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A data-driven model on human thermophysiological and psychological 
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A B S T R A C T   

Excessive solar radiation can also cause thermophysiological and psychological discomfort in the human body. In real-world environments, solar radiation is highly 
variable. Moreover, the amount of solar radiation exposure that people receive due to their outdoor activities can have large fluctuation. The physiological and 
psychological responses of the human body under this dynamic solar radiation exposure are quite different from those under steady-state solar radiation exposure. 
Therefore, this paper studies the physiological and psychological responses of the human body under the condition of dynamic solar radiation through the method of 
field experimental research and explores the applicability of the existing indicators of PET and UTCI in the dynamic radiation environment. A novel recurrent neural 
network model was used to predict skin temperatures and thermal sensations, in which genetic algorithm was applied to tune hyper-parameters. 

It is noteworthy that both thermal sensations and skin temperatures at exposed body segments show a stronger correlation to solar radiation, while there exists a 
time lag between solar radiation and skin temperature when people are exposed to solar radiation. Compared with thermophysiological models (DTS), the GA-LSTM 
model has a better prediction accuracy in thermal sensations.   

1. Introduction 

The World Meteorological Organization (WMO) Statement on the 
State of the Global Climate in 2019 released by the United Nations 
emphasizes that climate change continues to affect human social and 
economic development, health, and food security [1], as well as energy 
consumption [2]. Unprecedented high temperatures in Australia, India, 
Japan, and Europe adversely affected health and well-being, resulting in 
more than 100 deaths in Japan due to the extremely hot weather [1]. 
Urban environment is more susceptible to overheating due to the com-
bined impact of climate change and urban heat island (UHI) [3–5]. 
Urban areas are more vulnerable and influenced by UHI and population 
density [6]. A synergic effect of heat waves and UHI could cause 
impressive health and discomfort problems [7]. Solar radiation is an 
important cause of high temperature and directly affects outdoor ther-
mal comfort. A moderate amount of solar radiation, such as ultraviolet B 
(UVB), is beneficial to human health as it promotes the production of 
vitamin D for bone health [8]. However, excessive solar UV radiation 
exposure can lead to short-term skin reactions (erythema) and long-term 
skin illness (skin cancer) [8–10]. In addition to UV damage, visible and 
infrared light can also cause skin damage like sunburn, or even toxic 
photochemical reactions in the skin [11]. The ultimate exposure time 
decreases significantly with increasing irradiation intensity [12,13]. An 
exponential relationship between the effective insult temperature and 

the time of exposure in determining the burn severity was revealed as 
shown in Equation (1) [14]: 

t= tb exp (Tb − T) (1)  

where t is limited time of exposure, s, tb is basal time of exposure, s, Tb is 
basal effective insult temperature, ◦C, T is effective insult temperature, 
◦C. 

Excessive solar radiation not only poses health risks but also causes 
physiological and psychological discomfort in individuals in both indoor 
[15] and outdoor environment [16]. Therefore, it is crucial to pay 
attention to the influence of solar radiation on human thermal comfort. 

1.1. Outdoor thermal comfort studies 

Outdoor thermal exposures on humans can vary due to climate, 
weather conditions, seasons, vegetation, and surroundings, as well as 
personnel activities. Thus, outdoor thermal comfort is a dynamic pro-
cess. Solar radiation and wind speed are the most uncertain among the 
factors influencing outdoor thermal environments. An experiment con-
ducted in Hong Kong focused on the influence of solar radiation and 
wind speed on outdoor thermal comfort [17]. Humans might be more 
sensitive to changes in solar radiation than the predicted model. Besides, 
in summer, solar radiation influences thermal comfort significantly, 
which can be adjustable through the arrangement of buildings and 
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greenery. Numerous studies have been conducted in similar climate 
zones, focusing on summer overheating issues [18–20]. An interesting 
finding is that when the Universal Thermal Climate Index (UTCI) ex-
ceeds 26 ◦C, solar radiation would take a dominant role in outdoor 
thermal comfort rather than wind speed [21]. 

In addition to climate influences, living habits and cultural back-
grounds may also affect human thermal responses to the outdoor ther-
mal environment. A comparison on the human thermal responses in 
Hong Kong and Melbourne in summer was conducted, which found that 
the thermal neutral temperature differs a lot for residents in these two 
areas [22]. 

Numerous outdoor thermal comfort studies considering the effects of 
solar radiation were conducted across the world, covering different 
climate conditions. In these studies, the most commonly used indexes for 
evaluating outdoor thermal comfort are Mean Radiant Temperature 
(MRT), UTCI, Physiological Equivalent Temperature (PET), and opera-
tive temperature. A linear regression model was mostly established to 
describe the relationship between thermal sensations and a universal 
environmental index. Consequently, we can hardly acquire thermal 
comfort and thermal adaptations changes with time from these models. 

1.2. Dynamic thermal comfort based on physiology and psychology 

Human thermal sensation is a reflection of neural activities gener-
ated by the nerve endings, which function as thermal receptors. When 
the surrounding environment changes, the nerve endings will receive 
the stimuli and transfer the signal to the brain. Then the brain will make 
a decision on hot/cold feeling and give feedback to nerve regulation 
system. The heat transfer between the human body and thermal envi-
ronment and nerve signal transfer are the physiological basis of human 
thermal sensation. Therefore, to completely understand the human 
thermal sensation mechanism, we should integrate thermal physiolog-
ical and psychological responses to thermal environments. 

