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Highlights 

• Proposed a reanalysis data-based machine learning method for local-scale climate mapping. 

• Selected Multi-Source Data to build an hourly 1km-resolution dataset. 

• Used machine learning bias correction to generate 1 km maps from 0.25°×0.25° data. 

• Achieves higher accuracy in TEM/RHU mapping with lower computational cost. 

• Clarified impacts via SHAP interpretability analysis on key factors. 
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Abstract: 

High-resolution urban air temperature, relative humidity, and wind speed data are crucial for 

quantifying urban population heat exposure and assessing urban energy consumption. Integrating 

multi-source data to obtain high-resolution urban climate data is now widely used in research. 

However, most studies rely on official meteorological stations and satellite data, lacking reanalysis 

data and failing to reveal built environment impacts on urban climate. The scarcity of official 

meteorological stations and the lack of hourly data from satellites make it difficult to extend existing 

research to broader spatial and finer temporal scales. To address this, our study combines reanalysis 

data with urban land-use, landscape indices, building morphology, and meteorological observations. 

Using machine learning, we developed a bias correction model to evaluate hourly, 1 km resolution 

urban air temperature, relative humidity, and wind speed for Shenzhen in 2018. Interpretable 

machine learning methods were also used to explain the influence of independent variables. Results 

show that the machine learning model demonstrated strong performance in temperature and 

humidity mapping, achieving high accuracy in predicting air temperature (R² = 0.956, MAE = 

0.98 °C) and relative humidity (R² = 0.781, MAE = 5.69%). Compared to using reanalysis data alone 

or traditional Kriging, integrating multiple datasets better represents urban local climate. This model 

can quickly generate detailed urban climate data, providing refined environmental information for 

cities. Furthermore, key variables identified by interpretable machine learning offer insights for 

urban planners. 

Keywords:  

Urban climate; Spatiotemporal mapping; Machine learning; Built environment; SHAP method  
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1. Introduction 

With the rapid development of urbanization and climate change, the complex changes in the three-

dimensional morphology of cities have profoundly restructured the energy exchange mechanisms 

in the near-surface layer [1,2]. This has led to a continuous change in the spatial and temporal 

differentiation characteristics of urban air temperature, relative humidity, and wind speed. Due to 

the high density of buildings, surface imperviousness, and human activities, urban areas often 

experience temperatures that exceed those of surrounding suburban regions, leading to the formation 

of urban heat islands and increased energy consumption for air conditioning [3,4]. The synergistic 

effects of extreme high temperatures and heatwave conditions pose a threat to public health. 

Additionally, the abnormal distribution of temperature and humidity, along with unstable wind 

patterns, hinders the effective dispersion of pollutants, thereby facilitating the transmission of 

pathogens and the occurrence of respiratory diseases [5,6]. Therefore, obtaining high spatiotemporal 

resolution data on air temperature (TEM), relative humidity (RHU), and wind speed is crucial for 

research in areas related to urban heat islands, energy consumption, and health risks associated with 

heat exposure. 

However, due to the complexity of urban surfaces, three-dimensional building clusters alter the 

vertical air temperature distribution. The competition between impervious surfaces and green spaces 

can lead to abrupt changes in humidity. Additionally, the varying heights of buildings can disrupt 

natural wind field structure. These nonlinear mechanisms challenge the homogenization 

assumptions of traditional meteorological models, which results in difficulties in accurately 

extrapolating point observation data to spatial continuous fields, especially in large and complex 

megacities. Hence, obtaining high spatiotemporal resolution meteorological data remains a 
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challenge. Traditional meteorological observation networks are designed to detect weather 

conditions. They are sparsely distributed and cannot capture the full scope of climate differences 

within urban areas [7]. The following are the primary methods currently used to achieve high-

resolution weather simulations. First, using regional climate physics models or Numerical Weather 

Prediction (NWP) models, it is possible to simulate local weather with high spatiotemporal 

resolution [8–10]. However, this method requires high computational resources. The computational 

cost can be high, and data acquisition can be expensive [11]. Secondly, existing studies have 

estimated urban microclimates by integrating multi-source observational data, such as radar and 

satellite products. Since radar and satellites cannot directly obtain precise data on air temperature, 

relative humidity, and wind speed, it is necessary to derive approximate results through indirect 

inversion or reliance on mathematical and physical models. This results in excessive computational 

loads and, due to cloud cover in satellite data, impedes the provision of continuous high 

spatiotemporal resolution information [12,13]. There are also spatial interpolation methods, such as 

Kriging interpolation. By integrating multi-source observational data, high-resolution initial fields 

can be generated to compensate for the sparsity of urban meteorological stations, providing critical 

input for downscaling numerical models. However, the propagation of errors must be considered in 

uncertainty analysis [14,15]. 

