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a b s t r a c t

Amethod of fast multi-objective optimization and decision-making support for building retrofit planning
is developed, and lifecycle cost analysis method taking into account of future climate condition is used in
evaluating the retrofit performance. In order to resolve the optimization problem in a fast manner with
recourse to non-dominate sorting differential evolution algorithm, the simplified hourly dynamic
simulation modeling tool SimBldPy is used as the simulator for objective function evaluation. Moreover,
the generated non-dominated solutions are treated and rendered by a layered scheme using agglom-
erative hierarchical clustering technique to make it more intuitive and sense making during the decision-
making process as well as to be better presented.

The suggested optimization method is implemented to the retrofit planning of a campus building in
UPenn with various energy conservation measures (ECM) and costs, and more than one thousand Pareto
fronts are obtained and being analyzed according to the proposed decision-making framework. Twenty
ECM combinations are eventually selected from all generated Pareto fronts. It is manifested that the
developed decision-making support scheme shows robustness in dealing with retrofit optimization
problem and is able to provide support for brainstorming and enumerating various possibilities during
the decision-making process.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The function and use of building have evolved greatly after the
industrial revolution as they now can be more efficiently and
rapidly constructed in vast scale, which facilitated the process of
urbanization and the diversification of building's functionality.
Buildings are different in terms of their types of use, geometrical
shape, material use, building systems, and etc., so individual
building may not be treated equally in the process of planning and
decision-making in design, construction, and retrofitting. Accord-
ing to previous research by Aktas and Bilec, the average life of
residential building in the United States is currently 61 years and
has a linearly increasing trend [1]. For commercial buildings, about
rbin Institute of Technology,

.

half of all commercial buildings were constructed before 1980 ac-
cording to Commercial Building Energy Consumption Survey
(CBECS) [2]. As a matter of fact, an estimated 14 billion m2 of
existing buildings (about 50% of the total building stock) are ex-
pected to be renovated in the next 30 years in the United States [3].
Approximately 86% of current building construction expenditures
are spent on renovating existing buildings and the rest on new
construction [4]. With the trend of slow increase in newly con-
structed buildings in recent years, many of the existing buildings in
the United States should be renovated if energy consumption and
carbon emissions are expected to be significantly reduced in the
future.

On the other hand, regarding sustainable building design, there
could be great deal of tailor-made design variables to be considered
for each individual building. One of the most important factors in
sustainable building design is the energy performance of a building,
and this involves many factors including site location, onsite
climate condition, building envelope, passive design, energy
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Nomenclature

Afloor Total floor area (m2)
Aroof ;j Area of building wall with jth wall insulation, m2

Awall;i Area of building roof with ith wall insulation, m2

Awin;l Area of window with lth wall insulation, m2

Awin;n Area of window with nth shading material, m2

Cinfl Retrofit cost for air tightness improvement, $/m2

Cothers Other costs, $
Croof�insu;j Roof insulation cost, $/m2

Cshade;n Shading material cost, $/m2

Cwall�insu;i Wall insulation cost, $/m2

Cwin;l Window replacement cost, $/m2

EC; i Hourly cooling energy use, J
EDHW; i Hourly domestic hot water heating energy use, J
Eequipment; i Hourly energy use of equipment, J
EH; i Hourly heating energy use, J
Elight; i Hourly lighting energy use, J
Epost;k k year's annual energy use after retrofit, J
Epre;k k year's annual energy use without retrofit, J
Epump Hourly pump energy use, J
EPV Hourly solar panel electricity production, J
Esaving Aggregated energy saving during lifecycle, J
ESWH Hourly solar water heater energy production, J
Eu Hourly energy use of a utility, J
Fu Primary energy conversion factor
Ik Proportion of the maintenance cost of the initial

investment, %
Itotal Total investment cost, $
npv Number of PV panels
Ipv Solar irradiation hitting on the PV panel surface, W/

m2

Ish Solar irradiation hitting on the solar water heater, W/
m2

Ppv Power output of PV system, W
Qsh Thermal energy output of the solar water heater, W
Sutotal total saving for type of energy source u, $
Spv Array area of each PV panel, m2

ta Outside air temperature of PV panel, �C
tm Cost increase in maintenance fee of each year, %
tu Cost increase for type of energy source u, %

mpv Efficiency of PV panel, %
msh Efficiency of the solar water heater, %
mex Efficiency of the heat exchanger of the solar water

heating system, %
u Utility type

Acronyms
ANN Artificial neural network
AR5 IPCC Fifth Assessment Report
ASHRAE American Society of Heating, Refrigerating, and Air-

Conditioning Engineers
BES Building energy simulation
BEU Building energy use
CBECS Commercial Building Energy Consumption Survey
CMU Concrete masonry unit
CV Coefficient of variation
DE Differential evolution
DHW Domestic hot water
DOE Department of Energy
ECM Energy conservation measure
FRES Penn Facilities and Real Estate Services
HVAC Heating, Ventilating, and Air Conditioning
IPCC Intergovernmental Panel on Climate Change
LCA Lifecycle cost analysis
GA Genetic algorithm
GCM Global climate model
GHG Greenhouse gas
MOGA Multi-objective genetic algorithm
NPV Net present value
NSDE Non-dominated sorting differential evolution
NSGA Non-dominated sorting genetic algorithm
PMV Predicted mean vote
PV Solar panel
RAM Random access memory
RC Resistance-capacitance
RCP Representative concentration pathway
RF Random forest
RMSE Root mean squared error
SHGC Solar heat gain coefficient
SWH Solar water heater
TMY Typical meteorological year
UPenn University of Pennsylvania
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system, electric appliances, occupant comfort, etc. The condition of
current building stock in the United States raises the question of
whether the energy performance of existing buildings can ever be
environmentally sustainable. In the United States, buildings
accounted for 39% of total energy consumption and 72% of total
electricity consumption [5]. Moreover, it has been projected that
the energy consumption of current buildings is going to grow
annually by 1.7%e2025 [6]. Mills et al. [7,8] has shown that
improving existing buildings will yield median energy savings of
16% in the United States. The great potential in energy reduction in
existing building has created opportunities in building energy
retrofit projects [9]. A successful building energy retrofit project
should also be affordable, which takes into account factors like
investment budget, payback period, economic risks and un-
certainties, and etc.

Building retrofit usually involves updating building device and
system, in which a series of choices – energy conservation
measures (ECM), can be applied. It is not an easy project consid-
ering that building is a complex system with a decision-making
process aiming to meet the goal of high energy performance and
some constraints related to project costs, cultural and social needs,
expectations from building owners, and technology limitations. The
answer to the problem of searching the optimal ECMs is to look for
an admissible set of values of the command variables (alternatives)
compatible with the constraints (inner environment), that maxi-
mize the utility function (interface connecting inner and outer
environment) for the given parameters of design variables (outer
environment). The difficulty in solving such a problem lies in that
the objective function of the retrofit project usually possesses non-
linearity as well as multicollinearity with respect to the different
design variables. One ECM in a retrofit bundle may have influence
on other ECMs and the options for choosing them. To solve this
problem, building simulation is often a method adopted to study
the influences and interactions among ECMs and the trade-offs
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according to selected objectives. However, this process can be
complicating considering the collection of existing building infor-
mation and retrofit options, the complexity in building modeling
and simulation, the optimization process, and the decision-making
phase, in which not only expert panels such as architects and en-
gineers are involved, but clients should also actively participate.
There are many on-going researches in the field looking for the
method of finding optimal solutions for the building energy retrofit,
and they are discussed in the following literature review.

2. Literature review

A comprehensive literature study concerning building retrofit
optimization research have been listed in Table 1.

Table 1 lists research related to building retrofit optimization
and methods. These studies dealt with different objectives and
different methods for forming optimization problems. The most
often used objectives in the optimization are the energy use or
consumption, the economic metrics taking into account lifecycle
analysis, and the thermal comfort. For the BES tools used in those
research, EnergyPlus [30] is mostly used, and others include
TRNSYS [31], eQuest, which uses the DOE simulation engine [32].
EnergyPlus is a widely used BES model in both academic and
commercial studies, which is developed by the Department of
Energy (DOE). Its precedent versions are BLAST and DOE-2 and it
inherited the features and strengths of both programs. EnergyPlus
is able tomodel thewhole building energy performance in dynamic
way and has undergone numerous reliability tests [33] and is
validated to be well within the accuracy needed for building design
[34]. Tools like EnergyPlus and TRNSYS are mostly used for energy
diagnoses and scientific investigations because of their modeling
and simulation accuracy compared with steady or semi-steady
state simulation tools.

The most popular optimization algorithm is evolutionary algo-
rithm including genetic algorithm (GA), multi-objective genetic
algorithm (MOGA), non-dominated sorting genetic algorithm
(NSGA). The advantages of GA are that unlike brute force, it does not
exhaust the entire design space of the ECM variables included in a
retrofit project. After generations of evolution, GA is able to provide
an optimal solution to the given objective function, although global
optima are not guaranteed. It has been very widely used in re-
searches concerning building retrofit optimization. However, the
use of GA is usually coupled with BES tools to evaluate the energy
use under different ECM bundles since energy performance always
plays an indispensable role, directly or indirectly, in the objective
function. As discussed, EnergyPlus is one of the most popular tools
that are used together with evolutionary algorithms. White box
modeling tools like EnergyPlus that involve a lot of input infor-
mation and manipulate dynamic functions in building energy
modeling can be time-consuming to simulate, especially when it is
faced with exponentially increasing simulation number that is
required in such a combinatorial optimization problem for the
retrofit. How to facilitate the evaluation of objective function dur-
ing optimization that may involve various factors such as building
energy performance, indoor thermal comfort, investment and
returns could be Limitation One: Evaluation of Objective Functions for
the research problem.