The human thermophysiological model based on the human heat 
equilibrium equation and heat transfer theory is the primary tool to 
figure out the thermophysiological state of the human body [23–25]. 
Thermophysiological parameters (skin temperature, core temperature) 
of the human body can be obtained through the thermophysiological 
model, which then can be used to determine the thermal comfort. For 
example, in Gagge’s two-node model, the thermophysiological model of 
the human body consists of passive and active systems. In the passive 
system, the human body is simplified as a cylinder of two concentric 
layers (core layer and skin layer). The heat transfer process consists of 
two parts: heat transfer between the environment and the skin, and heat 
transfer between the core and the skin. In active systems, four types of 
regulation, i.e., vasoconstriction, vasodilation, shivering, and sweating, 
are typically considered, which can be quantitatively described by some 
linear regulation models using the temperature difference between the 
skin or core temperature and the reference temperature as the input 
signal [23]. 

When the air temperature changes abruptly, psychological responses 
such as thermal sensations precede thermophysiological responses (skin 
temperature), especially when the air temperature drops sharply. When 
the air temperature rises suddenly, the increase in skin temperature is 
minimal, and it reaches stability quickly due to rapid thermoregulation, 
while the opposite is true when the temperature drops sharply [26]. 
Zhang et al. confirmed the phenomenon of psychological advance 
through experimental research, and established a binomial relationship 
between thermal sensation and skin temperature [27]. The occurrence 
of physiological lag or psychological advance may be attributed to 
physiological regulation. The weaker the physiological regulation, the 
more noticeable the physiological lag becomes. In addition, there are 
heat waves and oscillations in the heat transfer process of the human 
body in the dynamic radiation environment, which deviates from the 
Fourier heat transfer theory [28,29]. Therefore, to evaluate thermal 
comfort under dynamic thermal environments, there may exist a 

temporal bias if only considering skin temperature as a dynamic input. 
In addition to skin/core temperatures, human thermal load, as a 

thermophysiological index, has also been applied to evaluate outdoor 
thermal comfort under steady and unsteady conditions [30]. Similarly, a 
relationship between human-body exergy and thermal sensation was 
explored in unsteady states [31]. Furthermore, based on the dynamic 
two-node IMEM model [32], human thermophysiological parameters 
were simulated under unsteady conditions. Human thermophysiolgical 
and thermal sensation responses were analyzed under rapid and 
simultaneous solar and wind exposures [33]. Thermal psychological 
responses were investigated under step-change phases in outdoor envi-
ronments [34]. 

The frequency of changes in the dynamic environment should be 
lower than the frequency of changes in human physiology or psychol-
ogy. From the above research, it can be seen that when the ambient 
temperature suddenly changes, the thermal sensations respond rapidly. 
In the first 2 min of a sudden ambient temperature change, the thermal 
sensation transcendence is the most obvious, while there was a delay of 
several minutes for physiological parameters (skin temperature and core 
temperature) [29]. For solar radiation, the amount of surface solar ra-
diation basically does not change on a minute scale. However, due to the 
relative movement between people’s activities, buildings and greenery, 
the human body’s exposure to solar radiation on the minute scale can 
vary considerably Therefore, the physiological and psychological re-
sponses of the human body under this dynamic solar radiation exposure 
are quite different from those under steady-state solar radiation 
exposure. 

For thermal psychological evaluation, on-site subjective evaluation 
and predictive thermal comfort model are two common methods to 
access thermal response on the environment. The on-site evaluation 
involves obtaining the evaluation on thermal environment through 
subjective questionnaires. Common indicators include thermal sensa-
tion vote (TSV), thermal comfort vote (TCV), and thermal acceptability 
vote (TAV), and etc. The predictive thermal comfort model refers to a 
regression relationship between the thermal comfort evaluation index 
and the environmental parameters, and the predicted human thermal 
comfort evaluation can be obtained according to the fitting model when 
the environmental parameters are measured. For example, Fanger’s 
Predicted Mean Vote and Predicted Percentage of the Dissatisfied (PMV- 
PPD) is the most widely-used predictive thermal comfort model for 
steady-state conditions [35], in which the inputs include air tempera-
ture, mean radiation temperature, air velocity, relative humidity, 
clothing insulation, and personnel activity level. However, numerous 
field studies indicates that there exists a bias when applying PMV model 
in predicting thermal sensation in real environments, especially in 
naturally ventilated buildings or buildings where people have adjust-
ments [36,37]. In a dynamic environment, there exists a time lag of 
human thermal physiological responses or an advance of psychological 
responses [38]. Therefore, for dynamic thermal environments, espe-
cially for dynamic solar radiation exposures, traditional thermal sensa-
tion prediction models cannot account for additional thermal sensation 
changes due to dynamic temporal changes. Factors of thermal envi-
ronment, thermophysiology and adaptation may be integrated to 
develop a comprehensive dynamic thermal comfort model [39]. 