To achieve high-resolution local-scale climate inversion, this study focuses on mapping three key 

variables in urban climate research: air temperature, relative humidity, and wind speed. Currently, 

extensive research has been conducted in this field by scholars from multiple countries regarding 

high-resolution urban climate mapping. In research related to air temperature mapping, Ding et al. 

proposed a high-resolution urban temperature prediction method based on regression kriging, 
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multiple linear regression models, and the k-means clustering algorithm to support the mitigation of 

the urban heat island effect [16]. Chen et al. developed a method for creating hourly temperature 

maps with a 1 km resolution during the warm season based on a random forest algorithm that 

integrates meteorological and landscape data. This method reveals the spatial patterns of 

temperature in the city and surrounding areas at different times of the day during the warm season, 

providing a novel and valuable dataset for temperature-related research [17]. Itai Kloog et al. 

achieved high-precision predictions of 24-hour average temperature at a 1 km grid in the 

northeastern United States by using a mixed-effects model to integrate satellite surface temperature 

(TS) and ground observation data, thereby overcoming the limitations of missing data on non-

observation days [13]. Shen et al. utilized a Deep Belief Network to integrate multi-source data, 

including remote sensing, ground observations, and socioeconomic information, achieving high-

precision mapping of daily maximum temperatures at a spatial resolution of 0.01° × 0.01° across 

the country [18]. However, the above studies are highly dependent on the quality of data sources 

and often fail to obtain high-precision hourly data due to issues such as the sparse distribution of 

meteorological stations or the intermittent acquisition of satellite images. Furthermore, previous 

research typically overlooks the impact of the integrated urban built environment on temperature, 

making it challenging to scientifically explain the complex temperature variations in local climates 

and hindering the development of precise heat environment regulation strategies. 

As for the humidity mapping research, Li et al. proposed a two-step method based on partial thin 

plate smoothing splines and Kriging residual correction, integrating terrain, reanalysis, and station 

observation data to construct a 1-km resolution atmospheric humidity forcing field for mainland 

China [19]. Nikolaou et al. developed a high-precision dataset of daily average humidity in Germany 
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at a 1-km resolution by integrating meteorological, topographical, and remote sensing data using 

random forests [20]. Chen et al. utilized random forests to integrate meteorological observations, 

topographic elevation, and multi-scale Local Climate Zone (LCZ) landscape indicators to construct 

a dataset of hourly relative humidity at a 100-meter resolution for Hong Kong during the summer 

from 2008 to 2018, revealing for the first time the nighttime humidity retention effect in the urban 

core area [21]. However, the above relative humidity studies rely on a high-density distribution of 

observation stations, which presents a spatial scaling bottleneck for remote areas or regions without 

meteorological observation stations, making it difficult to validate the accuracy of their predictions. 

Additionally, they do not explain the relationship between variables and humidity level. 

As for wind speed inversion, the instable and random nature of wind speed is a key challenge. Liu 

et al. proposed an integrated forecasting system that combines data preprocessing, an improved 

multi-objective optimization algorithm, and a composite model. This system extracts the dominant 

trends of wind speed to suppress noise interference while collaboratively optimizing prediction 

accuracy and stability [22]. Zhang et al. proposed a multivariate meteorological data fusion wind 

speed prediction network to provide real-time decision support for ultra-short-term intelligent 

scheduling and safety regulation of large wind farms [23]. Huang et al. researched, developed, and 

validated a three-stage downscaling method based on the WRF and nested CFD models. By 

combining physical-statistical coupling techniques, they achieved accurate predictions of 

pedestrian-level wind in complex urban environments using high-resolution meteorological data at 

a 200-meter altitude [24]. Wang et al. proposes a data fusion method using Proper Orthogonal 

Decomposition (POD) and Linear Stochastic Estimation (LSE). It fuses meteorological observations 

and high spatial resolution local objective analysis (LA) data to reproduce a high-resolution and 
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long-term fusion database for urban areas without observations [25]. However, the aforementioned 

wind speed studies lack hourly-scale mapping and have low spatial resolution, making it difficult to 

capture the wind field in different urban areas accurately. Additionally, urban-scale wind speed 

mappings based on WRF and CFD typically require substantial modeling and computational power 

[26].  

Based on a review of existing research, two primary approaches have emerged for obtaining high-

resolution urban data on temperature, humidity, and wind speed. The first involves dynamical 

downscaling frameworks, such as the Weather Research and Forecasting (WRF) model. However, 

these methods are computationally expensive due to the time-consuming and resource-intensive 

nature of Numerical Weather Prediction (NWP) calculations. An alternative method is to use 

machine learning to acquire high-resolution urban meteorological data. Nevertheless, existing ML-

based studies suffer from several shortcomings. First is their over-reliance on a single data source, 

with most studies depending on satellite-derived data like Land Surface Temperature (LST). The 

utility of such remote sensing data is constrained by quality and availability issues, such as satellite 

overpass times and cloud obscuration, rendering its availability insufficient for retrieving real-time 

data. Second, the majority of current research remains confined to a two-dimensional (2D) 

perspective, generally overlooking the impact of three-dimensional (3D) urban morphology on local 

climate. This makes it difficult for these models to scientifically explain the complex variations in 

local climate. Finally, past research has predominantly focused on predictive accuracy, often treating 

the models as “black boxes” and failing to deeply investigate the mechanisms behind their decisions. 

From the perspective of urban planning, it is still necessary to accurately identify the most critical 

factors. Analyzing single elements in isolation cannot reveal the spatial coupling patterns of the 
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synergistic evolution of temperature, humidity, and wind with heat island intensity and pollutant 

dispersion, which may lead to biases in planning decisions. Therefore, this study proposes a method 

to derive high-precision (1 km) meteorological data from mesoscale data. Using a limited number 

of meteorological stations in the municipal weather station network, the study integrates multi-

source urban climate data including but not limited to ERA5 reanalysis data, building morphology, 

and landscape indices to construct a dataset. A method is developed to rapidly generate high-

resolution meteorological data, which can then be extended to regions with long-term observational 

gaps. The optimal machine learning model for each physical variable was selected based on a 

comparison of R², MAE, and RMSE. Through SHAP interpretability analysis, the importance of 

relevant variables was ranked to identify key factors influencing urban climate inversion and to 

analyze the specific impact of each indicator. The innovations of this study are as follows: 

• We integrated remote sensing products, meteorological observation data, urban landscape data, 

urban building data, and reanalysis data to construct a multi-source dataset comprising a total of 89 

indicators, which enabled the bias correction of urban temperature, humidity, and wind. Notably, 

the inclusion of reanalysis data compensated for spatiotemporal gaps inherent in satellite land 

surface temperature, significantly enhancing the model’s predictive performance. 