Limitation Two: Generalization of Archetypical Building. This
limitationwould be the difficulty of generalizing the result of all the
ECMs to the same type of building by means of an archetypical
building study [18] and providing clients with better decision-
making support. As we have discussed in the beginning of the pa-
per, it is not reasonable to treat an individual building as its
archetypical representative, because modern buildings are
different in terms of geometric shape, use of materials, building
systems, etc. even if it is classified as the same use type. For
example, the lab buildings on the University of Pennsylvania
(UPenn) campus are so diversified in their win-wall ratio, use
schedule, equipment type, and thermal capacity, even within the
same type of use (laboratory), making the variance of energy use
intensity large. Therefore, for the purpose of energy retrofitting, it
would be important to develop a broadly applicable methodology
for the rapid optimization of individual building retrofitting
planning.

In addition, twomechanisms for optimizing the building retrofit
are mainly used in the reviewed research: the deterministic
method (where weighted sum method is often used) and the non-
dominated method (Pareto front). Then here is Limitation Three:
Lack of Decision-making Support. Not enough support is provided
for user's decision-making in both methods. Most building retrofit
optimization problems involve several objectives, making them
multi-objective problems. Although giving different weights to
each sub-objective before optimization would reduce the
complexity of the problem by converting the multi-objective
problem into a single objective one, the “a priori” nature of this
method requires preferential information to the determination of
the weighting factors. It would be difficult for users or clients to
define appropriate weight values in the final objective function,
with little knowledge on how the optimization results will look
like. Moreover, when implementing this deterministic method,
each sub-objective function should be transformed and normalized
into a uniform scale to achieve dimensionless comparison among
each other. This process also requires the intervention from client
or decision maker to determine the labeling criteria and transform
the output of each sub-objective function into the same scale.
Compared to the disadvantage of deterministic method in decision-
making process, non-dominated method is able to visualize the
trade-offs in retrofit planning, but the drawback could be that the
optimized Pareto front curve is so widespread that it will be diffi-
cult to have an idea of where to start and which range on the Pareto
curve might be interesting to look at.

Limitation Four: Necessity of Using LCA. It should be noted that
lifecycle cost analysis (LCA) is necessary for a retrofit project
because clients tend not to do retrofit too frequently in a short
period of time, while most LCA methods in the reviewed research
do not take into account future climate uncertainties. In literature
[29], Ascione et al. used NSGA-II algorithm to optimize the energy
use and the global cost under different global warming scenarios. In
this research, it is assumed that the future air temperature incre-
ment is discretized in 32 years and an 8-year period is used to
perform the building simulation in EnergyPlus. It is not difficult to
simulate future years’ hourly energy use by using hourly down-
scaled future weather data [35e38], but a thirty-year lifespan of
hourly energy simulation by using tools like EnergyPlus for the
objective function evaluation could be rather unprocurable given
the immense scale in computation. A method to circumvent the
huge computational cost engendered by simulation runs are going
to be found and tested in this research.

Confronted with the four limitations, in this research, a method
of fast multi-objective optimization and decision-making support
for building retrofit planning is developed and introduced, and LCA
method taking into account of climate change will be used in the
objective function. A retrofit optimization of an on-campus build-
ing in University of Pennsylvania to which the developed method
and framework is implemented will be studied and discussed. The
highlights of this research corresponding to each stated limitation,
which can be potential solutions to the limitations are listed as
follows:

a) Limitation One: Evaluation of Objective Functions



Table 1
Literature review on building retrofit optimization.

Literature Objectives Objective
Function
Evaluation

Energy Use
Evaluation

Optimization Algorithm Authors Year of
Publication

Type of Building

[10] Aggregated energy saving,
internal rate of return

Weighted
sum multi-
objective

Model
predictive
control

Differential evolution Bo Wang, Xiaohua Xia 2015 Office building built in 1960s

[11] Energy saving, lifecycle
NPV, discounted payback
period

Weighted
sum multi-
objective

Estimation Differential evolution Bo Wang, Xiaohua Xia,
Jiangfeng Zhang

2014 Office building built in 1960s

[12] Total lifecycle cost (LCC) Single
objective
optimization

eQuest &
static
modeling

Genetic algorithm Amirhosein Jafari, Vanessa
Valentin

2017 House built in 1964

[13] Initial investment cost,
energy consumption,
global warming potential

Multi-
objective
Pareto front

DIN V
18599
assessment
method

NSGA-II Yunming Shao, Philipp
Geyer, Werner Lang

2014 Office building built in 1900

[14] Retrofit cost, energy saving
in kWh, thermal comfort

Weighted
Tchebycheff
metric

TRNSYS Tchebycheff programming Ehsan Asadi, Manuel
Gameiro da Silva, Carlos
Henggeler Antunes, Luís Dias

2012 House built in 1945

[15] Greenhouse gas emission
reduction

Single
objective

TRNSYS &
Matlab

Brute-force A.M. Rysanek, R. Choudhary 2012 Office: built in 1960s; School:
late 19th century

[16] Thermal comfort, annual
energy consumption

Weighted
sum multi-
objective

EnergyPlus Repeated sampling and
feature reduction

Bryan Eisenhower, Zheng
O'Neill, Satish Narayanan,
Vladimir A. Fonoberov, Igor
Mezi'c

2012 Office and gym building Built
in 1910s

[17] Energy demand, thermal
comfort, global cost

Multi-stage
analysis
method

EnergyPlus
& Matlab

Feature reduction and
brute-force

Gerardo Maria Mauro,
Mohamed Hamdy, Giuseppe
Peter Vanoli, Nicola Bianco,
Jan L.M. Hensenf

2015 Building stock erected between
1920 and 1970

[18] Payback period Single
objective

Archetype
modeling in
EnergyPlus

Non-linear regression S.E. Chidiac, E.J.C. Catania, E.
Morofsky, S. Foo

2011 Archetype #1 e built prior to
1950, Archetype #2 e built
between 1950 and 1975,
Archetype #3e built post 1975

[19] Retrofit cost, energy saving
in kWh

Weighted
sum multi-
objective

ISO 13790
RC model
(monthly)

Tchebycheff programming Ehsan Asadi, Manuel
Gameiro da Silva, Carlos
Henggeler Antunes, Luís Dias

2010 Built in 1945

[20] Electricity use, natural gas
use

Weighted
sum multi-
objective

DOE 2.2 Genetic algorithm V. Siddharth, P.V.
Ramakrishna, T. Geetha,
Anand Sivasubramaniam

2011 Existing single-zone office
building

[21] Energy use, thermal
comfort, conservation
compatibility for historic
building

Multi-
objective
Pareto front

EnergyPlus NSGA-II Francesca Roberti, Ulrich
Filippi Oberegger, Elena
Lucchi, Alexandra Troi

2017 Built before 1780s

[22] Global cost, primary energy
use

Multi-
objective
Pareto front

EnergyPlus Brute-force S. Tadeu, C.Rodrigues,
A.Tadeu, F.Freire, N.Sim~oes

2015 Historic building

[23] Energy consumption, CO2
emissions, retrofit costs,
and thermal comfort

Multi-
objective
Pareto front

EnergyPlus NSGA-III Hyojoo Son, Changwan Kim 2016 Existing public school building

[24] Annualized costs and life
cycle GHG emissions

Single
obejective &
Multi-
objective
Pareto front

EnergyPlus Epsilon-constraint method Raphael Wu, Georgios
Mavromatidis, Kristina
Orehounig, Jan Carmeliet

2017 Existing residential building

[25] Energy consumption,
retrofit cost, thermal
comfort

Single
objective and
Multi-
objective
Pareto front

TRNSYS Latin-hypercube sampling,
artificial neural network
(ANN), MOGA (Multi-
Objective Genetic
Algorithm)

Ehsan Asadi, Manuel
Gameiro da Silva, Carlos
Henggeler Antunesc,d,Luís
Diasc,e, Leon Glicksman

2014 School built in 1983

[26] Marginal abatement cost
vs. GHG emissions saved;
discounted payback period
vs. required capital

Primary and
secondary
objectives

TRNSYS &
Matlab

Brute-force A.M. Rysanek, R. Choudhary 2013 Office building built in 1960s

[27] Energy consumption,
investment, thermal
comfort

Multi-
objective
Pareto front

TRNSYS NSGA-II Fanny Pernodet Chantrelle,
Hicham Lahmidi, Werner
Keilholz, Mohamed El
Mankibi, Pierre Michel