1.3. Thermal comfort indicators 

At present, the evaluation of the impact of solar radiation on human 
comfort primarily relies on steady-state models. Based on these models, 
PMV, Effective Temperature (ET*), Standardized Effective Temperature 
(SET), UTCI, and PET are widely used to evaluate human thermal 
comfort. In Fanger’s PMV model [35], the radiation term only accounts 
for long-wave radiation heat transfer between humans and the sur-
rounding environment, neglecting the effects of solar radiation. The 
current indoor environmental evaluation standards worldwide are 
mainly based on the PMV-PPD model, so these standards cannot predict 
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thermal comfort status well under solar radiation conditions. 
To overcome the gap of solar radiation, La Gennusa et al. proposed a 

comprehensive method to calculate MRT in indoor thermal environment 
under the condition of solar radiation. Their approach involves dis-
tinguishing between direct irradiation and diffuse solar radiation and 
integrating it with environmental radiation heat exchange The devel-
oped calculation formula for MRT is given in Equation (2) [40]: 

Tr,irr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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i=1
Fs→iT4

i +
Cdn

εσ

(

αirr,d
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d,j + Cin

s αirr,d fpIin
bn

)
4

√
√
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By incorporating the calculated MRT affected by solar radiation into 
the PMV formula, it is possible to correct the original model that did not 
consider the influence of solar radiation. Similarly, Zhang et al. also 
revised the PMV and proposed the CPMV index to evaluate the indoor 
thermal comfort under the condition of solar radiation. In addition, the 
author also proposed a formula for calculating the operating tempera-
ture considering solar radiation [41]. 

However, PMV model is just enforceable in steady conditions. For 
transient conditions, Fiala developed a dynamic thermal sensation 
model (DTS), which is derived from a relationship between time series of 
TSV from experiments with dynamic physiological parameters predicted 
by Fiala multi-node thermoregulation model [42]. The regression 
analysis considered the nonlinear trend of measured sensation votes 

when TSV approaches asymptotically the lower and upper limit of the 
ASHRAE 7-point scale. This was accomplished by using the function of 
tanh in the regressions. This model predicts dynamic thermal sensation 
well and can account for the adaptive thermal behavior effects. Simi-
larly, dynamic models for local and overall thermal sensations in 
Zhang’s model were put forward taking first derivative of the skin/core 
temperature into account [43]. de Dear introduced a dynamic indicator 
to represent thermal response in transient environments. This model 
relates this dynamic index with heat flux through the skin and first de-
rivative of skin temperature [44], which are exploited and validated in 
transient conditions by Zolfaghari and Maerefat [45,46]. 

ET* and SET are two indicators proposed by Gagge to evaluate the 
thermal environment based on the heat balance equation [23,47]. SET is 
derived from ET* but takes into account the influence of activity level 
and clothing thermal resistance. It is defined as an effective temperature 
experienced by a person wearing standard clothing under specific con-
ditions, including 50 % relative humidity and no air velocity, and air 
temperature equal to MRT. In a uniform environment, if the average skin 
temperature and skin wetness of a person under actual environmental 
conditions are the same as those under a temperature, the temperature is 
SET corresponding to the actual environment. This indicator offers the 
advantage of standardizing the thermal insulation of personnel clothing, 
so as to better compare the thermal sensation of the human body. 
Similar to the PMV model, ET* and SET do not take into account the 
solar radiation well, so they need to be corrected before they can be used 
for thermal comfort evaluation in a solar radiation environment. 

In this paper, we focused on dynamic thermal comfort under step- 
change solar radiation exposures. The variation characteristics of ther-
mal psychological and physiological responses were analyzed to exca-
vate time discrepancy between human responses and thermal 
environment parameters. A novel recurrent neural network model was 
used to predict skin temperatures and thermal sensations, in which 

Table 1 
Demographic information.   

Age Height（cm） Weight（kg） BMI（kg/m2） 

Max 27 179 80 28.7 
Min 19 158 45 17.3 
Mean 23.9 167.5 58.1 20.68 
Std. Dev. 1.69 5.91 10.01 3.33  

Fig. 1. Experiment procedure.  

Fig. 2. Experiment instrument prototype and illustration.  
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genetic algorithm was applied to tune hyper-parameters. The outcomes 
of this paper develop dynamic thermal comfort evaluations under solar 
radiation from the aspects of thermal physiology and psychology and 
can be utilized to assess outdoor thermal comfort with a comprehensive 
understanding of human factors. 

2. Methods 

2.1. Participants 

A total of 15 participants were recruited in this study, including 7 
males and 8 females, who were healthy and symmetrical. During the 
experiment, the participants wore uniform clothing to maintain clothing 
thermal insulation, about 0.6 clo (wearing a short-sleeved T-shirt and 
thin trousers). Respondents stood still at the site around the weather 
station. Demographic information is shown in Table 1. 

2.2. Experimental process and test data 

Intermittent solar radiation exposures were designed in the field 
experiment. A 5-min solar exposure followed by a 5-min shadow stay for 
three loops was set. The specific experimental process is shown in Fig. 1. 
The experimental site is selected on the square near a semi-open space, 
where respondents could switch between solar exposure and non-solar 
exposure quickly. In each experiment, two subjects participated, and 
eight groups of experiments were conducted. Before each experiment, 
subjects maintained a stationary position to ensure thermophysiological 
conditions stable. 

Considering influences of solar radiation intensity and outdoor stay 
time on physiological parameters, the outdoor thermal environment 
parameters (solar radiation intensity, air temperature, relative humidi-
ty, wind speed) were tested every 10 s automatically. The experiment 
instruments are shown in Fig. 2. At the same time, the skin temperatures 
are continuously monitored. Skin temperatures were measured at five 
points, which are forehead, back, abdomen, back of the hand and calf. 
The test equipment and accuracy are listed in Table 2 and subjective 
questionnaires were filled every 1 min. 