• The machine learning models were developed to achieve rapid spatial downscaling of urban 

air temperature, relative humidity, and wind speed from 27.5 km (0.25°×0.25°) to 1 km at an hourly 

timescale. 

• The SHAP interpretability analysis method was used to rank the importance of relevant 

variables, identify key factors, and clarify the specific effects of each variable. 

The structure of this paper is as follows: the second section introduces the workflow of this study, 
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the research area, data collection and processing, model selection, and the methods for SHAP 

analysis. The third section describes the predictive results of the model, selecting typical moments 

from 2018 for illustration. The fourth section primarily discusses the impact of key variables and 

presents the potential application of this study along with its current limitations. The fifth section 

summarizes the main conclusions. 

2. Methodology and materials 

2.1. Workflow 

Fig.1 illustrates the workflow of this study, which consists of the following three major steps: 

1. This study collected 89 independent variables from six categories as predictors, and used air 

temperature, relative humidity, and wind speed data from 53 scattered meteorological stations in 

Shenzhen, China, as dependent variables. The data was processed into 1km×1km grid data using 

ArcGIS Pro 3.1.0, totaling 2,125 grids. Spearman correlation analysis and multicollinearity analysis 

were performed on the constructed dataset to effectively eliminate variables with low impact and 

reduce issues of collinearity. 

2. Three models were selected for training: Multiple Linear Regression (MLR), Random Forest (RF), 

and eXtreme Gradient Boosting model (XGBoost). Grid search with 10-fold cross-validation was 

used to determine the optimal hyperparameter values for the RF model and XGBoost model. The 

model training and prediction results were evaluated using R², MAE, and RMSE metrics. 

3. The SHAP (SHapley Additive exPlanations) analysis method was employed to rank the feature 

importance of variable categories, explain the nonlinear relationships between variables, and clarify 

the influence of the key variables. The results are presented in the form of hourly-scale mapping. 
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Fig. 1. Workflow of this study. 

2.2. Study area 

This study was located in Shenzhen, Guangdong Province, China (N22°27'～22°52', E113°46'～

114°37'). Shenzhen has a subtropical monsoon climate characterized by long, warm summers and 

short, mild winters. The climate is mild, with ample sunshine and abundant rainfall. The average 

annual temperature in Shenzhen is 23.3°C. January has the lowest average temperature at 15.7°C, 

while July has the highest average temperature at 29.0°C. The average annual precipitation is 1932.9 

millimeters, with 86% of the rainfall occurring during the flood season (April to September). Spring 

weather is variable, dominated by easterly winds. Summer lasts over six months, averaging 202 

days, with prevailing southerly winds. In autumn and winter, the northeast monsoon prevails 

(https://weather.sz.gov.cn/). Additionally, the terrain of Shenzhen is higher in the southeast and 

lower in the northwest, mostly consisting of low hills interspersed with gentle plateaus. The land 

cover exhibits high spatial heterogeneity. Its geographical complexity makes it a suitable research 

area for testing the applicability of machine learning algorithms in predicting air temperature, 

relative humidity, and wind speed at high spatial and temporal resolutions. 
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2.3. Data collection and processing 

2.3.1. Meteorological data 

The total area of Shenzhen is 1997.47 square kilometers. To achieve the goal of downscaling, this 

study utilized ArcGIS Pro 3.1.0 to create a grid of 1 km × 1 km as the basic analysis unit, covering 

the entire city of Shenzhen, comprising a total of 2125 grids. These grid units were clipped to fit 

within Shenzhen’s administrative boundaries. The size of the cells was carefully chosen to balance 

the requirements of computational efficiency and spatial resolution, as shown in Fig. 2(a). 

To construct a temperature-humidity-wind mapping model for Shenzhen, meteorological data was 

collected from the monitoring network of the China Meteorological Administration (CMA). This 

comprehensive monitoring system comprises both national and regional meteorological stations, 

adhering strictly to the urban meteorological observation standards set by the World Meteorological 

Organization (WMO). To ensure the highest standards of data integrity, only data from 53 

meteorological stations that provided a complete set of hourly records for one year were selected 

(Fig. 2(b)). Three key variables were chosen for analysis: near-surface air temperature at a height of 

2 meters, relative humidity at 2 meters, and the 2-minute average wind speed at a height of 10 meters. 

These variables were utilized as dependent variables in the dataset. Furthermore, elevation data for 

each meteorological station were obtained from the 30-meter resolution NASADEM dataset 

(https://www.earthdata.nasa.gov/) to represent station altitude as an independent variable. 
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Fig. 2. Grid system meshed for Shenzhen(a) and the location of weather stations(b). 

This study selected various indicators commonly mentioned in urban climate research, including 89 

independent variables from six categories, covering ERA5 reanalysis data, building morphology, 

land use types, land cover types, landscape indices, and LCZ types. All datasets are from the year 

2018. 

