use in the US [14], and

software procedures had already been developed. The downscaled

data for the 63 California locations consist of large (56 MB) text files

with 106 years of hourly records of dry-bulb and dew point

temperature, pressure, and total solar radiation from 1995 through

2100. These were analyzed and condensed first into average daily

mean and range for the dry-bulb and dew point temperatures and

into average daily mean only for the total solar radiation for each

month of every year. These data were then further condensed into

monthly means and ranges for each decade starting with 1995, i.e.,

1995e2004, 2005e2014. Because they were obtained from histor-

ical data, the means and ranges calculated for the first decade, i.e.,

1994e2005, are taken as the baseline against which the means and

ranges for the subsequent decades are compared. The changes in

the monthly means and ranges are then “mapped” onto the TMY3

weather file for that location, resulting in a modified weather file

for each decade extending to 2100.

Although the technique has been developed to produce future

“typical year” weather files for any decade up through 2100, only

four snapshot decades were analyzed: TP2 (2005e2014), TP4

(2035e2044), TP6 (2055e2064), and TP9 (2085e2094). Further-

more, due to the absence of building stock data for the smaller

locations, computer simulations were conducted in only 16 of the

63 available locations corresponding roughly to the locations used

to develop the original 16 CTZ weather files. Table 1 shows the

heating and cooling degree days for downscaled locations under

three climate change scenarios in four future time periods (the first

25 locations), and Fig. 4 shows the heating and cooling degree days

for the 63 locations for the TMY3 base case and the four snapshot

decades.

The degree-day statistics in Fig. 4 are shown with the stations

grouped by color depending on their geographical location: dark

blue for mountain areas, dark green for the northern coast, orange

for the north Central Valley, yellow for the south Central Valley,

light green for the southern coast, and red for desert areas. Fewer

lines extend to the left because therewere only 16 CTZ and 11 TMY2

locations compared to the 53 downscaled locations with either

TMY3 or NCDC weather data.

3.3. Commercial building prototypes

Building energy usage was estimated through a bottom-up

approach by simulating prototypical commercial buildings

differentiated by vintage, building use, and climate. By combining

these simulation results with the building stock information and

the amount of building floor area represented by each prototype,

a reasonable assessment of energy use characteristics of the entire

building stock in California can be produced. Sixteen commercial

and residential building prototypes were used e most of these

prototypical building models were developed during previous

LBNL research projects [15]. These building models were used as

the basis for developing future prototypical building models by

referring to the trends in building technologies and to the building

code. The models were developed by two building simulation

models, EnergyPlus and DOE-2.1E [9]. The simulation analysis was

started using EnergyPlus, but then it was switched to DOE-2.1E

when it became clear that using EnergyPlus would require

several weeks of time for the simulations alone. Detailed

descriptions of these building simulation models are also given

elsewhere [47]. Table 2 is a classification of different commercial

building prototypes.

4. Result

4.1. Impact on building energy intensity

In the calculation, we assumed building square footage to be

constant. Therefore, the change in peak energy usage intensity is

proportional to the change in the aggregated energy usage. Energy

intensity is defined as total energy usage per square foot (KBtu/ft2).

We ran a simulation for each type of building using the gener-

ated hourly future weather data. The simulations were for the years

2005e14, 2035e44, 2055e64, and 2085e94.

Because the overall temperature will increase over the next 100

years, cooling energy consumption will increase and heating

energy consumption will decrease. However, the increases and

decreases associated with each type of building are different. For

large office buildings, the shift will be less significant than for

warehouses and small retail stores, which rarely need air condi-

tioning. In general, cooling electricity usage will increase more for

small buildings than for large buildings. The impact will be greater

on sit-down restaurants and small retail stores than on large offices

and supermarkets.

4.2. Future energy end-use

We plotted four types of energy intensity change for each

type of building under different carbon scenarios. Fig. 5 shows

a comparison of different types of predicted energy

consumption in large office buildings and small office buildings

(A2 Scenario).

The first type of energy intensity change is the change in

heating energy over the next 100 years. The trend is very clear.

Because of global warming, heating energy usage decreases under

all carbon scenarios. For example, the heating energy consump-

tion of a large office building will be reduced by almost 50% in all

regions. In general, the percentage reduction in southern Cal-

ifornia will be more than that in northern California because

buildings in southern California barely need heating now.

Reductions in heating energy usage are generally larger for small

buildings than for large buildings. Small buildings are more

sensitive to weather changes because of their low volume to

surface area ratio.