2.3. Subjective survey 

During the experiment, participants were asked to fill in a ques-
tionnaire through mobile phone every minute. Overall local thermal 
sensation, solar exposure sensation, overall thermal comfort and overall 
thermal acceptance were interviewed. A seven-point scale for thermal 
sensation is adopted, which ranges from − 3 to 3 (cold, cool, slightly 
cool, neutral, slightly warm, warm and hot) [48]. A four-point scale for 
solar exposure sensation is accepted, ranging from 0 to 3 (no solar 
exposure, slightly solar exposure, medium solar exposure, strong solar 
exposure) [49]. Thermal acceptance vote is scaled on a four-point scale 
(− 2 unacceptable, − 1 slightly unacceptable, 1 slightly acceptable, 2 
acceptable) [50]. Thermal comfort vote ranges from 0 to 4 (comfort, 
slight discomfort, discomfort, quite discomfort, unbearable) [48]. Hu-
midity and wind sensation vote were assessed on a four-point scale 
ranging from 0 to 3. 

2.4. Outdoor thermal comfort index 

To evaluate outdoor thermal comfort, PET and UTCI were compared 
with thermal sensations. PET is termed as the air temperature at which 
the core and skin temperature equal to those under the conditions being 

Fig. 3. LSTM diagram.  

Table 2 
Instrument information.   

Type Parameter Precision Range 

Thermometer HOBO U12- 
012 

Air 
temperature 

±0.35 ◦C − 20~70 ◦C 

RH ±2.5 % 5 %～95 % 
Anemometer TJHY 

WFWZY1 
Wind speed 5 % ±

0.05 m/s 
0.05–30 m/s 

Pyranometer DELAOHM 
LPPYRA02S 

Short-wave 
radiation 

10μV/(W/ 
m2) 

0~2000 W/ 
m2 

Pyranometer Apogee SL- 
510-SS 

Long-wave 
radiation 

0.12mV/ 
(W/m2) 

− 200 to 200 
W/m2 

iButton iButton 
DS1923 

Surface 
temperature 

±0.5 ◦C − 20~85 ◦C 

Fitbit Fitbit Inspire 
HR 

Heartbeat    
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assessed under heat balance state, which is founded on the Munich 
Energy-balance Model for Individuals (MEMI) [51]. PET has been 
verified in many field studies with good accuracy and is recommended 
by VDI (2008) [52]. UTCI was based on multidisciplinary knowledge of 
thermophysiology, medicine, biometeorological and environmental 
science. UTCI is represented by the reference air temperature (air tem-
perature equal to MRT, wind speed = 0.5 m/s at 10 m, RH = 50 % up to a 
constant water vapor pressure of 20 hPa and metabolic rate = 135 
W/m2) that cause the identical thermal stress as the real environment. 
UTCI is developed from a multi-node dynamic thermophysiological 
model called UTCI-Fiala model [25]. 

The DTS model, based on Fiala’s thermoregulatory models, allows 
for the prediction of thermal sensations in dynamic situations [42]. It 
has been validated under conditions of dynamic temperatures. The DTS 
model establishes a relationship between thermal sensation and several 
factors, including head core temperature, mean skin temperature, and 
the rate of change of mean skin temperature (dynamic signal). This 
relationship can be expressed through Equation (3). 

DTS= 3× tanh

[

a • ΔTsk,m +F2 +

(

0.11
dT(− )

sk,m

dt
+ 1.91− 0.681t

e •
dT (+)

sk,m

dtmax

)

•
1

1 + F2

]

(3)  

Where a is regression coefficient, ΔTsk,m is the error signal of mean skin 
temperature, ◦C, F2 represents the influences of thermal strain caused by 
body core, Tsk,m is the mean skin temperature, ◦C. 

2.5. A GA-LSTM model 

The long short-term memory network (LSTM) is novel recurrent 
neural network (RNN), integrated with an appropriate gradient-based 
learning algorithm (see Fig. 3). It features a unique “gate” structure 
consisting of an input gate, output gate, and forget gate. The purpose of 
these gates is to control the flow of information within the network. 
Whether data is updated or discarded is determined by the logic control 
of the gate unit, which mitigates the issues of a large weight in RNN. This 

Fig. 4. Illustration of GA process.  

Table 3 
LSTM model configuration.  

Network Parameter Configuration 

Number of hidden layers 1 
Number of neurons at each hidden layer 251 
Number of epochs 500 
Learning rate 0.001 
Activation function ReLU 
Weight initialization Normal distribution 
Loss function MAE  

Table 4 
Metrics of model performance.  

Index Definition Formular 

RMSE Average magnitude of the errors between 
predicted values and observed values. RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ỹi)
2

n

√

MAE Average absolute differences between predicted 
values and observed values. It gives equal weight 
to all errors without considering their direction. 

MAE =

∑n
i=1
⃒
⃒yi − ỹi

⃒
⃒

n 

R2 Proportion of the variance in the dependent 
variable that is predictable from the independent 
variables. 

R2 = 1 −

∑n
i=1(yi − ỹi)

2

∑n
i=1(yi − yi)

2  

Note: n is the number of data points, yi is the actual value, ỹi is the predicted 
value, and yi is the mean of the actual values.  Fig. 5. Outdoor air temperature and relative humidity (a) air temperature, (b) 

relative humidity. 
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mechanism allows the LSTM network to better handle long-term de-
pendencies and alleviate problems such as gradient disappearance and 
explosion that can occur in RNNs. 

The LSTM network’s gate structure enables it to converge more 
effectively and quickly, leading to improved prediction accuracy. By 
selectively retaining or forgetting information, the network can main-
tain and update relevant information over longer sequences, making it 
particularly suitable for tasks involving time series or sequential data. 

Data transformation is important for neural network training, which 
can accelerate the training speed with a good performance. One good 
data transform suggests the transformation of data to be within the same 
range as output of the activation function that is used in the model 
training. The Rectified linear unit (ReLU) is the most widely used acti-
vation function in the training of the neural network. It is provided by 
default from PyCharm environment, and its derivative values are be-
tween 0 and 1. A good scaling for the data is to transform it to fall within 

the same range. The MinMaxScaler function provided by sklearn pre- 
processing library is used for this. 