This study used ERA5 reanalysis data as the background meteorological dataset for local-scale 

climate mapping. ERA5, or the Fifth Generation of the European Centre for Medium-Range 

Weather Forecasts (ECMWF) Reanalysis (https://cds.climate.copernicus.eu), is a state-of-the-art 

global atmospheric reanalysis dataset [27]. It provides daily and hourly meteorological parameter 

data from 1940 to the present. The ERA5 data have a horizontal resolution of 0.25°×0.25° and a 

temporal resolution of 1 hour. Based on existing research, 13 variable parameters were selected to 

be included in the dataset, and processed using ArcGIS Pro. As shown in Table 1(a), these variables 

essentially cover the needs of local-scale climate research [28,29]. 

2.3.2. Built-Environment indicators 

Shenzhen is a model of a high-density urban area. The accelerated process of urbanization has led 

to the formation of over 300 high-rise buildings exceeding 150 meters in height 

(https://www.skyscrapercenter.com/city/shenzhen), which contributes to a diverse and complex 
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urban morphology. Incorporating building form into the dataset is crucial for studying the 

microclimate impacts in high-density cities [30–32]. To construct the building morphology dataset, 

we obtained the building vector data for Shenzhen from an open-source database 

(https://zenodo.org/records/8174931) [33]. This study calculated relevant parameters, including 

building height, area, volume, and density. Using SAGA GIS 9.5.1, we computed the SVF (Sky 

View Factor) for Shenzhen [34]. Road vector data for the year 2018 was sourced from 

OpenStreetMap (https://help.openstreetmap.org/) to calculate the Aspect Ratio (AR). In selecting of 

data metrics, this study integrates widely used vertical development intensity indicators in the field 

of urban planning, such as Total Height (TH) and Height Standard Deviation (HSD), with three-

dimensional morphological indicators, including Total Building Volume (TBV) and Total Building 

Surface Area (TBSA). TH and HSD primarily reflect the total vertical development and height 

diversity of buildings within urban blocks, while TBV and TBSA are more suitable for measuring 

the complexity of three-dimensional building morphology and volume distribution characteristics. 

Additionally, density indicators such as Floor Area Ratio (FAR) and Building Coverage Density 

(BCD), along with spatial form indicators like Sky View Factor (SVF) and Aspect Ratio (AR), have 

been incorporated into the analytical framework to comprehensively assess the development 

intensity and spatial environmental characteristics of urban blocks, as shown in Table 1(f). 

Different types of land use in urban areas directly influence local climate factors through their 

unique thermodynamic and hydrological characteristics. For instance, industrial and transportation 

areas, with their extensive impermeable surfaces, are prone to forming heat island cores, while green 

spaces regulate the local microclimate through vegetation transpiration and shading effects. The 

varying intensity of human activities in commercial and residential areas also affects the spatial 
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distribution of heat emissions and energy consumption. Therefore, it is essential to incorporate land 

use types into climate mapping [35]. This study obtained the urban land use data for Shenzhen in 

2018 from an open-source database (https://data-starcloud.pcl.ac.cn/zh) [36], as shown in Table 1(b). 

The percentages of various land use types in each basic analysis unit were calculated and 

incorporated into the dataset. It not only provided high-precision land use data at a 1-km scale for 

local-scale climate mapping, but also offered a data basis for quantifying the interaction between 

urban surface thermal environments and human activities. 

Local Climate Zones (LCZ) integrate surface physical properties and human activity characteristics 

to create a classification system for urban built-up areas with differentiated thermal characteristics 

[37,38]. Its classification framework comprehensively considers land cover types, three-

dimensional morphological parameters, and surface energy balance processes, resulting in a 

globally applicable quantitative characterization method for urban landscapes [39,40]. This study 

obtains the LCZ zoning for Shenzhen in 2018 from the LCZ Generator (https://lcz-

generator.rub.de/global-lcz-map) [41]. Shenzhen has a total of 15 types of LCZ, as shown in Table 

1(c). Spatial raster operations were conducted using ArcGIS Pro, and a multidimensional feature 

dataset was created by calculating the percentage of different LCZ types within each statistical unit. 

This systemically analyzes the coupling relationship between local-scale climate heterogeneity and 

spatial morphology. 

2.3.3. Land cover types and landscape indices 

In urban areas, land cover types play a particularly significant role in evaluating the shaping effects 

on local climate. Urban land cover patterns, dominated by impervious surfaces, regulate energy 

balance, intensify the urban heat island effect, and increase near-surface temperatures. The reduction 

                  



 

16 

 

of vegetation weakens natural cooling and carbon absorption capacities. Combined with artificial 

heat sources and changes to the urban wind environment, these factors collectively enhance the 

characteristics of the urban thermal environment. The distribution of impervious surfaces also drives 

hydrological changes, affecting precipitation runoff and flood risks. Therefore, detailed land cover 

data can reveal the evolution of urban surface morphology and its climate response mechanisms 

[42]. This study obtained 30-meter resolution land cover data from the International Research Center 

of Big Data for Sustainable Development Goals (https://data.casearth.cn/thematic/glc_fcs30/314) 

[43], as shown in Table 1(d). This study calculates the percentage area of different land cover types 

within the calculation units, providing high-precision data to support the revelation of nonlinear 

feedback mechanisms between urban surface morphology and local climate systems. 

Among the numerous indicators used in landscape pattern research and analysis [44], a selection of 

representative parameters was chosen, as shown in Table 1(e). These indicators cover the impact of 

landscape pattern distribution and scale on urban climate [45], such as richness, complexity, and 

connectivity. Their geometric significance has been detailed in the technical documentation [46] of 

the FRAGSTATS v4.2 landscape analysis software (https://fragstats.org/) and has been widely 

discussed in previous studies [47–50]. The landscape metrics required for this study were calculated 

using the FRAGSTATS v4.2 software, and the values were assigned to the corresponding basic units. 