2011 Existing office building

[28] Lifecycle financial saving,
energy saving

Multi-
objective
Pareto front

EnergyPlus Brute-force Olatz Pombo, Karen Allacker,
Beatriz Rivela, Javier Neila

2016 Residential block built in 1960s

[29] Thermal energy demand,
global cost

Multi-
objective
Pareto front

EnergyPlus
& Matlab

NSGA II Fabrizio Ascionea, Nicola
Biancoa, Rosa Francesca De
Masib, Gerardo Maria
Mauroa, Giuseppe Peter
Vanoli

2017 Civil building built prior to
1900
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The proposed lightweight simulation engine, SimBldPy, and the
validated regression technique based on random forest algorithm
greatly reduces the computational cost in objective function eval-
uation during the optimization.

b) Limitation Two: Generalization of Archetypical Building

Since each building is unique in terms of their geometry, ther-
mal properties, operation schedules, and etc., the developed
SimBldPy simulation tool, which offers thermal coupling between
neighboring building zones, is capable of the rapid modeling of
most geometrically unsophisticated existing mixed-use buildings
and performing rapid optimization.

c) Limitation Three: Lack of Decision-making Support

The proposed decision-making support framework based on
layered hierarchical clustering technique is manifested to show
robustness in handling retrofit optimization problem and is able to
provide support for brainstorming and enumerating various pos-
sibilities and solutions during decision-making process.

d) Limitation Four: Necessity of Using LCA

The use of LCA method with future climate condition cooper-
ated into the evaluation of the energy and economic performance
of the building retrofit, provides robustness to retrofit planning
against climate uncertainty during the lifecycle.

3. Methodology

3.1. Optimization framework

In this research, we developed a Python building simulation tool
called SimBldPy, which uses a simplified hourly dynamic method
based on resistance-capacitance (RC) gray modeling technique. The
simulation tool is able to read the text-based input file describing
the physics of a building, including building shape and zoning,
construction materials and physical materials, occupancy sched-
ules, HVAC system type and efficiency, and etc. It will be used as the
building simulation tool to evaluate the objective function in the
Fig. 1. Work flow of opt
optimization. The SimBldPy is a tool designed and developed
mainly for the purpose of the fast-parametric study for building
simulation optimization problem, and in this case, it is used for the
optimization for the design space of building retrofit problem.

The optimization work flow is shown in Fig. 1. The SimBldPy
model will first be calibrated based on the metered energy use.
Then, a building retrofitting module will be in charge of reading
ECM entries and their respective parameters, the utility cost in-
formation in each year during the lifecycle period, as well as the
information of the calibrated building model. After optimization
information is collected, the evolutionary optimizer will generate
simulation tasks to the SimBldPy engine. In order to assess the
impact of climate change on building energy use (BEU) in the future
years, a predictive model based random forest (RF) is developed in
this research and it will conduct projections on the future hourly
energy use, which will be introduced in section 3.1.2.2 in details.
The optimizer will iterate to improve the objective function while
turning to SimBldPy to conduct energy simulation and evaluate the
objective function. When the solution converges, the optimization
results are exported and forwarded to a post-processor for
decision-making. It is worth noting that throughout the process,
parallel computation is used in the model calibration and in the
evolutionary optimizer, which speeds up the entire process.

3.1.1. Decision variables
The decision variables in this research involves various ECM

options, and all the variable parameters will be normalized and
scaled from 0 to 1. The ECMswill include building wall insulation, U
value and SHGC (solar heat gain coefficient) of transparent part of
the building envelope, roof insulation, natural ventilation, air
infiltration level, heating and cooling system efficiency, renewable
energy systems, and etc. If an ECM is not considered in the retrofit,
its value will be 0. The normalization rules for different types of
decision variables are as follows:

3.1.1.1. Discrete variable scaling. A discrete variable can be assigned
to an ECM. In a non-idealized application of optimization problem
in real practice, values such as the U-factor, solar transmittance,
should be a specific number depending on the properties of the
material for walls or windows, or, whether to adopt solar shading
device for a building can be a categorical type of values including
imization approach.
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only 0 and 1. The solution of scaling such discrete variable is to map
them into a continuous space between 0 and 1. The implementation
will project the discrete variables into a uniformly distributed space
between a specified range. Using uniform distribution here rather
than other distribution is to ensure the equal chance for the se-
lection of each parameter. For example, in a range of 0e1, the var-
iable extracted between [0, 0.5) means adopting solar shading
system while variable extracted between [0.5, 1) means not
adopting the shading system.

3.1.1.2. User defined scaling. 'In the application of different ECM
parameters, there can be both discrete and continuous variables as
well as user-defined variables such as windowU-factors of 1W/m2-
K, 2W/m2-K, and 4W/m2-K for the window retrofitting. By
applying the mapping method described in section 3.1.1.1, all ECMs
and their parameters will be projected into a uniform distributed
sampling space between [0, 1).

3.1.2. Objective functions
The objective functions in this research will include four parts:

energy saving in Joule, energy saving in dollars, retrofit investment
(including maintenance cost) and thermal comfort.

3.1.2.1. Building energy simulation. One of themost important parts
of the objective functions is the evaluation of the energy perfor-
mance of the building under different retrofit packages. As dis-
cussed in Literature Review, Limitation One points out the
significance of reducing the computational cost when dealing with
building energy performance evaluation. Since in building retro-
fitting optimization problem, the relative comparison among
different retrofit bundles is the priority, a lightweight energy
simulation engine could be of great help in reducing computational
complexity. One of those modeling methods is using electrical
analogue for modeling the thermal behavior of the building, which
is more commonly known as RC model. People has been using RC
method to model building's thermal reaction under the synergy of
indoor and outdoor conditions [39], and it has been validated that
RC model is able to handle hourly building energy simulation
requirement for simple building that usually has one zone or single
type of use. However, RC modeling has its limitation of application
in more complicated building types. ISO 13790 provides a monthly
method and a simplified hourly dynamic method that uses 5R1C
modeling method for the calculation of building heating and
cooling need [40]. The monthly method is the one that has been
used in Ref. [19] for building retrofit analysis, whereas in this
research, the simplified dynamic hourly method is used. Moreover,
zone thermal coupling method is also adopted to extend its use to
more complex mixed-use building type. The modified 5R1C
Fig. 2. 5R1C model with z
modeling method is presented in Fig. 2. The detailed introduction
of the thermal modeling process in SimBldPy is included in
Appendix A. Thermal modeling in SimBldPy.

We implemented the 5R1C modeling method using Python
programming and created a simulation tool called SimBldPy. The
input file format is text based, which resembles EnergyPlus, DOE2
engines and makes it easy to input and manipulate by users or
clients. The detailed description of the modeling method and the
structure of themodeling tool is introduced in Ref. [41]. The validity
of the modeling tool and its responsiveness under various climate
conditions and the synergy of different ECMs have been proved by
EnergyPlus results with two DOE reference buildings in Ref. [41].

The hourly energy use of a building with same type of utility, E,
will be calculated as:

Eu ¼
X
i

�
EH;i þ EC;i þ EDHW ;i þ Elight;i þ Eequipment;i

�
þ Epump

� EPV � ESWH ðJÞ
(1)

Etotal ¼
X

EuFu ðJÞ

where, Eu; Epump; EPV ; ESWH represent hourly energy use of a same
utility type, energy use of pump, energy production from solar
panels, and solar water heaters, respectively, and EH; i; EC; i; EDHW; i;

Elight; i; Eequipment; i is energy use of heating, cooling, domestic hot
water (DHW), lighting, and equipment, respectively for ith HVAC
zone, in Joule. Etotal is the total hourly energy use of all utility types
and Fu is the primary energy conversion factor for a certain type of
utility. Among them, EPV is electricity production from solar panel
and its value of each time step cannot exceed total electricity use.
ESWH is the thermal energy production, and its value of each time
step can not exceed DHW thermal demand, in Joule. It should be
noted that this equation is only for aggregating the same type of
utility. If multiple utility types (electricity, gas, oil, and etc.) are used
in a building, then total energy will be the primary energy in J that
are transformed by primary energy factor for each type of utility.

3.1.2.2. Energy projection in future years. It is known that climate
change is going to change the building retrofit optimization results
if future decade's climate conditions are considered in the opti-
mization process [42]. It is concluded by Shen et al. that the retrofit
strategy of selecting the best ECM combinations is subject to po-
tential change brought by the changes in climate condition [42]. To
understand how climate change is going to affect the building
retrofit optimization, future year's building energy performance
needs to be calculated. Using Belcher et al.’s morphing method,
one thermal coupling.
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future local hourly weather data can be downscaled from global
climate model (GCM) [38]. It is assumed that the building retrofit
will last about 35 years in this research. A recent run of HadCM3
model's outputs is used (IPCC Fifth Assessment Report (AR5)). For
each GCM, the simulations were performed with prescribed CO2
concentrations reaching 421 ppm (RCP2.6), 538 ppm (RCP4.5),
670 ppm (RCP6.0), and 936 ppm (RCP 8.5) by the year 2100 [43].
These scenarios are described in the IPCC Fifth Assessment Report
(AR5) and are named representative concentration pathways
(RCPs). In this paper, the RCP6.0 scenario is selected to predict
future climate condition for the building retrofit as an attempt to
taking into account the potential impacts of climate change on
building retrofit. The detailed introduction of morphing future
hourly weather data is given in Appendix B. Morphing of future
hourly weather data.