The data is then transformed into a supervised data (input and output 
patterns). The previous observations of the previous time step are used 
as an input to the network at the current time step. 

Before training LSTM model, some hyper-parameters should be 
determined by tests, such as number of hidden layers, and number of 
neurons at each hidden layer. Genetic Algorithm (GA) is an adaptive 
probabilistic global search algorithm, which is based on the principles of 
natural selection and genetics, and draws on the natural selection 
mechanism of biological evolutionary superiority and inferiority, and 
the genetic mechanism of recombination and mutation, as shown in 
Fig. 4. In GA, a set of initial populations (initial solutions) is first 
randomly generated, and this population consists of a certain number of 
individuals that have been genetically encoded. Each individual is a 
chromosome (the main carrier of the genetic information) bearing a 

Fig. 6. Outdoor wind speed.  
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characterized entity, and the appearance of an individual is determined 
by its internal manifestation, i.e., genotype. After the initial population 
is generated, more optimal approximate solutions will evolve generation 
by generation according to the principle of superiority and inferiority. 
Eventually, the optimal individual of the final population can be used as 
the approximate optimal solution of the problem after decoding. The 
model parameters are given in Table 3. 

Five-fold cross validation was applied to test the performance and 
stability of each parameter setting where the value of one parameter is 
changed within a specific range and the others are kept fixed. The fold 
that generates the best accuracy will use its configuration as optimal 
choice for the investigated parameter. The k-fold cross validation is a re- 
sampling method which divides the original dataset into k groups, and 
each sub-dataset will be used as a validation set. The model is trained 
and tested in different subsets of data in order to evaluate the model 
performance on the validation set. 

In this study, we applied the GA-LSTM model to predict average skin 
temperature and overall thermal sensation. In this model, the inputs are 
environmental condition, including air temperature, relative humidity, 
wind speed and solar radiation. Through the deep learning model, time 

series data of average skin temperature and overall thermal sensation 
can be predicted. 

Root mean squared error (RMSE), mean absolute error (MAE), R 
square (R2) is adopted to indicate the accuracy of model predictions. 
Table 4 summarizes the definitions and formulaes of the three model 
performance indicators. 

RMSE can be used when large errors exist in predictions because 
RMSE penalizes large errors by squaring process, however, MAE is not 
reasonable when outliers have a critical influence on the performance 
evaluation. In addition, when errors are normally distributed, RMSE is 
more appropriate than MAE. R2 often assesses the fitness of a regression 
model. However, it may not be suitable for models where prediction 
accuracy is the primary concern. In practice, multiple metrics instead of 
only one metric can provide a more comprehensive view of the model 
performance. For instance, with an integrated consideration of RMSE 
and R2, model prediction accuracy and explanatory power can be 
analyzed. In general, the selection of metrics should comply with the 
objectives of model performance. 

3. Experimental results 

3.1. Outdoor objective environmental parameters 

3.1.1. Air temperature, relative humidity, and wind speed 
The air temperature and relative humidity during the five experi-

mental tests are shown in Fig. 5. In groups 1 and 2, the air temperature 
ranged from 28.5 to 30.0 ◦C, while in groups 3 to 5 the air temperature 
range varied from 32.3 to 34.1 ◦C. The maximum temperature change in 
the five groups was 1.1 ◦C, and the standard deviations were 0.09, 0.43, 
0.33, 0.28, and 0.34 ◦C, respectively. The variation range of relative 
humidity was between 52 % and 61 %. Although there were some 
fluctuations, the overall range of variation was relatively small. 

3.1.2. Wind speed 
Fig. 6 illustrates wind speed of the eight experiment groups. The 

wind speed mainly varies between 0.34 and 1.81 m/s, without a 
discernible pattern over time. The distributions of wind speed in groups 

Fig. 7. Variations of global solar radiation.  

Fig. 8. Variations of skin temperature and downward solar radiation.  

Y. Ji et al.                                                                                                                                                                                                                                        



Building and Environment 248 (2024) 111098

8

1, 2, 7 and 8 are similar, and groups 4, 5, and groups 3, 6 have a similar 
distribution, respectively. 

3.1.3. Global solar radiation intensity and long-wave radiation 
Solar radiation intensity is an important factor affecting outdoor 

thermal comfort. The variation values of global solar radiation in the 
eight groups of experiments are shown in Fig. 7, which were measured in 
an interval of 10 s. The global solar radiation intensity of groups 1, 2, 4, 
5, 6, 7, 8 is relatively high around 800–900 W/m2, and the global solar 
radiation intensity in groups 3 and 4 is about 600, 700 W/m2, 

Fig. 9. Local skin temperature variations.  

Table 5 
Mean value of long-wave radiation (Unit: W/m2).  

Group No. Downward Upward Leftward Rightward Forward Backward 

1 427.66 517.48 496.28 502.58 490.14 496.36 
2 421.46 517.50 496.10 502.52 489.95 496.16 
3 422.47 518.51 496.05 503.29 489.50 496.11 
4 419.50 521.01 496.00 502.74 489.45 496.06 
5 419.51 520.99 495.96 502.72 489.79 495.98 
6 419.50 521.01 496.00 501.74 489.45 496.06 
7 419.46 520.99 495.93 502.70 489.71 495.98 
8 419.58 520.97 495.83 502.56 489.60 495.92  

Fig. 10. Thermal sensation and solar radiation sensation.  
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respectively. Due to the shading of clouds, the global solar radiation 
intensity is relatively low in the solar exposure stage. During the shadow 
stage, the global solar radiation mainly varied between 100 and 150 W/ 
m2. 