The second type of energy intensity change is the change in

cooling energy over the next 100 years. Energy used for building

cooling will increase significantly in all regions. For example, in

southern California, under the A2 scenario, the cooling energy

consumption of large office buildings will increase by 70% from

their current level. This is assuming the internal load will be

constant over the next 100 years. Cooling energy usage in northern

California will also increase, but not as much as in southern Cal-

ifornia. Under the A2 scenario, in northern California, the cooling

energy usage of large office buildings will remain nearly constant

until 2044. After 2044, the cooling energy usage will start to

increase significantly. It seems that until 2044, under the A2

scenario the weather in northern California will still not be hot

enough to trigger a large cooling demand.
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Table 1

Heating and cooling degree-days from downscaled locations under three climate change scenarios in four future time periods (the first 25 locations).

Location CC

scenario

Heating degree days 18C Cooling degree days 18C (Cooling degree hours)/24 26 C

CTZ TM2 TM3 2005

e2014

2035

e2044

2055

e2064

2085

e2094

CTZ TM2 TM3 2005

e2014

2035

e2044

2055

e2064

2085

e2094

CTZ TM2 TM3 2005

e2014

2035

e2044

2055

e2064

2085

e2094

Arcata

(CTZ01)

A1FI 2700

(2184)

2779 2650 2759 2577 2244 1827 0

(0)

1 1 0 1 3 10 0

(0)

0 0 0 0 0 0

A2 2633 2792 2394 1994 0 0 1 6 0 0 0 0

B1 2623 2426 2478 2346 1 2 1 2 0 0 0 0

Bakersfield A1FI 1152 1111 1124 1027 858 682 1335 1295 1467 1825 2142 2586 411 405 506 704 889 1181

A2 1102 1116 939 752 1461 1590 1738 2273 487 580 646 960

B1 1105 1003 974 963 1442 1564 1558 1726 492 545 541 624

Bishop A1FI 2139 2189 2009 1750 1434 806 943 1223 1504 1850 346 425 579 742 954

A2 2159 2167 1875 1610 960 1050 1196 1595 425 498 561 791

B1 2139 1957 1942 1906 920 1025 1041 1156 417 464 472 538

Burbank

/ Glendale

(CTZ09)

A1FI 966

(755)

755 808 819 655 434 249 510

(575)

575 746 843 1103 1376 1793 116

(166)

166 167 217 315 400 580

A2 752 825 571 313 839 868 1039 1503 198 219 277 453

B1 754 613 579 532 828 928 896 1071 206 240 225 279

Camarillo A1FI 1055 1034 827 549 325 171 196 344 507 817 20 22 38 55 91

A2 973 1054 744 415 213 230 309 592 21 24 34 62

B1 991 804 801 706 212 239 229 325 26 26 27 38

China Lake

(CTZ14)

A1FI 1316

(1655)

1489 1508 1371 1162 933 1694

(1032)

1546 1713 2062 2395 2856 686

(377)

633 751 968 1177 1483

A2 1474 1493 1274 1040 1710 1830 1988 2547 734 835 908 1260

B1 1481 1338 1318 1286 1686 1805 1807 1969 733 793 792 883

Daggett

Barstow

A1FI 1013 1100 1098 978 836 647 1651 1717 1949 2374 2739 3309 605 668 820 1098 1333 1757

A2 1093 1090 936 714 1946 2130 2283 2940 802 946 1026 1471

B1 1061 974 923 922 1928 2054 2084 2214 811 874 892 968

El Centro

(CTZ15)

A1FI 606

(486)

476 491 437 367 225 2487

(2308)

2436 2627 3018 3343 3849 1116

(1010)

1046 1202 1474 1679 2082

A2 496 500 397 233 2616 2753 2914 3530 1168 1290 1372 1829

B1 448 410 369 382 2594 2732 2766 2888 1174 1245 1267 1346

El Toro

(CTZ08)

A1FI 933

(755)

615 631 480 298 154 375

(448)

326 447 783 1153 1667 70

(83)

10 23 60 108 259

A2 563 635 403 204 460 478 690 1296 16 21 40 143

B1 556 425 406 361 434 557 517 775 19 29 24 44

Fresno

(CTZ13)

A1FI 1504

(1243)

1435 1274 1317 1203 1023 821 1017

(1127)

1092 1238 1383 1704 2016 2422 346

(386)

380 419 515 697 888 1153

A2 1300 1311 1097 943 1409 1507 1677 2136 514 594 670 954

B1 1292 1162 1138 1128 1370 1500 1500 1636 505 564 568 644

Fullerton A1FI 736 774 590 299 89 607 712 980 1245 1740 89 120 189 251 421

A2 676 778 447 161 720 717 900 1424 107 121 158 300

B1 673 509 482 431 686 792 754 949 114 134 121 160

Inyokern A1FI 1489 1508 1371 1162 933 1546 1713 2062 2395 2856 633 751 968 1177 1483