This provides high-resolution data to reveal the correlation between urban landscape patterns and 

local climate [51]. 

2.4. Spearman correlation analysis and multicollinearity analysis 

Data preprocessing is a critical step for enhancing model accuracy. In this study, we initiated the 

process with Spearman’s correlation analysis to identify independent variables significantly 
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correlated with the dependent variables [52,53]. For each dependent variable, variables with a p-

value exceeding 0.01 were excluded to eliminate irrelevant features. A summary of the correlation 

analysis between the independent variables and these meteorological indicators is presented in 

Figure 3. Subsequently, we addressed multicollinearity by calculating the Variance Inflation Factor 

(VIF). Variables exhibiting a VIF greater than 10 were systematically removed. In cases where 

multiple variables were found to be collinear, we began with the one possessing the highest VIF. 

The correlation strengths of these collinear variables with the dependent variable were then 

compared, and the variable demonstrating a weaker correlation was preferentially discarded. This 

two-step feature selection process resulted in a refined set of predictors, as shown in Appendix 1: 

37 for TEM model, 35 for RHU model, and 38 for Wind Speed model. For model training and 

evaluation, the dataset, comprising data from 53 meteorological stations, was partitioned. The 

complete annual data (8,760 hours) from a random selection of 43 stations constituted the training 

set, whereas data from the remaining 10 stations formed the test set, as shown in Appendix 2. This 

station-based partitioning strategy was deliberately chosen to evaluate the model’s generalization 

performance on geographically unseen locations. 
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Table 1. Summary of independent variables.  

Variable category Variable names (Abbreviations) Variable category Variable names (Abbreviations) & Calculation formula 

a. Era5 data (13) 2m dewpoint temperature (D2M), 2m temperature (T2M), 10m u-component of wind (U10), 

10m v-component of wind (V10), Forecast albedo (FAL), Skin temperature (SKT), Surface 

pressure (SP), Surface net solar radiation (SSR), Surface solar radiation downwards (SSRD), 

Surface net thermal radiation (STR), Total cloud cover (TCC), Total precipitation (TP),Total 

sky direct solar radiation at surface (FDIR) 

f. Building 

morphology (16) 

 

ℎ𝑖 is the height of 

the building 𝑖; 

𝑛 is the number of 

buildings within 

the unit block; 

𝑆𝑖 is the surface 

area of building 𝑖; 

𝐴𝑖 is the base area 

of building 𝑖; 

𝑓𝑖 is the number of 

building floors; 

𝑃𝑖 is the perimeter 

of building 𝑖; 

𝑆𝑡𝑜𝑡𝑎𝑙 is the area 

of unit block; 

𝑅𝑊𝑖 is the width 

of road 𝑖. 

Total height (TH)  

Average height (AH)  

Height standard deviation (HSD)  

Total building surface area (TBSA)  

Average building surface area (ABSA)  

Total building area (TBA)  

Average building area (ABA)  

Total building volume (TBV)  

Average building volume (ABV)  

Total building floor area (TBFA)  

Total building perimeter (TBP)  

Surface area density (SAD)  

Building count density (BCD)  

Floor area ratio (FAR)  

Sky view factor (SVF) Calculated by 

saga-gis 

Aspect ratio (AR)  

 

b. Land use types (11) Residential(101), Business office(201), Commercial service(202), Industrial(301), 

Transportation(402), Airport facilities (403), Administrative(501), Educational(502), 

Medical(503), Sport and cultural(504), Park and greenspace(505) 

c. LCZ types (15) Compact high-rise(LCZ1), Compact midrise(LCZ2), Compact low-rise(LCZ3), Open high-

rise(LCZ4), Open midrise(LCZ5), Open low-rise(LCZ6), Large low-rise(LCZ8), Sparsely 

built(LCZ9), Heavy industry(LCZ10), Dense trees(LCZ11), Scattered trees(LCZ12), Low 

plants(LCZ14), Bare rock or paved(LCZ15), Bare soil or sand(LCZ16), Water(LCZ17) 

d. Land cover types (19) Rainfed cropland(10), Herbaceous cover cropland(11), Irrigated cropland(20), Closed 

evergreen broadleaved forest(51), Open evergreen broadleaved forest(52), Closed deciduous 

broadleaved forest(61), Open deciduous broadleaved forest(62), Open evergreen needleleaved 

forest(72), Shrubland (120), Evergreen shrubland(121), Grassland(130), Swamp(181), 

Marsh(182), Flooded flat(183), Mangrove(185), Salt marsh(186), Tidal flat(187), Impervious 

surface(190), Water body(210) 

e. Landscape indices (15) Number of patches(NP), Patch density(PD), Largest patch index(LPI), Largest patch 

index(LSI), Contagion index(CONTAG), Percentage of Like Adjacencies(PLADJ), Patch 

Cohesion Index(COHESION), Landscape Division Index(DIVISION), Patch richness 

density(PRD), Shannon's Diversity Index(SHDI), Aggregation Index(AI), NDVI, 

Shape_Length, Shape_Area 
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Fig. 3. The Spearman correlation matrix between variables and the T-H-W 

(T-H-W: Air temperature, Relative humidity and Wind speed). 

2.5. Models 

In this study, three models—Multiple Linear Regression (MLR), Random Forest (RF), and Extreme 

Gradient Boosting (XGBoost)—were initially developed to investigate the complex relationships 

between various meteorological and environmental parameters and the target variables of air 

temperature, relative humidity, and wind speed. Notably, the aforementioned models were trained 

separately and independently for each target variable. MLR served as the baseline model to assess 

the linear relationships between variables [54]. To account for the prevalent non-linear features in 

the real world, RF and XGBoost models were further employed to fit these potential non-linear 

functions. Finally, to quantify and interpret the influence of each input variable from within the 

complex non-linear models, the SHAP (SHapley Additive exPlanations) method was applied for 
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model interpretability analysis. This aimed to reveal the specific contribution and impact patterns 

of each feature on the target variables. 