Long-wave radiation is relative stable compared with solar radiation, 
and there is no significant difference under direct solar radiation expo-
sure and non-direct solar radiation exposure. Table 5 summarizes the 
mean value of long-wave radiation. Upward long-wave radiation is 
obviously larger than downward long-wave radiation. The horizontal 
long-wave radiations are similar. 

3.2. Changes of human skin temperature 

During the experiment, the skin temperatures of the subject’s head, 
abdomen, arms, hand and calf were measured to analyze the skin tem-
perature variation under dynamic solar radiation exposure. After 
comparing the skin temperature at different body parts, it is evident that 
the skin temperature at arm and hand changes significantly with tem-
perature fluctuations of 3.1 and 3.4 ◦C. In contrast, the changes at other 
parts (head, abdomen, leg) are relatively small, among which the skin 
temperature in the calf has the smallest change of 1.2 ◦C. 

Due to the body thermal regulations (mainly due to evaporative heat 
dissipation caused by sweating, as well as blood flow regulation and 

metabolic regulation), the temperature of the human skin may decrease 
during the solar radiation exposure phase. When sweating is not present, 
there is a time delay in the skin temperature of unobstructed body parts 
(such as arms) after the sun exposure phase stops, but when there is 
thermophysiological regulation such as sweating, the human skin tem-
perature is appropriately reduced. 

3.3. Subjective psychological evaluation of the human body 

The thermal sensation variations of the whole body and different 
segments of the human body under intermittent solar radiation exposure 
are shown in Fig. 10. Thermal sensations of head, arm, and hand are 
higher than thermal sensations of leg and stomach. Overall thermal 
sensations are closer to thermal sensations of the head, which is the most 
sensitive. The thermal sensations of various parts of the human body 
have the same trend as that of the skin temperature. This means that as 
the body skin temperature increases, the thermal sensation votes also 
become higher. 

As Fig. 11a) and b) shows, high solar intensity will cause thermal 
discomfort and low thermal acceptance. Thermal comfort and thermal 
acceptance changes in accordance with solar radiation in the scale of 
time. When solar exposure became intense, people would immediately 
feel uncomfortable and slightly unacceptable. For thermal acceptability, 

Fig. 11. Thermal responses variations with solar radiation (a) thermal acceptance vote, (b) thermal comfort vote, (c) solar exposure sensation vote, (d) humidity and 
wind sensation vote. 
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participants would have an over high unacceptability once they came 
into solar exposure. Later they may have adaptations to the solar 
exposure and acceptance increases a little. But solar exposure at last 
would cause high unacceptance. Similarly, when people come into the 

shadow zone, they will have comfort and acceptability fluctuations. 
Solar exposure sensation votes (SESV) in overall, head, arm, and 

hand show that a great consistency with solar radiation, while sensa-
tions at stomach and leg are less sensitive to solar radiation changes. 
Compared with thermal sensations, people have a less reaction time to 
solar exposure change, especially at the naked segments. Similar to 
thermal sensations, overall SESV was greatly influenced by the strongest 
local SESV. Humidity sensation and wind sensation varies with little 
relationship to solar exposure change as Fig. 11d) shows. 

3.4. Mean radiant temperature and downward solar radiation 

Mean radiant temperature (MRT) was calculated according to “Six- 
direction method”, as Equations (4)–(6) show. This method applies 
short-wave radiation and long-wave solar radiations of six directions. 

Tmrt =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Kabs + Labs

αl • σ
4

√

− 273.15 (4)  

Kabs = αk •
∑6

i=1
Wi • Ki (5)  

Fig. 12. MRT and downward solar radiation.  

Fig. 13. The regression relationship between MRT and solar radiation.  

Fig. 14. Variation of skin temperature and solar radiation.  
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Labs =αl •
∑6

i=1
Wi • Li (6)  

where, 
Tmrt Mean radiant temperature，◦C. 
Kabs Total short-wave radiation，W/m2 

Labs Total long-wave solar radiation，W/m2 

σ Boltzmann constant，5.67 × 10− 8 W/(m2K4). 
αl Absorption coefficient of long-wave radiation, equal to 0.97 
αk Absorption coefficient of short-wave radiation, equal to 0.70 
Wi Angle coefficients of six directions. 0.06 for the two vertical di-

rections and 0.22 for the four horizontal directions 
Ki, Li Short-wave radiations and long-wave radiations of six 

directions 
As Fig. 12 shows, MRT varies significantly under solar radiation and 

non-direct solar radiation conditions. It seems there is a strong rela-
tionship between MRT and downward solar radiation, thus, we devel-
oped a linear regression model between them as Fig. 13 shows. In some 
cases of instrument lack, MRT can be estimated by down-ward solar 
radiation. 

4. Analysis of the impact of dynamic solar radiation exposure on 
physiology and psychology 

4.1. Influence of dynamic solar radiation on thermophysiology 

As Fig. 8 shows, the skin temperatures change with solar radiation, 
especially at the exposed segments. Unlike a sudden change of solar 
radiation, the skin temperatures rise or fall gradually. Due to differences 
of the physiological properties of skin tissue across the body, the fluc-
tuations of different body segments vary. When the heat exchange be-
tween the human body and the surrounding environment cannot reach a 
balance, the body will perform thermal regulations. When exposed to 
sunlight, the body’s skin capillaries regulate blood flow by constricting 
or dilating, thereby managing heat exchange. Additionally, sweating 
plays a crucial role in heat regulation. During self-heat regulation, the 
skin temperature decreases. For example, after repeated sun exposure, 
the skin temperature of the head, backs of hands, and calves decreased 
earlier, possibly due to the effects of sweating. 