A2 1474 1493 1274 1040 1710 1830 1988 2547 734 835 908 1260

B1 1481 1338 1318 1286 1686 1805 1807 1969 733 793 792 883

Lancaster A1FI 1574 1571 1418 1179 914 1165 1334 1692 2013 2468 386 489 693 888 1193

A2 1538 1555 1322 1032 1328 1462 1610 2145 470 565 635 957

B1 1540 1396 1372 1331 1306 1423 1419 1585 477 525 524 612

Lemoore A1FI 1472 1424 1296 1094 870 1041 1195 1511 1792 2190 375 467 634 789 1204

A2 1402 1413 1212 967 1187 1310 1434 1904 450 535 584 844

B1 1396 1277 1258 1225 1168 1269 1270 1413 454 495 495 563

Lompoc A1FI 1849 1891 1607 1084 616 5 8 22 85 240 4 4 7 15 30

A2 1738 1953 1381 858 8 7 27 107 4 3 7 17

B1 1743 1471 1575 1311 9 20 10 27 7 8 6 10

Long Beach

(CTZ06)

A1FI 827

(844)

744 647 666 535 344 177 392

(216)

443 458 535 752 976 1320 49

(7)

39 35 53 92 130 231

A2 603 671 446 238 533 553 692 1080 42 49 74 158

B1 606 495 463 433 527 612 580 731 48 63 55 75

Los Angeles A1FI 720 648 656 530 345 182 232 223 270 419 577 833 6 2 3 7 12 32

A2 596 655 452 241 262 275 369 650 2 2 4 18

B1 601 504 469 438 263 329 295 404 3 4 4 5

(continued on next page)
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The last column in the figure is total energy usage. Total energy

usage is the sum of heating, cooling, domestic hot water, and fan

energy consumption (which is not listed here in this paper). In

general, the decrease in heating energy offsets the increase in

cooling energy. However, for each region, because the changes in

cooling and heating are different, the total energy consumption

may either decrease or increase.

For example, under the A2 scenario, the total energy

consumption of large office buildings will stay flat in northern

California. However, the total energy consumption of large office

buildings will increase slightly in southern California. Under the

worst scenario (A1F1), total energy usage will increase slightly in

northern California but drastically in southern California.

4.3. Building type variance

Although in general, cooling energy will increase and heating

energy will decrease for all types of buildings, the magnitude of

the changes varies among different building types. In general,

small buildings are more sensitive to global warming than large

buildings because the envelope heat gain (loss) of small buildings

is a larger portion of their cooling (heating) load than that of

large buildings.

For example, in northern California, the total energy

consumption of large and medium office buildings will increase.

However, the total energy usage of small office buildings in CZ16

will actually decrease. The heating consumption of small offices

in this region will decrease sufficiently to offset the increase in

cooling energy usage in the summer so that the total energy

usage will decrease.

We observed similar results for other types of small buildings

such as fast-food restaurants, primary schools, and small hotels. For

small hotels, in northern California total energy usage will decrease

in all 7 climate zones. For fast food restaurants, total energy usage

in CZ16 will in fact decrease in the future. Total energy usage in the

other 6 northern climate zones will remain flat.

4.4. Carbon emission scenarios

A1F1. In the high carbon emission scenario, cooling energy

consumption increases drastically for nearly all building types.

Large offices and supermarkets have the largest share of energy

consumption among all types of commercial buildings. The cooling

energy consumption of these two types of buildings increases by

almost 50% in all major climate zones. The overall building energy

usage increases slightly by about 15e30%.

B1. Under the low carbon emission scenario, cooling energy

consumption does not increase as much as it does in A1F1.

However, the increase is still significant. For large offices and

supermarkets, overall building energy usage increases by about

15%.

A2. Scenario A2 is in between A1F1 and B1. Cooling energy

consumption increases for major building types by approximately

20%. Total building energy consumption for both heating and

cooling increases only slightly. However, the change is not

uniform across all climate zones. For certain climate zones such

as the cold zones, the increase in total energy use is higher than

in the others.

4.5. Impact on aggregated building energy usage

The current building stock in California was used as a basis for

the calculation [47]. Forecasting the growth of each type of

building in each climate zone is difficult. The goal of this study is

not to figure out the overall energy consumption changes for eachT
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type of building but instead to determine the impact of climate

change alone. Therefore, current building stock information was

used as the baseline to separate out other changes such as

demographic changes and new development in the Central

Valley.