Even with the help of SimBldPy, it will still be computationally
heavy to calculate each year's hourly energy use. In Refs. [42,44], a
method of projecting future years' energy performance has been
developed and validated by EnergyPlus results. Random forest (RF)
algorithm is used as the data driven model training method for
predicting future year's energy use. RF is an ensemble learning
method based on a non-parametric supervised learning method
called decision tree algorithm that makes use of a tree-like graph or
model to learn and predict the pattern of the best routes or rules to
specific goals. When applying the decision tree algorithm, the
features for the independent variables can be either categorical or
continuous. For a regular decision tree, the deeper the tree grows,
the more complex the decision rules or routes and the fitter the
model will be with the training data. However, a single decision
tree will be biased because it overfits the training data, which
means that if the hypothesis space has many dimensions (large
number of attributes), meaningless regularity in the data that is
irrelevant to the true, important, distinguishing features will be
included in the model training. To settle this problem, RF is created
by a sets of decision trees in the training process and output the
rule that is themean prediction of the individual trees. This corrects
the overfitting behavior of a single decision tree. Detailed applica-
tion of the algorithm in future hourly energy use predictions can be
referred to Refs. [42,44].

Since training a data driven model based on typical meteoro-
logical year (TMY) datawill generate biased energy use results, RF is
used to train the dataset constructed by extreme year hourly
weather data and the corresponding simulation results of energy
use from SimBldPy for each single ECM combination (including the
baseline case without retrofit) in the optimization process, and the
predictions of the RF model will serve as the basis for calculating
energy saving in Joule and dollar.

Finally, total energy saving in kth year after the retrofit is simply
given by:

Eusaving ¼
X
k

�
Eupost;k � Eupre;k

�
ðJÞ (2)

Esaving ¼
X
u

�
Eusaving*Fu

�
ðJÞ (3)

where, Epre;k and Epost;k is kth year's annual energy use without
retrofit (baseline case) and energy use after kth years of retrofit for a
particular type of utility, in Joule. F is the primary energy trans-
forming factor. The total energy saving in Joules, Esaving , can be
calculated by aggregating the use of different types of energy
sources.

In addition, after retrofit measures being applied to the building,
the ageing of the ECMs will have an impact on the future
performance of the building. In this research, by introducing
retrofit maintenance during the post-retrofit period every five
years which includes testing and maintaining the applied ECMs to
ensure that their performance are as good as supposed to be, the
ageing factor of ECMs in the future is assumed to be excluded in this
research [18,26,45]. The calculation of the maintenance cost will be
explained in 3.1.2.4.

3.1.2.3. Thermal comfort. As an important part of the objective
functions, the thermal comfort calculation is also introduced into
the simulation process by assuming a constant metabolic rate at 1.1
met, a constant air velocity of 0.5m/s. The objective function is
defined by aggregating the absolute PMV values in all zones in each
time step, making it possible to sum the thermal dissatisfaction in
all overheated and underheated hours. Moreover, the future PMV
values during the lifecycle will also be projected by the proposed RF
model, forming the final objective function as the sum of the ab-
solute PMV values in each zone throughout predetermined lifecycle
in order to compare the results of different design vectors.

3.1.2.4. Financial modeling. In addition to energy saving in Joule,
the objective functions also include energy saving in dollars, and
retrofit investment. For the calculation of these last two sub-
objectives, an LCA method is used taking into account the future
increase in cost and the discount rate.

� Calculation of retrofit investment:

I0 ¼
X
i

Awall;i*Cwall�insu;i þ
X
j

Aroof ;j*Croof�insu;j

þ
X
l

Awin;l*Cwin;l þ
X
n
Awin;n*Cshade;n þ Afloor*Cinfl

þ Cothers ð$Þ (4)

where, Awall;i, Aroof ;j, Awin;l, Awin;n is the area (m2) of building wall,
roof, and windows where ith wall insulation, jth roof insulation, lth
window material, nth shading material with certain cost ($/m2),
respectively. Afloor is the total floor area where infiltration level was
improved, which has a cost of Cinfl ($/m2). Other costs include
installing onsite renewable energy sources, upgrading building
lightings, and etc.

It is assumed that all ECMs that have an initial investment will
be maintained every five years, which will result in a periodic
maintenance fee. Thus, the total retrofit investment can be ob-
tained in the following equation:

Itotal ¼ I0 þ

8>><>>:
X
k

ð1þ tmÞk*Ik
ð1þ rÞk

; k % 5 ¼ 0

0， otherwise

ð$Þ

where, tm (%) is the cost increase in maintenance fee of each year, r
is the discount rate (%), and Ik is assumed to be proportional to the
initial investment of each ECM.

The introduction of maintenance fees every five years is to
intended to ensure that the applied ECM will operate as well as in
the beginning of its life. Though the maintenance cost occurs every
five years, the cost increase tm and discount rate r will always be
taken account into account in the calculation on an annual basis.
For the case study that will be discussed later, the proportion of the
maintenance cost of the initial investment is assumed to be 12% and
is calculated every five years.

� Calculation of energy saving in dollars:
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The utility cost for each different type of energy source will be
assumed to increase annually, and the total energy saving in dollars
in the lifecycle would be:

Sutotal ¼
X
k

ð1þ tuÞk�
�
Cu
post; k � Cu

pre; k

�
ð1þ rÞk

ð$Þ (5)

Stotal ¼
X
u
Sutotal ð$Þ (6)

where, Sutotal ($) is the total saving for type of energy source u, tu (%)
is the cost increase for type of energy source u, and Cu

post; k; C
u
pre; k is

the energy cost of type u during post-retrofit phase for the building
with and without retrofit in year k. Finally, Stotal can be obtained by
aggregating the energy saving in dollars of each utility type.

Then, the NPV can be obtained by:

NPV ¼ Stotal � :Itotal (7)
3.1.2.5. Formulation of the optimization problem. After declaring
the decision variables, and each sub-objective function, the multi-
objective combinatorial optimization problem is then formed as
follows:

minY1ðXÞ ¼ EsavingðXÞ

minY2ðXÞ ¼ StotalðXÞ

minY3ðXÞ ¼ PMVtotalðXÞ

minY4ðXÞ ¼ ItotalðXÞ

where, X ¼ ðxwall�insu;xroof�insu;xwin;xinfl;xshade;…Þ
S.T.

X2½0;1Þ
This optimization problem is a multi-objective combinatorial

problem, and the possible design space could be huge. In section
3.1.3, the evolutionary algorithm that is used to solve the problem
by finding the Pareto front in the solution space is described.

The reason of considering both energy saving in Joule and in
dollar as sub-objectives is that the utility costs of different energy
source are different and different energy source contribute to en-
ergy use in the building incurred by different end use. For example,
one ECM combination may provide propensity in reducing heating
energy more than reducing cooling energy, such as sealing up the
building and decrease infiltration ratewhile not using solar shading
options during cooling season. Usually, electricity is used for cool-
ing and gas or steam is used for heating. Then the energy saving in
Joule will not have a linear relationship with energy saving in
dollars in this case. The inclusion of the two objectives is to ensure
that tradeoffs incurred by such situation can be observed and
analyzed in the optimization and decision-making process.

The inclusion of the sub-objective — retrofit investment, in lieu
of taking net present value (NPV) as the objective function is that by
doing this, the decision maker will be given a chance to look at the
total cost of each ECM combination because even though high in-
vestment can sometimes result in high returns and high net pre-
sent value (NPV), the affordability of the retrofit early in the retrofit
stage will still be an important concern of the building owner or
investor.
The adoption of summed PMV values as one of the objectives is
to make sure that indoor thermal comfort can be taken into account
as some retrofit options seem to be able to save a lot of energy, but
at the same time, they can bring thermal comfort problems to the
building, such as cooling and heating set point change and natural
ventilation. The minimization of the PMV sub-objectives will pre-
vent the selection of retrofit packages that overheat and overcool
the building too much. One of the concerns is that the adoption of
this metric will create more complexity and tradeoffs to the multi-
objective optimization problem and make the decision-making
process more complicated.

In summary, other objectives can also be considered in the
optimization such as greenhouse gas emission, indoor air quality
and etc. The purpose of this paper is to provide a methodology in
the optimization procedure, methods, and decision-making sup-
port framework. The selection of objectives in different retrofit
project depends greatly on the conditions of each retrofit and is
subjective to individual building. In this research, the selection of
the four objectives suffices for the discussion of the optimization,
decision-making tradeoffs, and the need of the case study.

3.1.3. Optimization algorithm
Traditionally a non-dominated genetic algorithm (NSGA-II) will

be used to solve the problem in finding Pareto fronts [46]. This non-
dominated sorting algorithm has been proved to be efficient and
effective in finding non-dominated solutions for multi-objective
optimization problems [13,27,47]. However, unlike a normal opti-
mization problem that NSGA-II confronts, the decision variables in
this research have all been normalized in a continuous space be-
tween 0 and 1, so instead of GA, the differential evolution (DE) al-
gorithm is used in handling the decision variables and the evolution
for finding optimal solutions [48]. The advantage of DE is that it is
faster and more robust in convergence on the search for numerical
optimization solution and ismore likely to find the global optimum.
Thus, the evolutionary algorithm is called non-dominate sorting
differential evolution (NSDE) [49], where the same mutation and
the same crossover strategy of DE are used while the selection
criterion is adjusted by using elite non-dominated sorting as used
in NSGA-II. The pseudo code for NSDE is shown in Table 2.