Fig. 14 emphasizes the changes of skin temperature of head and solar 
radiation. There exists a time lag between solar radiation and skin 
temperature when people come into solar exposure. However, when 
people leave solar exposure, the skin temperature drops quickly as solar 
radiation. To further analyze the time lag between solar radiation and 
skin temperature, the first derivatives of the two parameters were 
calculated as shown in Fig. 15. A time lag between solar radiation and 
skin temperature is obvious from the first derivatives changes, which is 

about 20 s. 

4.2. Influence of dynamic solar radiation on thermal psychology 

According to Fig. 10, thermal sensations have a good accordance 
with solar radiation, particularly for head, arm, and hand. Therefore, 
exposed segments demonstrate a strong response to solar radiation. The 
rate of change in TSV differs during the increasing and decreasing solar 
radiation period. The thermal sensation increases slowly when solar 
radiation increases, while it dumps sharply from solar radiation to non- 
solar radiation. After approximately 1–2 min of exposure to solar radi-
ation, thermal sensations will reach a peak and become stable. 

From solar exposure to non-solar exposure, both the skin tempera-
ture and TSV drops rapidly. When people enter solar exposure, their skin 
temperature will rise at a slower rate compared to TSV. Therefore, 
relying solely on skin temperature is not enough to predict thermal 
sensation, unless considering the derivatives of skin temperatures. 

5. Predicted skin temperature and thermal sensation model 
based on LSTM model 

5.1. Model establishment and validation 

Here we adopted LSTM model to establish a prediction model on 
average skin temperatures (numerical average of five body parts’ skin 
temperature), applying thermal environmental parameters (air tem-
perature, relative humidity, wind speed and global solar radiation) as 
model inputs to predict skin temperature with a time step of 10s, and the 
five-fold cross validation results are given in Fig. 16. A total of 220 data 
samples were used to train the model. The predicted skin temperatures 
are in accordance with experiment data with RMSE ranging from 0.038 
to 0.050. The LSTM-based model has a good performance in predicting 
skin temperatures. 

Thermal sensations under dynamic solar exposure are predicted 
though LSTM model. Although thermal sensation is scaled from − 3 to 3, 
the magnitude of thermal sensation vote is meaningful. Besides, a lot of 
linear regression model have been developed to reveal the thermal 
sensations and thermal environments. Actually, in LSTM model, thermal 
sensation vote is considered as a continuous variable. 

The four thermal environmental variables are model inputs here as 
well with a time step of 1 min in accordance with thermal sensation vote. 
A total of 480 data samples were used to develop the model. However, 
here only 2/3 of the original data were trained with LSTM model. The 
left data was used to validate the model accuracy. The model perfor-
mance is shown in Fig. 17. Although RMSEs ranging from 0.699 to 1.027 
shows a significant error, the predicted thermal sensation has a similar 
trend with experiment data. Lack of database or inappropriate inputs 

Fig. 15. Variation of first derivative of skin temperature and solar radiation.  
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may lead to the result. Besides, unlike the strong theoretical relationship 
between skin temperature and thermal environment (Heat transfer be-
tween human body and thermal environment follows the Fourier laws), 
thermal sensation may be also influenced by human thermal adaptation. 
This may aggravate the error between the predicted and the original 
data. 

To test the model accuracy, five original sub-datasets are compared 
with predicted thermal sensations shown in Fig. 18. RMSEs between 
predicted and validated data are 0.084, 0.140, 0.175, 0.296, and 0.263, 
which has quite good performance. This may be caused by model 
overfitting or data distribution discrepancy between test and validated 

data. To solve the above problem, model parameter adjustments and 
database expansion may improve the model performance. 

5.2. Comparison between thermophysiological model and LSTM model 

Fiala developed a dynamic thermal sensation model (DTS), which is 
derived from a relationship between time series of thermal sensation 
votes from experiments with dynamic physiological parameters pre-
dicted by Fiala multi-node thermoregulation model [42]. The regression 
was performed taking into account the nonlinear trend of measured 
sensation votes when thermal sensation approaches asymptotically the 

Fig. 16. Performance of skin temperature prediction model.  
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Fig. 17. Performance of thermal sensation prediction model.  
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lower and upper limit of the ASHRAE 7-point scale. 
Based on measured skin temperatures, DTS can be generated. The 

comparisons between DTS and LSTM-predicted thermal sensation are 
shown in Fig. 19. 

As Fig. 19 shows, LSTM model has a better performance in predicting 
dynamic thermal sensation compared with DTS model by comparing the 
average difference. DTS model has an obvious time lag with real thermal 
sensations. This is maybe caused by non-Fourier heat transfer in skin 
tissues, which would lead to a time lag of skin temperature. As Equation 
(1) shows, DTS is determined by skin temperatures. Thus, DTS would 
have a time lag with thermal sensations with real sensations. 

6. Discussion 

6.1. Applicability of existing thermal comfort indexes 

Although PET and UTCI are two popular outdoor thermal comfort 
evaluation indexes, they are unknown for applications in dynamic solar 
radiation conditions. Both PET and UTCI vary significantly between 
solar condition and non-solar condition, which is similar to variations of 
MRT. 