From the building stock data, one can determine which building

type has the largest impact on total energy usage. For example,

large office buildings, supermarkets, and retail stores comprise

more than 60% of the total air conditioned building square footage

Fig. 4. Heating and cooling degree-days for 53 downscaled CTZ and 11 TM2 locations under different scenarios.

Table 2

Commercial building prototypes.

Hotels Hospitals Offices Retail Schools Other

Large

hotel

Hospital Large

office

Retail Secondary

school

Sit down

restaurant

Small

hotel

Outpatient

health care

Medium

office

Supermarket Primary

school

Fast-food

restaurant

Small

office

Strip mall Warehouse
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in California. The energy usage trends of these types of buildings

will dominate the total aggregated building energy usage. More

than 70% of these large buildings are located in climate zones 3, 6, 7,

8, and 12. The heating load of large buildings is not as sensitive to

weather changes as that of small buildings. The total energy

consumption will increase between 8% (zone 3) and 20% (zone 8)

under the worst carbon scenario. Under the low carbon scenario,

the increase in total energy consumption is between 0 (zone 3, 12)

and 5% (zone 7, 8).

Table 3 shows the aggregated energy consumption changes in

2100 (A2 scenario). The total energy consumption of all buildings in

the current year (2005) has not been calibrated to the actual

Fig. 5. Comparison of different types of predicted energy consumption in large office buildings and small office buildings (A2 scenario).
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building consumption in California. The relative term is more

important here because we want to understand the trends in

energy growth [47].

In total, California building energy consumption increases about

8% under the worst carbon scenario and about 2% under the low

carbon scenario if the building stock stays the same (as shown in

Table 4).

5. Conclusions

In all three SRES scenarios used in this study (A1F1, A2 and B1),

consistent and large increases in temperature and extreme heat

drive significant impacts on temperature-sensitive sectors in Cal-

ifornia. The most severe impacts occur under the A1F1 scenario.

With the rising temperature, low-energy intensity cooling systems

may not work equally well in the future. For example, natural

ventilation may not be as applicable to buildings in the bay area as

it is now. Increased cooling demand may require buildings with

traditional HVAC systems to retrofit and expand their cooling

capacity. Another example is direct and indirect evaporative cool-

ing systems in the dry inland area. Because of rising dry bulb and

wet bulb temperatures, the efficiency of evaporative systems may

start to decrease and the systems may no longer be economically

feasible. The prediction of energy use change lies on the reliability

of the temperature model prediction. Under each carbon scenarios,

this study predicts the pattern change reasonably accurate, but not

the exact energy consumption change.

The weather changes will not change the energy usage of

different types of buildings in the same way. For example, the

total energy usage of small buildings in northern California will

actually decrease as the weather becomes warmer. The variance

among different types of buildings needs to be considered care-

fully when developing future building codes. Code requirements

for small buildings in northern regions should focus more on how

to reduce cooling loads than heating loads. In the mean time,

fresh air load is perhaps the number one contributor to the

increased cooling loads in southern California for large

commercial buildings. Building codes in these areas may need

more rigorous requirements to address fresh air load than codes

in other areas.

These findings support the conclusion that climate change will

have a larger effect on areas such as the San Francisco Bay Area than

inland regions where space cooling (air conditioning) dominates

power usage. As such, it represents a solid starting point for

assessing the detailed effects of location.

This study represents one approach to understanding how

building energy consumption will change in the future. However,

more fundamental issues, such as how engineering practices

should be changed in response to the weather changes, have not

been addressed. For example, this study shows that total energy

consumption in southern California will increase by 30% over the

next one hundred years under the worst scenario. To keep energy

usage at the same level, engineers in the futurewill need to develop

Table 4

Total building energy consumption in the year 2100 relative to 2005.

Current A1F1 A2 B1

100 108 105 102

Table 3

Aggregated energy consumption changes in year 2100 (A2 scenarios).

A2, Year 2100, Total energy consumption for 16 California climate zones (MMBtu)

Climate zones

1 2 3 4 5 6 7 8

Hospital 0 559,675 2,324,360 901,642 198,543 1,414,551 382,689 2,908,929

Outpatient health care 190,783 181,937 1,201,735 1,028,461 0 2,965,205 647,674 2,137,380

Large office 218,949 2,199,321 31,112,152 8,171,651 566,808 18,931,121 19,336,246 14,721,328

Medium office 351,273 349,070 1,498,193 1,407,547 0 752,059 514,422 1,017,468

Small office 300,138 328,328 1,336,338 1,359,073 0 692,835 487,963 1,197,133

Store 40,632 1,134,605 4,248,190 1,812,191 480,964 3,212,770 2,665,720 4,713,582

Sit down restaurant 0 0 3,265,696 1,515,569 221,761 4,159,757 1,239,714 2,895,601