� Generator

A generator is used to create the initial set of candidate solutions
needed by the evolutionary computation. It is important for the
convergence speed of the optimization process and the possibility
of finding the global optimum. The generator in this research is
using Latin hypercube sampling of Gaussian random fields, which is
good at generating a relatively small set of map realizations that
captures most of the variability of the spatial inputs [50].

� Selector

The selector decides how to choose the individuals in the pop-
ulation who will create the offspring for the next generation. Se-
lection has to be balancedwith variation in crossover andmutation.
The selector usually used for the non-dominate sorting genetic
algorithm — the tournament selection, is used in this research. The
tournament selection is similar to the rank selection in terms of
selection pressure, but it is more computationally efficient and
more amenable to parallel implementation [51]. Two individuals
are chosen at random from the population. A random number r is
then chosen between 0 and 1. If r< k (where k is a parameter
ranging from 0 to 1, and 0.9 is used in this research), the fitter of the
two individuals is selected to be a parent; otherwise the less fit
individual is selected. Both two are then returned to the original



Table 2
Algorithm: non-dominate sorting differential evolution.
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population and can be selected again.

� Crossover

The main distinguishing feature of genetic algorithm is the use
of crossover, and different crossover operator can result in different
performance of the optimization [51]. Three different crossover
operators are to be used and be compared in terms of their per-
formance by the case study in this research. They are single point
crossover, two-point crossover, and uniform crossover.

For the single crossover, only one crossover position is chosen at
random and the parts of two parents after the crossover position



Table 3
Towne building envelope in each orientation.

Orientation Opaque (m2) Window (m2) Below Grade Opaque (m2)

S 1787.6 406.8 259.0
SE 0.0 0.0 0.0
E 948.4 187.3 155.7
NE 0.0 0.0 0.0
N 1127.9 256.9 218.2
NW 0.0 0.0 0.0
W 1028.9 246.5 147.3
SW 0.0 0.0 0.0
Roof 3995.9 0.0 0.0

Table 4
Calibrated thermo physical properties of building envelopes.

Envelope U-value (W/m2 �C) Absorption coefficient for opaque
envelope/SHGC for window

Wall 1.1 0.63
Roof 0.97 0.76
Below-grade 1.35 N/A
Window 4.5 0.72

Table 5
Description of ECMs.

Window replacement change the window to another window type with
different properties in thermal conductivity and
solar heat gain coefficient

Wall insulation adding insulation to the external walls of the
building

Roof insulation adding insulation to the external roofs of the
building

Lighting efficiency
upgrade

use energy efficient lighting equipment for all the
zones in the building

Natural ventilation open parts (%) of the windows in the building during
swing seasons and during summer nights to flush
redundant heat in the building

Window shading use blinds shading for the windows when the
building zone is overheated and needs cooling
internally or externally

Cooling (heating) supply
air temperature

change the cooling (heating) supply air temperature
to certain value

Air tightness
improvement

tighten up the building and improve the air change
rate between indoor and outdoor environment

Table 6
Window replacement properties and cost [14,19,69].

Window (SHGC, U-value
(W/m2 �C))

$/m2 type

(0.0, 0.0) 0.00 N/A
(0.80, 5.6) 47.0 Single glazing
(0.75, 2.8) 53.2 2bl glazing Without thermal break
(0.62, 1.6) 75.2 2bl glazing low-e window
(0.44, 1.6) 92.9 2bl glazing Window air-filled metallic frame
(0.288, 1.05) 79.2 SGSILVER
(0.585, 0.52) 98.1 SGCLIMATOP
(0.28, 0.33) 113.4 3050 SH 1.11 cm glass low-e
(0.63, 0.48) 131.7 3050 SH 1.11 cm glass
(0.25, 0.26) 183.0 3050 DH 3e7/16 insulated glass low-e

krypton filled triple pane
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are exchanged to form two offspring. In single point crossover, the
head and tail of a chromosome break up, and if both head and tail
have good genetic material, then none of the offspring will get the
both good features directly.

For the two-point crossover, two positions are chosen at random
and the segments between them are exchanged. Two-point cross-
over is less likely to disrupt schemas with large defining lengths
and can combine more schemas than single point crossover. This
will allow the head and tail section of a chromosome to be accepted
together in the offspring.

For the uniform crossover, each gene in offspring is created by
copying it from the parent chosen according to the corresponding
bit in the binary crossover mask of same length as the length of the
parent chromosomes. For each element of the parents, a biased coin
is flipped to determine whether the first offspring gets the “mom”

or the “dad” element. In this research, the “biased coin” is set to
have the same chance to adopt the element from the parents. Thus,
the offspring will have a mixture of genes from both the parents.

A crossover rate of 0.8 is used in this research, which means
around 80% of the offspring will be generated by crossover.
� Mutation

Mutation is basically a measure of the likeness that random
elements of the chromosome will be flipped into something else.
The existence of the mutation operator is to ensure the population
against permanent fixation at any particular locus and thus playing
more of a background role. Usually, a mutation rate between 0.005
and 0.01 is adopted [51]. The Gaussian mutation with a mutation
rate of 0.01 is used in this research. Gaussian mutation adds a
random number from a Gaussian distribution with mean zero and
one as the standard deviation to each vector entry of an individual
and can be applied to float genes like the individual's genes in this
research. The Gaussian distributionwill be mapped to each vector's
bounding condition, which is 0e1 here.

� Population size

Population size defines how many chromosomes are in one
generation. In this research, the population size is set to be 20 times
the sum of all parameters listed in Tables 6e8 for each generation. A
maximum of 100 generations is used as the stopping criterion for
the evolution process.
3.2. Decision-making Support Method

In this research, a decision-making support method is devel-
oped for the optimization results and its visualization. Traditionally,
Pareto fronts archived through the optimization will be treated
directly as a deliverable to the clients for decision-making [21].
However, the fronts could cover a wide range of solution sets in the
design space, and it would still be hard for the user to target at
solutions that they might be interested in by a predetermined
preference, criterion, or state of mind. This situation could be
aggravated with a high dimensional design space where more than
three objectives are considered. Hence, a decision-making support
scheme is developed here based on an unsupervised learning
method: hierarchical clustering [52].

A clustering problem can usually be described as follows [53]:

minZ ¼
X
i

X
j

dijxij

S.T.X
J

xij ¼ 1ci



Table 7
ECM parameters and costs (w/cost) [11,13,70e72].

wall insulation (m2

�C/W)
$/wall
m2

roof insulation (m2

�C/W)
$/roof
m2

windowshading $/window
m2

air infiltration
(h�1)

$/m2 lighting efficiency
improvement

$/m2 daylight
control

$/m2

N/A 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 0
1.25 11.4 1.52 12.5 1 28.7 0.3 25.5 30% 3 Applied 3
1.61 12.5 1.97 16.4 2 37.2 0.5 20.2 40% 1.9
1.97 13.5 2.42 20.1 0.7 14.4
2.33 14.6 2.87 22.9 0.9 9.3
2.69 15.7 3.32 26.8
3.05 16.7 3.77 30.3
3.41 18.5
3.77 20.5

Table 8
ECM parameters and costs (w/o cost).

cooling supply air temperature heating supply air temperature natural ventilated window ratio cooling setpoint heating setpoint unoccupied hour setback

N/A N/A N/A N/A N/A N/A
11 32 10% 22 18 Applied
12 31 20% 23 19
13 30 30% 24 20
14 29 40% 25 21

28 50% 26 22
60% 27 23
70% 24
80% 25
90%
100%
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X
J

xjj ¼ m

xij � xjj ci; j

xij ¼ 0 or 1 ci; j

where m is the designated number of clusters; dij is the dissimi-
larity between object i and j; xij measures if object i is assigned to
certain cluster j, and it is a binary variable. The resolution to a
clustering problem can be described as searching the best set of
medians, which are able to assign all the points to and meanwhile
minimizes the sum of the distances from all points to their
respective cluster median, and one point should and only should
belong to one cluster.

In this study, the hierarchical clustering technique will be used
to find the group for each Pareto frontal points to which they
belong. It is one of the most popular ways to assign data observa-
tions to clusters. It has been used to analyze market entry strategies
[54], design group technology manufacturing cells [55], define
employment sub centers in Los Angeles region [56], and most
importantly, it can be used to visualize high dimensional data as
other clustering techniques do [57e60]. The hierarchical clustering
technique used in this research is based on agglomerative method,
which starts with a cluster number of all the data points in the
database. Basically, the number of all the Pareto fronts, n, is the
initial clustering number. Then the algorithm will gradually merge
the two most similar points into one cluster, and reduce the
number of clusters to n-1. By repeating the step, all the Pareto fronts
will be agglomerated into one cluster that contains all the points,
and the whole agglomeration process can be pictured by a
dendrogram following a tree-like path.