Assuming there are n variables in the MLR, namely x1, x2, x3, …, xn, in this case, the regression 

model can be represented as follows in Equation (1): 

𝑦𝑖 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 + 𝜀𝑖 (1) 

In the Equation, yi represents the dependent variable value for individual i (i=1 , 2, ..., n), β0 denotes 

the total coefficient of the intercept, β1, β2, ..., βn represent the total coefficients of the slopes, and εi 

is the random error term. 

Random Forest is a powerful machine learning technique that predicts values by combining multiple 

decision trees. It offers robustness against overfitting and improves accuracy by averaging 

predictions from individual trees [55]. The Random Forest model is trained in Python using the grid 

search with 10-fold cross-validation to determine the optimal hyperparameter values. The optimal 

parameters for the air temperature RF model were: max_depth = 7, max_features = 0.8, 

min_samples_split = 2, and n_estimators = 500. The optimal parameters for the relative humidity 

RF model were: max_depth = 7, max_features = 0.8, min_samples_split = 2, and n_estimators = 

300. The optimal parameters for the wind speed RF model were: max_depth = 7, max_features = 

0.8, min_samples_split = 2, and n_estimators = 300. 

Extreme Gradient Boosting (XGBoost) is an enhancement of the gradient boosting decision tree 

(GBDT) algorithm. XGBoost aims to achieve the highest possible speed and efficiency [56]. The 

XGBoost algorithm, composed of multiple regression trees, can integrate homogeneous weak 

learners to create a more powerful learner. This can be expressed in Equation (2):  
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𝑌̂ = ∑ 𝑓𝑚(𝑋)

𝑀

𝑚=1

 (2) 

In the equations, 𝑌̂ represents this study’s predicted local climate data, X denotes the explanatory 

variables, and M is the number of trees. fm refers to the CART tree constructed to reduce the 

residuals of the (m−1) tree. The XGBoost model was trained with optimal hyperparameters 

determined using grid search and 10-fold cross-validation. In the XGBoost training, the optimal 

parameters for the air temperature XGBoost model were: max_depth = 7, learning_rate = 0.1, 

n_estimators = 500, colsample_bytree = 0.8, subsample = 0.8. The optimal parameters for the 

relative humidity XGBoost model were: max_depth = 7, learning_rate = 0.1, n_estimators = 500, 

colsample_bytree = 0.8, subsample = 0.8. For the wind speed XGBoost model, the optimal 

parameters were: max_depth = 7, learning_rate = 0.1, n_estimators = 500, colsample_bytree = 0.8, 

subsample = 0.8.  

To evaluate the performance of the model, we used the coefficient of determination (R²), root mean 

square error (RMSE), and mean absolute error (MAE) as metrics. Formulas (3), (4), and (5) 

represent the calculations for R², RMSE, and MAE, respectively: 

𝑅2 = 1 −
∑ (𝐴𝑖 − 𝑃𝑖)

2𝑛
1

∑ (𝐴̅ − 𝐴𝑖)
2𝑛

1

  (3) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐴𝑖 − 𝑃𝑖)2

𝑛

1

 

(4) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝐴𝑖 − 𝑃𝑖|

𝑛

1

 
(5) 
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2.6. SHAP method 

To explain the RF and XGBoost model, SHAP values are used to visualize the relative importance 

of each variable, which is referred to as the additive feature attribution method [57]. The greatest 

advantage of SHAP values is that they can represent the influence of features on each sample. For 

every prediction sample, the model generates a predicted value. SHAP values are assigned to each 

feature in the sample, indicating both positive and negative influences. The SHAP package could 

output the feature importance ranking for all samples and creating feature density scatter plots. In 

the feature importance ranking plot, the X-axis represents SHAP values without distinguishing 

between positive and negative, while each point in the feature density scatter plot represents a 

sample. The X-axis indicates SHAP values, where negative (positive) SHAP values represent 

negative (positive) influence, and the Y-axis value represents the magnitude of the feature variable 

[58]. The advantage of this method is that it addresses the issue of multicollinearity and considers 

the synergistic effects of different variables. The functional description of SHAP values for tree-

based models is as follows: 

𝜙𝑖 = ∑  

𝑆⊆𝑁∖{𝑖}

|𝑆|! (𝑀 − |𝑆| − 1)!

𝑀!
[𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆)] (6) 

where 𝜙𝑖 is the SHAP value of the feature i, N is the set of all features for the training set, the 

dimension is M; S is a permutation subset of N, the dimension is |𝑆|, 𝑓𝑥(𝑆) is the average predicted 

value of samples using the feature set S; 𝑓𝑥(𝑆 ∪ {𝑖}) is the average predicted value of samples with 

feature i using the feature set S, 
|𝑆|!(𝑀−|𝑆|−1)!