Super market 0 8,715,829 23,925,528 7,590,198 2,642,898 23,024,292 17,241,294 39,189,314

Strip mall 2628 55,757 157,172 34,187 8061 108,867 110,015 302,008

Small hotel 0 0 1,881,509 1,250,568 0 3,791,664 4,277,527 1,399,138

Large hotel 385,231 447,944 6,107,097 1,820,870 622,442 4,362,783 2,658,222 2,944,296

Primary school 0 3,934,933 4,498,155 4,898,516 139,505 2,798,875 3,285,755 5,546,800

Secondary school 0 1,801,687 1,521,173 715,417 0 1,635,712 1,485,231 1,894,172

Warehouse 0 2,593,511 8,828,063 4,845,720 904,024 7,484,353 3,325,760 16,425,838

Other 0 1,321,533 13,584,974 10,907,368 1,465,911 11,413,146 9,659,701 2,637,402

Climate zones

9 10 11 12 13 14 15 16

Hospital 1,619,077 1,192,947 71,481 2,516,188 1,032,163 57,249 181,333 988,897

Outpatient health care 3,204,894 2,201,303 501,446 1,946,272 273,400 79,180 0 1,355,111

Large office 9,763,068 5,041,510 1,822,063 21,938,249 5,160,703 1,419,293 564,823 1,101,893

Medium office 765,975 1,208,152 2,020,673 1,228,160 2,831,799 227,444 120,897 888,503

Small office 790,429 1,214,143 2,073,122 1,217,374 3,094,786 245,651 141,122 865,707

Store 2,562,334 4,128,105 1,333,179 3,365,729 11,602,527 1,134,161 35,289 152,894

Sit down restaurant 589,159 1,487,585 0 2,293,796 1,716,611 471,108 0 671,755

Super market 14,624,134 16,209,536 4,952,766 39,407,711 19,124,501 8,336,916 3,357,176 0

Strip mall 266,089 343,987 61,738 221,259 213,205 21,747 2240 3590

Small hotel 536,767 5,160,774 0 1,692,363 2,012,375 248,157 1,289,432 134,528

Large hotel 1,447,849 891,288 0 2,459,549 1,183,494 0 546,828 780,939

Primary school 5,344,325 4,469,190 2,445,850 8,166,719 2,172,340 892,206 0 1,153,897

Secondary school 2,687,882 1,889,170 534,529 2,509,160 2,798,374 338,548 719,409 0

Warehouse 8,886,817 14,107,055 1,375,018 11,449,881 2,755,606 1,046,845 1,309,787 285,169

Others 4,086,311 18,568,587 16,825,419 6,332,602 4,946,038 4,933,990 1,238,661 1,186,783

Total 815,608,124

P. Xu et al. / Energy xxx (2012) 1e13 11

Please cite this article in press as: Xu P, et al., Impacts of climate change on building heating and cooling energy patterns in California, Energy
(2012), http://dx.doi.org/10.1016/j.energy.2012.05.013



better building envelopes and HVAC systemswith higher efficiency.

A series of these more efficient buildings could be simulated to

determine at which level the added efficiency will be enough to

compensate for the energy increases from climate change.

This study generated future data files not only for 16 climate

zones but also for virtually every weather station in California. The

difference between these weather stations can sometimes be

significant. For example, as presented in the results section above,

in climate zone 16, the energy consumption of buildings at different

weather stations may change differently. Future climatic data will

be helpful for re-classifying the climate zones in California. Hourly

data for each weather location will be useful for decision makers

making long-term city plans and assessing various adaptation

approaches.
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List of acronyms

AR4 IPCC’s Fourth Assessment Report

CBECS Commercial Building Energy Consumption Survey

CEUS California Commercial End-Use Survey

CDF Cumulative Distribution Function

CTZ California Thermal Zone

EIA Energy Information Administration

FS Finkelstein-Schafer Statistic

GCM General Circulation Model

HadCM3 Hadley Centre Climate Model

HVAC Heating, Ventilation, and Air Conditioning

IPCC Intergovernmental Panel on Climate Change

NSRDB National Solar Radiation Data Base

NREL National Renewable Energy Laboratory

PDF Probability Distribution Function

RCMs Regional Climate Models

RECS Residential Energy Consumption Survey

TMY Typical Meteorological Year

TAR IPCC’s Third Assessment Report

REBI Regional Climate Model Intercomparison and Baseline

Evaluation
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