The decision rule that is used to merge the clusters and form the
similarity-dissimilaritymatrix will be themajor difference between
those agglomerative methods. The decision rule that is used here in
this research is called the linkage method. The clustering method
will calculate the similarity-dissimilarity matrix so as to compute
the relationship between the new clusters and the remaining en-
tities in terms of the linkage method [61]. There are several
different linkage methods, but all of these methods can be
described in the following equation to show how they compute this
relationship [62]:

dðh; kÞ ¼ aidðh; iÞ þ ajdðh; jÞ þ bdði; jÞ þ djdðh; iÞ � dðh; jÞj (8)

where d function is the squared Euclidean distance between
different entities; i and j are two clusters joined into a new cluster
k¼ i ∪ j; h is the remaining entity. How ai; aj; b; d are determined
is based on different linkage method. For example, for single link-
age clustering, the parameters are set as ai ¼ aj ¼ 0:5; b ¼ 0; d ¼ �
0:5 [63]. In this study, theward linkage is used as proposed byWard
in 1963, which is also called the “minimum variance method” [64].
The parameters used in this method are:

ai ¼
ni þ nh

ni þ nh þ nj
; aj ¼

nj þ nh
ni þ nh þ nj

; b ¼ �nj
ni þ nh þ nj

; d ¼ 0

where ni, ni, nh is defined as the number of points in cluster i, j, h,
respectively.

With hierarchical clustering, a layered clustering scheme is
developed to better group and visualize the Pareto fronts for
decision-making support. Clustering is performed at each layer,
allowing users to “zoom in” on the sub clusters of interest to them
and then performing further clustering on the sub clusters until the
Pareto fronts in the cluster are retrieved and compared. For hier-
archical clustering, this procedure can be simply conducted by
examining the dendrogram and applying the linkage similarity-
dissimilarity matrix to the clustering algorithm to find the certain
sub clusters of the parent cluster.

However, there is still a problem: even with hierarchical
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clustering, the question of how many clusters to choose at each
layer still exists, as other clustering techniques do [65,66]. Here we
adopt an “elbow” method [67], which attempts to find the clus-
tering step where the biggest leap of distance growth happens in
order to determine the number of clusters. That is to say, the
location of a “knee” in the distance plotting for each step of
agglomeration is generally considered as an indicator of the
appropriate number of clusters. In this research, the proper cluster
number will be determined at each layer according to the “elbow”

method with a minimum number of clusters of three. This ensures
that the process of layered clustering is fast (not too few clusters)
and in the meantime remains visible to the users.

The process illustrated in Fig. 3 describes how the hierarchical
clustering works in a layered framework to find the clusters of ECM
combinations that are interesting to the decision maker. First, the
“elbow” method described above will find the best distance of
dissimilarity to determine the number of clusters in the first layer
(step 1). Next, the dataset shown in Fig. 3 will be classified into
three clusters (step 2). Next, choose the cluster that has the
preferred sub-objective performance (step 3). Then repeat
choosing the number of clusters using “elbow”method and find the
sub clusters of the first layer cluster chosen in step 3 (the sub
clusters are shown in step 4). Then repeat step 3 and choose the
Fig. 3. Example of hierarchical clustering
preferred sub cluster. This process can be iterated multiple times
until the clusters with good overall performance are zoomed in and
a limited number of ECM combinations in the clusters are selected.
It is worth noting that multiple clusters in the same layer can be
chosen in the same time.
4. Implementation and results discussion

4.1. Building model

The method developed in this research is implemented on one
of the campus buildings in UPenndTowne building, which is
designed in themanner of the English classicism of the seventeenth
century. The building has 4 floors (with one basement floor) and is
mainly composed of classroom and offices. The total floor area of
the building is about 13000m2. The edifice of the building is shown
in Fig. 4.

The simulation input for the building is collected in a text-based
file format including building geometric information, operation
schedule, building systems, building envelopes, and etc., and then
being fed to SimBldPy simulation tool. We adopted a classic
“perimeter-core”modelingmethod tomodel this building. For each
floor, including the basement floor, a core and a perimeter zone are
of a dataset in a layered framework.



Fig. 4. Towne building in UPenn.
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modeled to make the SimBldPy model stay simple. The building
envelopes are also modeled for each zone. The brief information of
the building envelope is reported in Table 3.

The model is calibrated with its actual energy performance in
2015 by metered hourly and monthly energy use data, which are
stored and maintained by Penn Facilities and Real Estate Services
(FRES). The calibrated thermophysical properties of the building
envelope used in building simulation are shown in Table 4. All the
campus building uses district cooling and heating source in the
form of chilled water and steam. Thus, the building simulation
model is calibratedwith themetered chilled water and steam usage
so as to get prepared for the following retrofit optimization and
ensure the optimization have practical significance.

The model is calibrated with its actual energy performance in
2015 by metered hourly and monthly energy use data, which are
stored andmaintained by FRES. The heating and cooling set point of
the building is constant, which is 21.8�C for cooling and 22.5�C for
heating, respectively. The floor height above the ground is 5.2m
and that of the basement is 4.4m. The buildingwall section consists
of outside air film, face brick, air cavity, CMU (concrete masonry
unit), air cavity, veneer plaster, and inside air film. The calibrated
thermophysical properties of the building envelope used in build-
ing simulation are shown in Table 4. All the campus building uses
district cooling and heating source in the form of chilled water and
steam. Thus, the building simulation model is calibrated with the
metered chilled water and steam usage so as to get prepared for the
following retrofit optimization and ensure the optimization have
practical significance.
Fig. 5. Monthly mean air temperature, daily maximum and minim
The detailed modeling and calibration of the building in
SimBldPy can be found in Ref. [41]. The root mean squared error
(RMSE) and coefficient of variation (CV) of the model are used to
evaluate the predictive power of the calibrated model, and they are
calculated in the following way:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � bxiÞ2
n

s
(9)

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxi � bxiÞ2
n

s ,
x (10)

where xi and bxi is the true and forecasted value, x is the average of
true values.

The downscaled future hourly weather data is also an important
input for the optimization model and is obtained by using the
morphing method described in Ref. [68]. Fig. 5 shows the trends of
monthly mean dry bulb temperature from the year of 2017e2069
under different RCPs scenarios, respectively. In the following study
concerning building retrofit and its optimization, RCP6.0 scenario
will be used as the future climate scenario. The full set of down-
scaled climatic variables includes dry bulb air temperature, relative
humidity, solar irradiation, and wind speed.
um temperature in different RCPs and TMY in Philadelphia.



Fig. 6. Convergence of the optimization results.
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4.2. ECM options and costs

The following ECMs are considered in the retrofit: window
replacement (without window frames), wall insulation, roof insu-
lation, window shading, air tightness improvement, cooling supply
air temperature, heating supply air temperature, lighting efficiency,
daylighting control, natural ventilation, cooling set point, heating
set point, unoccupied hour setback, PV panels, and solar water
heater (SWH). For PV and SWH system, different inclination angles
are also considered in the optimization. The retrofit lifecycle is
assumed to be twenty years, namely, from year 2018e2038. The
Fig. 7. 2-D projection of Pareto fronts with
parameter and cost of all ECMs are listed in Tables 6e8. The detailed
description of the ECMs are provided in Table 5. For PV and SWH
system, different inclination angles are also considered in the
optimization.

The power output of the PV system is calculated by a method
proposed by Erbs et al. [73]:

Ppv ¼ npvmpvSpv Ipvð1� 0:005ðta � 25ÞÞ ½W�

where, npv is the number of panels, Spv is the array area (2m2), mpv is
the conversion efficiency of the solar cell used for the array. The
all combinations of objective functions.
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solar cell used here is poly-crystalline silicon (p-Si) which has an
efficiency of 14% [74]. Ipv is the solar irradiation hitting on the panel
surface (W/m2), ta is the outside air temperature.

The solar thermal energy collected by the system can be
calculated by:

Qsh ¼ msh Ssh Ish mex ½W�
Fig. 8. 3-D projections and dimensionality reduction visu
where, msh is the heat collection efficiency, which is 60% [75]; Ssh is
the total heat collection area (2m2 per panel), and Ish is the solar
irradiation hitting on the thermal collector system surface (W/
m2), mex is the efficiency of the heat exchanger set as 50%.

The cost of the PV panel and the SWH is $274.7/m2 and $213.4/
m2, respectively. In addition, setting the inclination angle of both
PV and SWH system to non-zero will incur a frame support
installation fee of $30/m2.
alization (t-sne & PCA) of the clustered Pareto fronts.



Fig. 9. Plotting of sub-objectives in the first layer clustering.

P. Shen et al. / Energy 172 (2019) 892e912 907
4.3. Optimization results

The optimization and simulation are conducted on an Intel(R)

Xeon(R) AWS-1100 v4 2.40 GHz server, which has a RAM of 32G. The
optimization process takes about 23 h for the building retrofit using
parallel computation with 32 threads, which has a population size
of 20 times the sum of all parameters listed in Tables 6e8 for each
generation. For each generation, the current non-dominated solu-
tions will be archived and compared with last generation's archive
of solutions. The difference between the current and last genera-
tion's archived non-dominated solutionwill be the “newcomers” to
the archive, and the number of those “newcomers” will be used to
evaluate the convergence of the solution. The reason of using this
convergence-examine rule instead of using the total number of
non-dominate solutions in each generation is to make sure that
even with the same total number of Pareto fronts, there would be
no new fronts that replace the older ones in the archive. The growth
in the number of newly generated Pareto fronts in each generation
are shown in Fig. 6 for the three crossover operators described in
section 3.1.3.