𝑀!
 is the weight of the difference between samples with 

feature i and without feature i using the feature set s. 
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3. Results 

3.1. Model comparisons 

3.1.1. Air temperature 

Table 2 presents the performance of the MLR, RF, and XGBoost models in air temperature mapping 

on both the training and testing sets. It is shown that the RF model exhibits the best performance, 

achieving R² values of 0.963 and 0.956 for the training and testing sets, respectively. Its MAE and 

RMSE on the testing set are 0.98°C and 1.25°C, respectively. In contrast, the MLR model performs 

worse than the RF model, with R² values of 0.961 and 0.849 for the training and testing sets. The 

MAE and RMSE on the testing set are 5.31°C and 2.30°C, respectively, which are significantly 

larger than those of the RF model. Regarding the XGBoost model, although it performs better than 

the RF model on the training set (R² = 0.987), its performance on the test set is not as good as the 

RF model, with an R² of 0.949, an MAE of 1.02°C, and an RMSE of 1.34°C. To ensure the model 

adapts well to unseen datasets and to enhance its generalization capability, this study selects the RF 

model as the training model for air temperature mapping. Fig. 4 illustrates the fitting performance 

of the three models on the test set. 

 

Table 2. Comparison of fitting ability between training data and testing data of different models for 

air temperature mapping. 

Models Training data Testing data 

R2 MAE (℃) RMSE (℃) R2 MAE (℃) RMSE (℃) 

MLR 0.961 0.89 1.19 0.849 5.31 2.30 

RF 0.963 0.88 1.17 0.956 0.98 1.25 

XGBoost 0.987 0.52 0.70 0.949 1.02 1.34 
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(a) MLR (b) RF (c) XGBoost 

   

Fig. 4. The prediction results of MLR, Random Forest and XGBoost models for air temperature 

mapping (testing data). 

 

To evaluate the model’s performance, this study selected ten meteorological stations from the TEM 

model test set. The results for each station are visualized using a combination of violin plots and 

box plots. Fig. 7(a) displays the locations of the ten stations in the temperature test set, while Fig. 

7(b) presents a detailed distribution of air temperature mapping differences (actual value minus 

predicted value) for these stations throughout the entire year of 2018, covering a total of 8,760 hours. 

The results demonstrate that the model exhibits outstanding and consistent performance across all 

ten test stations. The prediction errors at each station have extremely small median and mean biases, 

with error distributions highly concentrated—most falling within a narrow range of ±0.5℃—

indicating the model’s high accuracy. Importantly, the error distributions at all stations approximate 

a symmetric normal distribution centered at zero, a key statistical property suggesting that the 

model’s errors are predominantly random rather than systematic. Furthermore, by considering the 

station locations in Fig. 7(a), it is evident that this robust performance is maintained across diverse 

geographical environments, from high-density urban cores to coastal and vegetated areas, fully 

demonstrating the model’s strong spatial generalization capability. Although a small number of 

extreme outliers exist, the overall analysis confirms the model’s high accuracy, reliability, and 

practical value for high-resolution urban air temperature mapping tasks. 
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3.1.2. Relative humidity 

Table 3 shows the performance of the MLR, RF, and XGBoost models in relative humidity mapping 

on both the training and testing sets. It is found that XGBoost exhibits the best performance in 

predicting humidity, achieving R² values of 0.879 and 0.781 for the training and testing sets, 

respectively. The MAE and RMSE in the testing set are 5.69% and 7.41%, respectively. The MLR 

model has R² values of 0.566 and 0.481 for the training and testing sets, with MAE and RMSE in 

the testing set being 8.97% and 11.41%, respectively, which are significantly larger than those of 

the XGBoost model. The RF model has R² values of 0.670 and 0.642 for the training and testing 

sets, with MAE and RMSE in the testing set being 7.40% and 9.48%, respectively. Overall, the 

performance of the MLR and RF models in predicting relative humidity is significantly inferior to 

that of the XGBoost model. Fig. 5 also illustrates that the fitting effect of the XGBoost model is 

better than that of the MLR and RF models. 

Table 3. Comparison of fitting ability between training data and testing data of different models for 

relative humidity mapping. 

Models Training data Testing data 

R2 MAE (%) RMSE (%) R2 MAE (%) RMSE (%) 

MLR 0.566 8.18 10.59 0.481 8.97 11.41 

RF 0.670 7.16 9.24 0.642 7.40 9.48 

XGBoost 0.879 4.20 5.59 0.781 5.69 7.41 

 

(a) MLR (b) RF (c) XGBoost 

   

Fig. 5. The prediction results of MLR, Random Forest and XGBoost models for relative humidity 

mapping (testing data). 
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Fig. 7(c) illustrates the locations of the ten stations in the relative humidity test set, while Fig. 7(d) 

presents the differences in relative humidity mapping at ten randomly selected stations. The results 

indicate that the error analysis of the RHU model reveals a more complex and “station-dependent” 

performance characteristic compared to the TEM model. Unlike the relatively consistent 

performance of the temperature model, the RHU model exhibits systematic biases of varying 

directions and magnitudes across different stations. For example, the model’s mean bias fluctuates 

considerably among stations, ranging from −5.26% at station G3678 to +4.30% at station G3524. 

Although the model’s performance demonstrates a certain degree of spatial heterogeneity, this does 

not obscure its overall high predictive accuracy. Specifically, despite the differences in systematic 

bias (mean bias) between stations, the model’s predictions within individual stations are highly 

consistent, with the majority of error points densely distributed within the ±10% range. This 

“station-dependent” systematic bias precisely reflects the inherent complexity of high-resolution 

urban humidity mapping, which stems from the difficulty in quantifying ultra-local environmental 

factors. Therefore, we conclude that the model has successfully captured the macroscopic 

distribution patterns of urban humidity, and its demonstrated high accuracy makes it a reliable 

analytical tool. 