To check the applicability of PET and UTCI in dynamic conditions, 
weighted linear regression analysis between PET or UTCI and mean 
thermal sensations (MTS) is shown in Fig. 20. The linear regression 
models between PET or UTCI and MTS shows a positive relationship. 

Fig. 18. Comparison between predicted and original thermal sensations.  
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UTCI has a better correlation with thermal sensations with R2 of 0.725. 
Therefore, UTCI has a better correlation with thermal sensations than 
PET. 

6.2. Correlation and sensitivity of thermal sensations and skin 
temperature to solar radiation 

Through a paired t-test, the differences between overall and local 
thermal sensations were analyzed, as shown in Table 6. The overall 
thermal sensations have a significant difference with local thermal 
sensations except head under p < 0.01, which means that overall ther-
mal sensations may be greatly influenced by thermal sensation at the 
head. 

Overall thermal sensations obey the ‘Complaint model’, which in-
dicates overall thermal comfort was determined by the most uncom-
fortable body segment. As Fig. 9 shows, thermal sensation vote at head is 
the highest, which would significantly influence overall thermal 
sensation. 

Furthermore, it is worth noting that the thermal sensations at the 
stomach and leg segments are relatively close to each other, possibly 
indicating similar levels of thermal comfort for these body parts. 

To figure out the sensitivity of overall and local thermal sensation to 
solar radiation intensity, the Pearson’s coefficients are given in Table 7. 
The overall thermal sensation has the strongest correlation with solar 
radiation. The head, arm and hand thermal sensations have a stronger 
correlation with solar radiation than thermal sensations at stomach and 

Fig. 19. Comparison between DTS and LSTM model.  
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leg, which may be caused by clothing cover. Head, arm, and hand are 
directly exposed to the sun, and stomach and leg are covered with 
clothes. Therefore, thermal sensations at the stomach and leg may have 
a low amplitude and a time lag with solar radiation variations. 

Based on variance analysis, local skin temperatures are found to be 
significantly different. Pearson’s coefficients between local skin tem-
peratures and solar radiation are given in Table 8. Local skin tempera-
tures have a strong inter-relationship. Solar radiation has stronger 
correlations with head, arm, and hand, compared with stomach and leg, 
which is similar to the relationship between solar radiation and local 
thermal sensations. 

In general, both thermal sensations and skin temperatures at exposed 
body segments show a stronger correlation to solar radiation. 

7. Conclusion 

In this paper, our focus was on dynamic thermal comfort during step- 
change solar radiation exposures. We analyzed the variations in thermal 
psychological and physiological responses to explore the time discrep-
ancy between human responses and thermal environment parameters. 
The main conclusions in this study are as follows.  

(1) Skin temperatures change with solar radiation, especially at the 
exposed segments. There exists a time lag between solar radiation 
and skin temperature when people come into solar exposure. 
However, when people leave solar exposure, the skin tempera-
ture drops quickly as solar radiation.  

(2) The thermal sensation gradually increases as solar radiation rises, 
but when transitioning from solar radiation to non-solar radia-
tion, it drops sharply. After approximately 1–2 min of exposure to 
solar radiation, thermal sensations will reach a peak and stabilize.  

(3) Both thermal sensations and skin temperatures at exposed body 
segments show a stronger correlation to solar radiation. 

(4) From solar exposure to non-solar exposure, both the skin tem-
perature and TSV drops rapidly. When people enter solar expo-
sure, their skin temperature will rise at a slower rate compared to 
TSV. Therefore, relying solely on skin temperature is not enough 
to predict thermal sensation under dynamic solar exposure, un-
less considering the derivatives of skin temperatures.  

(5) Based on a GA-LSTM model, a skin temperature prediction model 
and a thermal sensation prediction model were established. The 
predicted skin temperature is in accordance with experiment data 
with RMSE below 0.05 while the predicted thermal sensations 
have a significant difference with original data. Compared with 
thermophysiological models (DTS), LSTM model has a better 
prediction accuracy in thermal sensations.  

(6) Under dynamic solar radiation, thermal sensation vote at head is 
the highest, which would significantly influence overall thermal 
sensation. Thermal sensations at the stomach and leg may have a 
low amplitude and a time lag with solar radiation variations. 

Fig. 20. PET and UTCI with thermal sensation.  

Table 6 
Variance analysis of overall and local thermal sensations.   

Overall Head Arm Hand Stomach Leg 

Overall – – – – – – 
Head 0.023 – – – – – 
Arm 0.000 0.000 – – – – 
Hand 0.000 0.000 0.011 – – – 
Stomach 0.000 0.000 0.000 0.001 – – 
Leg 0.000 0.000 0.000 0.001 0.788 –  

Table 7 
Correlation analysis of thermal sensation and solar radiation intensity.   

Overall Head Arm Hand Stomach Leg Solar radiation 

Overall 1.000       
Head 0.975 1.000      
Arm 0.970 0.981 1.000     
Hand 0.950 0.975 0.978 1.000    
Stomach 0.953 0.950 0.960 0.938 1.000   
Leg 0.955 0.940 0.950 0.932 0.973 1.000  
Solar radiation 0.923 0.890 0.912 0.902 0.866 0.850 1.000  

Table 8 
Correlation between local skin temperatures and solar radiation.   

Head Arm Hand Stomach Leg Solar 
radiation 

Head 1.000      
Arm 0.933 1.000     
Hand 0.890 0.972 1.000    
Stomach 0.837 0.777 0.706 1.000   
Leg 0.863 0.947 0.957 0.700 1.000  
Solar 

radiation 
0.611 0.590 0.601 0.573 0.466 1.000  
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