As per Fig. 6, uniform crossover outperforms the other two
crossover operators. It has a better convergence performance in the
problem, which can be caused by the fact that uniform crossover
has no positional bias and any schemas contained at different po-
sitions in the parents can potentially be recombined in the
offspring. The number of newcomers becomes stable and less than
10 for each generation. Indeed, there may be more newcomers
being generated and going into the archived non-dominated so-
lutions, but maximum generation number of one hundred is suf-
ficient to find most of the Pareto fronts as shown in the result of
convergence.

The populated Pareto fronts are displayed in Fig. 7. More than
one thousand Pareto fronts are found during the optimization. The
simulation time for a single year with extreme weather for each
ECM combination in SimBldPy is about 1/30 to 1/40 of EnergyPlus
model that has the samemodeling complexity, and with the help of
RF, it becomes possible for a moderate server to complete certain
retrofit optimization task that takes into account future hourly
energy projection under climate change in a fast manner.

As discussed in section 2, it is difficult for the clients or users to
fathom the optimization results with a high dimensional data
structure. With the information provided in Fig. 7, it would still be
difficult to make decision and have a general idea of which retrofit
options to choose from. For a retrofit project, many ECM options as
well as objective functions will be concerned. The generation of
about 1500 Pareto fronts in this example shows the difficulty in
presenting the results. Thus, in the next section, the decision-
making support method based on the layered hierarchical clus-
tering proposed in section 3.2 will be implemented to the optimi-
zation results of this project.

4.4. Implementation of decision-making support method

The archived Pareto fronts dataset are first normalized by their
means and standard deviations before being clustered. After
applying the agglomerative hierarchical clustering method to the
generated Pareto fronts at the first layer, the data is clustered into
three different classes, as indicated by the suggested “elbow”

method and the clustered data is shown in Fig. 8.
According to the 3D projections on different combinations of

objectives, it is shown that the hierarchical clustering in the first
layer is doing a good work in classifying the data to the right group
in an unsupervised manner. For the cluster colored in blue, some
data points are off the cluster, and according to the first and third
plot in Fig. 7, it is inferred that the existence of these Pareto fronts
could be due to their good performance in thermal comfort since
some ECM combinations have the characters of low cost and high
thermal comfort performance. For example, thermostat set point
setback during unoccupied hours can reduce energy use and have a
limited impact to indoor thermal comfort during the occupied time,
while the energy use of ECM combinations having set point setback
is not as much as others containing window replacement, but they
will still be counted as non-dominated fronts.

The low dimension visualization in Fig. 8 further proves that the
clustering result is a good representation for the nature of the data
structure. With the recent development in machine learning al-
gorithms and computational efficiency, high dimensional data can
be visualized in more versatile and powerful ways. Principal
component analysis (PCA) is a statistical procedure that uses an
orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly uncor-
related variables called principal components, making it possible to
linearly project the inherent structure of the data into low
dimensional [76]. Moreover, since non-linearity may exist in the
dataset of Pareto fronts and a linear projection method such as PCA
is not as sensitive to non-linearity, one of the low-dimension
embedding methods, also called manifold learning method, is
adopted to show the 2D projection of the data points too. T-
distributed stochastic neighbor embedding (t-sne) is a machine
learning method that is able to reduce the dimensionality of the
data to two or three in the way that similar objects are modeled by
nearby points and dissimilar objects are modeled by distant points.
The affinities in the original space are represented by Gaussian joint
probabilities and the affinities in the embedded space are repre-
sented by Student's t-distributions [77]. The advantage of this al-
gorithm is that it is able to scale each featurewith different unit and
dimension into one plot while avoid conglomerating them
together. In both t-sne and PCA plots in Fig. 8, it is indicated in both
linear and non-linear perspectives that the chosen clusters are
well-suited for this clustering problem.

When implementing the suggested clustering based decision-
making support framework, the first layer clustering is extremely
important because many decision vectors can be eliminated in this
first stage of decision-making. Thus, it is important to visualize the
data in a more intuitive way for the decision makers or users. The
parallel coordinates plot together with suggestive heat map will be
used as a support technique to visualize the clusters for decision-
making. They are plotted in Fig. 9 and Fig. 10 (parallel coordinates
figure and heat map will also be plotted at each subsequent layer
for decision-making, but will not be redundantly shown here):

By plotting the clustered Pareto fronts in parallel coordinates,
the decision-making process will become more visible as the



Fig. 10. Heat map of the first layer clustering.
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tradeoffs among objectives can be illustrated in a straightforward
way. Combined with the heat map showing the average of both
decision variables and objectives in one graph, it becomes intuitive
for the decision makers to see what happens to the clusters. In
Fig. 10, each row in the heat map represents a cluster, and each
column provides a comparison of the means of each decision var-
iables and each objective among clusters. The clusters (rows) in the
heat map are sorted by the retrofit investment of each cluster. The
white-colored (or zero-valued) ECM in the heat map indicates that
some ECMs are not adopted and applied in that cluster.

As analyzed at the end of section 3.1.2.5, including both energy
savings in Joule and in dollar makes sense for the optimization
Fig. 11. Layered decision
problem because the visualized results in Fig. 9 show that the en-
ergy saving in Joule does not go linearly correlated with energy
saving in dollar as a whole. There are ECM combinations that have
both positive and negative slope rates between the two objectives,
and the magnitudes of the slopes also differ from each other.

According to the parallel coordinates plot in Fig. 9, the thermal
comfort levels of Pareto fronts in the three clusters are quite scat-
tered, making it barely easy to decide which cluster to choose from,
but it can be clearly said that the cluster colored in red (Cluster 3) is
the most interesting cluster to look at since the unit investment
produces better amount of unit energy saving. Integrated with the
information provided in the heat map, the color of each ECM grows
darker in Cluster 2, meaning that certain kind of ECM is being
selected more in that cluster. In addition, in this case study, ECM
combinations with renewable options such as PV and SWH all
belong to Cluster 2 and also have the highest investment rate,
implying that renewable energy systems are major contributors to
investment growth in retrofit project. In Cluster 3, with an average
of 32% of the highest investment value among the Pareto fronts,
about 85% of energy savings can be harvested without harming the
thermal comfort on average. Therefore, retrofit options in Cluster 3
will be chosen and enter the next layer's decision-making in this
case study. It should also be understood that eliminating Cluster 3
will abandon all renewable energy options thanks to the visuali-
zation provided in the heat map.
4.5. Decision-making pathway

By repeating the process in the 1st layer clustering as described
in section 3.2, a pathway can be plotted in Fig. 11. In Fig. 11, on top of
each parallel coordinates plot, the distance of each clustering step
and its first-order differential curve in that layer are attached to
show how the elbowmethod works and determines the number of
clusters for each layer. For the Pareto fronts generated by the
optimization process in this case study, the following clusters and
sub clusters are selected as shown in Fig. 11.

The pathway clearly shows how each decision is made at each
-making pathway.
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layer and what clusters are selected and zoomed. Eventually,
three 4th layer clusters are chosen as the final target clusters. In
this case study, the criterion in choosing each layer's cluster is
based on the principle of lower cost, higher energy saving re-
turn, and better thermal comfort level. After picking retrofit
packages with a cost lower than $810,000 and sorting them by
their NPV in twenty years (2018e2038), top twenty ECM
combinations from the three chosen clusters are listed in
Table 9, from which the most suitable combination that is
tailor-made for the current building can be chosen. Since
renewable options have already been crossed out during the 1st
layer's decision-making, they will not be shown in Table 9.

It can be concluded from the results shown in Table 9 that
the insulation of the building envelope in the climate of Phil-
adelphia is important. For most of the bundles, the insulation of
wall and roof is adopted except for Bundle No. 7, 8, and 12,
indicating that the future winter climate in Philadelphia still
demands high quality in envelope insulation. For more than
half of the bundles, the setback of the thermostat during un-
occupied hours is adopted. The upgrade of the lightings is also
cost effective during the lifecycle of the retrofit and the light-
ings having 70% less heat rejection are selected even with
higher initial cost. Daylighting control is favorable among the
ECMs and has good economic performance. Higher percentage
of ventilated window during swing season and summer is
preferred when the insulation level becomes higher, which is
reasonable considering that during the season with high cool-
ing demand, the night flush and natural ventilation helps
removing redundant heat from the building. Concerning the
high cost related with window replacement, more than half of
the bundles do not include window refurbishment in the
retrofit, and windows with high insulation and lower SHGC are
not so welcomed because of their economic and thermal per-
formance in the future climate of Philadelphia. Shading is
considered important during cooling season, which may be
ascribed to the rise of air temperature during cooling season in
the future. The optimal cooling and the heating setpoint for
Towne Building are 25�C and 24�C, respectively.

It should be noted that the final results derived from the
decision-making framework and presented in this section can
be subject to change depending on different criteria. For
example, if the building owner or client does not care much
about the initial cost and maintenance cost, it is possible that
Cluster 2 would be chosen in the first layer as this cluster
produces the most energy saving either in dollars and Joules
and renewable options will also be included in the final results.

As already discussed in Limitation Two in section 2,
subjectivity will always be part of the decision-making process
whereas the difference in this proposed decision-making
framework is that choices are provided with increasing infor-
mation to the decision maker for all possible optimized results
as the layered hierarchical clustering unfolds on its pathways.

Different from the use of weighted sum or product method
that requires hard-to-decide and whimsical weighting factors
before the solution space is generated and visualized, this
framework offers options and layered reasoning that leads to
the final results. Different from traditional processing and
visualization of the Pareto fronts, how the inherent structure of
these high dimensional solutions are rendered, and how
important it is to visualize the structure and trade-offs in the
Pareto fronts for a building retrofit project where many ECMs
are involved, are discussed. As the case study shows, the pro-
posed decision-making support framework is manifested to
show robustness in handling retrofit optimization problem and
is able to provide support for brainstorming and enumerating
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various possibilities during decision-making process.
5. Conclusions

In this paper, the multi-objective optimization problem usually
encountered in existing building retrofit project is provided with an
optimization scheme and a method of decision-making support. It
is described how themethod in resolving the optimization problem
in a rapid manner by means of non-dominated sorting differential
evolution algorithm (NSDE) is implemented to a campus building.
By introducing the SimBldPy modeling tool and random forest (RF)
models as the replacer for traditional energy simulation tools in the
objective function evaluation, certain retrofit problem can be
quickly optimized. Moreover, the generated non-dominated solu-
tions, or so-called Pareto fronts, are rendered and displayed in a
layered way using agglomerative hierarchical clustering technique
in order tomake it more intuitive and sensemaking in the decision-
making process as well as to be better presented to the clients and
decision maker.

The strength of the developed optimization procedure lies in its
adaptability and generalizability to different existing buildings and
retrofit problems. The use of simplified hourly calculation method
in building energy simulation not only reduces the time and
computation cost for objective function evaluation during optimi-
zation, but also saves time and resources for the earlier-stage
building modeling and calibration. The method suffices for
achieving the goal of comparative parametric study in building
retrofit problems.

Moreover, the optimization process used in this research can be
used to find optimal solution multi-objective problems that involve
linearly independent sub-objectives. It is also found that the uni-
form crossover operator works best in finding the optimal ECM
combinations in building retrofit problem compared with the
traditionally used one point or two-point crossover operator
mainly because it has no positional bias and any schemas contained
at different positions in the parents can potentially be recombined
in the offspring during the evolutionary optimization process.

The developed layered hierarchical clustering technique for
decision-making support is a novel attempt to implement unsu-
pervised machine learning algorithm to visualize and provide in-
formation for high dimensional data structure of the optimization
results. This method unveils the chance of making decision on
complicated Pareto fronts space using a pathway-like procedure
that zooms into clusters at each layer and progressively finding a
limited amount of ECM combinations with a specific decision-
making logic. As subjectivity and preference do influence
decision-making, the developed method offers a tool for screening
undesirable solutions with rationale and appropriate visualization,
which is very important in multi-objective optimization problems
because traditional methods such as weighted sum or product
method force the user to arbitrarily give weights or decision
Cm
dqm
dt
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strategies to sub-objectives of various dimensions, scales, and
decision-making values, in which priori bias to the multi-objective
optimization problem may already have been introduced. The
suggested decision-making support method is successfully applied
to the case study building in UPenn and generated 20 sets of ECMs
that can be potentially of interest to the future retrofitting.
Appendix A. Thermal modeling in SimBldPy

Themain variables in themodeling method include Cm (internal
thermal capacity per building area of the considered building, in J/
K-m2), Htr,op (transmission heat transfer coefficient of the opaque
building elements like walls, and roofs, in W/m2K), Htr,w (trans-
mission heat transfer coefficient of windows and glazed walls inW/
m2K), Htr,em, Htr,ms (transmission heat transfer coefficient of the
internal structure and external structure, respectively, in W/m2K),
Htr,ve, Htr,is (transmission heat transfer coefficient of ventilated air,
and that between the air in the building and internal structures,
respectively, in W/m2K). The three important nodes of the model
are internal air node, central node, and internal mass node. For the
internal air node, it is governed by the heat balance of heating and
cooling load input, the heat flow from the internal air that is
affected only by internal heat gain Fint , and the heat flow from
ventilated air qsup*Hve. The thermal electric balance equation is as
follows:

qair
�
Htr;is þ Hve

� ¼ Htr;isqs þ Hveqsup þ FHC þ Fia (11)

The heat flux sourced from solar, building heating and cooling
are Fsol; FHC; nd, and those to the internal air node, to the central
node, and to the internal mass node are named as Fia; Fst ; Fm,
respectively, in W. The temperature variables for the model are qe;

qair; qm; qs qsup, qH;set ; qC; set , standing for outdoor temperature,
internal air temperature, building thermal mass temperature, mean
instantaneous temperature of internal surfaces that are in contact
with internal air, supply air temperature, heating set point tem-
perature, and cooling set point temperature, respectively, in �C.

The zone thermal coupling process will not change the heat flow
balance of the internal air node, but that for central node and in-
ternal mass node will be affected. After coupling internal wall and
internal floor into the model, the governing equation for central
node and internal mass node are:
þ
X
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Htr;msqm þFst þ qeHtr;w þ
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þ
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In this coupling method, only heat transmission between zones
are considered, the coupling of infiltration or air flow between
zones are not considered in this model. Htr;iw and Htr;if are intro-
duced to represent the transmission heat transfer coefficient of the
internal wall and internal floor, in W/m2K. It should be noted that
the m2 in the unit refers to per condition floor area of the zone,
instead of per area of the material of the contact surface.

In this modeling method, a concept of free-floating air tem-
perature qair; free is introduced to describe the indoor air tempera-
ture of the zone when heating and cooling are not provided, and
the heating and cooling need of the zone space is assumed to be
always satisfied, which leads to the following three situations:

1) When cooling is needed (qair; free > qC;set), HVAC system will
provide enough cooling energy to make qair ¼ qC;set

2) When heating and cooling energy is not needed (qair; free < qC;set
& qair; free > qH;set), the zone indoor air temperature will be the
free floating air temperature qair ¼ qair;free

3) When space heating is needed (qair; free < qH;set), HVAC system
will provide enough heating energy to make qair ¼ qH;set

The assumption that the indoor air temperature will always be
met by the HVAC system implies maximum flexibility in HVAC
system control and no dynamic factor will be taken into account in
the HVAC control, which will make the HVAC system work in an
ideal state. With regard to the primary energy consumption of
heating and cooling, a performance curve method will be adopted
in this tool. The user will be asked to provide the energy efficiency
of the heating and cooling source at 20%, 40%, 60%, 80%,100% partial
load conditions. This measure is to simulate the energy perfor-
mance of the heating and cooling system under different partial
load conditions. After having the inputs of energy efficiency at each
stage of the partial load, a linear interpolation will be made to
emulate a performance curve of the system, and this processing is
intended to simplify model inputs. The pump system model in this
tool assumes that the pumps operate in a constant flow state, and
its mass flow rate is calculated by the flow rate required for peak
heating and cooling load. Thus, if ECMs that reduce the building
heating or cooling load are adopted for a building, the pump energy
use will also be saved if upgrading pumps are chosen as one of the
ECMs.
Appendix B. Morphing of future hourly weather data.

In the morphing method, there is a “baseline” where the
“morphing” starts from and the baseline refers to the TMY3
weather data. The first step of this method is to calculate the mean
value for each climate variable of each month m for the baseline
scenario, the baseline climate value of x0 for month m is defined to
be:
*
x0〉m ¼ 1

24� dm

X
month m

x0 (14)

where dm is the number of days in monthm and the 24 comes from
averaging the hourly measurements over the 24 h of each day.

The morphing method adopted here includes three operations,
which can be described as: 1) a shift; 2) a linear stretch (scaling
factor); 3) a shift and a stretch, the following equations demon-
strates the three operations:

x ¼ x0 þ Dxm (15)

x ¼ amx0 (16)

x ¼ x0 þ Dxm þ amðx0 � hx0〉mÞ (17)

where xo is the existing hourly climate variable, Dxm is the absolute
change in monthly mean climate variable for month m (which is
obtained from GCM outcome), am is the fractional change in
monthly mean climate variable for monthm, and x0m is the climate
variable xo average over month m.

The adding of absolute change inmonthlymean climate variable
for certain month is called shift as described by Equation (15). It
indicates the mean value in baseline scenario experiences an ab-
solute change, like the change in atmospheric pressure. A stretch is
used when the change of certain variable is embodied as fractional
change rather than absolute increment, like solar radiation which
can never be a positive number at night (Equation (16)). The
combination of stretch and shift can be applied to those variables
like dry-bulb temperature, where both fractional diurnal change
and absolute increment take place, especially when taking into
account the changes in both maximum and minimum daily tem-
peratures (Equation (17)). After applying the stretch and/or shift
changes to specific climate variables, the future hourly weather
data can be morphed on the basis of current TMY hourly weather
data.
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