 

3.1.3. Wind speed 

Table 4 shows the performance of the MLR, RF, and XGBoost models in wind speed mapping on 

both the training and testing sets. It can be observed that, compared to temperature and relative 

humidity, high-resolution wind speed mapping performs poorly, which can be attributed to the 

inherently high spatiotemporal variability of wind fields and their sensitivity to local environmental 
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conditions. In the model comparison, the MLR model completely failed due to its inability to capture 

nonlinear relationships, resulting in a negative R² (−0.026) on the test set. Although XGBoost 

achieved the best performance on the training set (R² = 0.744), its significant drop in performance 

on the test set (R² = 0.151) indicates an overfitting issue. In contrast, the RF model demonstrated 

the best generalization ability and the most robust performance. While its R² on the training set 

(0.524) was lower than that of XGBoost, it achieved a higher R² (0.194) on the test set, as well as 

lower MAE (0.92 m/s) and RMSE (1.25 m/s) values. Fig. 6 illustrates the fitting results of the three 

models, showing that the RF model’s fitted line is closer to the ideal state. Therefore, the RF model 

was selected for its most robust predictive performance on unseen data. Although the wind speed 

model does not match the temperature and humidity models in terms of overall predictive accuracy, 

this approach still outperforms traditional interpolation methods, which will be further discussed in 

Section 4.1. 

Table 4. Comparison of fitting ability between training data and testing data of different models for 

wind speed mapping 

Models Training data Testing data 

R2 MAE (m/s) RMSE (m/s) R2 MAE (m/s) RMSE (m/s) 

MLR 0.321 0.92 1.29 -0.026 1.04 1.41 

RF 0.524 0.79 1.08 0.194 0.92 1.25 

XGBoost 0.744 0.58 0.79 0.151 0.93 1.28 

 

(a) MLR (b) RF (c) XGBoost 

   

Fig. 6. The prediction results of MLR, Random Forest and XGBoost models for wind speed   

mapping (testing data) 
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Fig. 7(e) displays the locations of the ten stations in the wind speed test set, while Fig. 7(f) presents 

the differences in wind speed mapping at ten randomly selected stations. A key positive finding is 

that the model does not exhibit significant systematic bias, as the mean and median prediction errors 

at the vast majority of stations are tightly distributed around zero. This indicates that the model has 

learned generalizable patterns rather than spurious correlations. The limited R² score of the model 

is mainly attributed to its difficulty in capturing extreme high wind speed events, as evidenced by 

the long tails and numerous outliers in the error distributions at all stations. Despite this limitation, 

the error patterns show good consistency across stations in different geographic locations, 

demonstrating the robust spatial generalization capability of the RF model. In summary, although 

the RF model’s predictive accuracy for wind speed is limited, its unbiasedness and robust spatial 

performance provide a reliable predictive benchmark. The limitation in capturing extreme wind 

speed events also highlights a key direction for future model improvement. 
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Fig. 7. Station-level error analysis of the final models on the independent test set. The figure details the 

performance of the final models on the held-out test stations. (a), (c), (e) map the geographical locations of the 

test stations for air temperature, relative humidity, and wind speed, respectively. (b), (d), (f) display the 

corresponding violin and box plots of the prediction errors (Δ = observation - prediction), illustrating the error 

distribution, mean bias, and median bias at each station. 

 

3.2. SHAP analysis 

3.2.1. Air temperature analysis 

By applying the SHAP model, the SHAP values for each sample feature were calculated. The 

average of the absolute SHAP values (mean |SHAP|) was used to display the importance ranking of 

relevant variables in the air temperature, relative humidity, and wind speed mapping. Due to the 
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large number of variables, the top 20 variables were selected based on their importance for 

presentation, and a pie chart was used to illustrate the specific impact proportions of each major 

category of variables. The average SHAP value represents the average influence of features, with 

larger values indicating a more significant impact. 

Fig. 8 intuitively displays the relative importance ranking of various variables for near-surface air 

temperature mapping at 2 meters height. Fig. 8(a) shows that ERA5 data makes the most significant 

contribution to air temperature mapping, accounting for 93%, with the SHAP value of T2M reaching 

an absolute advantage of 4.3184. LCZ types and building form account for 4% and 3%, respectively, 

indicating a certain regulatory effect on temperature, while the influence of other data categories is 

negligible. 

Local explanation (Fig. 8(b)) visualizes the SHAP values and directions of the variables. The green 

and purple dots represent high and low feature values for each variable, respectively. SHAP values 

greater than zero and less than zero indicate positive and negative influences on hourly air 

temperature mapping, respectively. Variables such as 2m temperature and the 10m v-component of 

wind exert positive influences, whereas variables including surface pressure and the land use type 

characterized by dense trees exhibit negative influences. 

This study adopts a systematic analytical approach to deeply explore the nonlinear coupling 

relationships between temperature and environmental characteristics. The data sources are divided 

into two main categories: ERA5 reanalysis data and non-ERA5 datasets. Based on SHAP value 

rankings, the top three key contributing variables were selected for SHAP dependence analysis. As 

illustrated in Appendix 3(a), the X-axis represents the values of the respective independent variables, 

while the Y-axis denotes the contribution of each variable to temperature prediction, as quantified 
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by SHAP values. Among the ERA5 variables, T2M exerts a significant and approximately linear 

positive effect on temperature mapping, with its SHAP value steadily increasing as the temperature 

rises. In contrast, the influence of SP is non-linear: when SP is less than 100.5 KPa, it exhibits a 

moderately strong positive contribution, whereas beyond this threshold, its effect sharply shifts to a 

negative correlation. Additionally, SSRD also displays a positive association with temperature 

prediction; however, the rate of increase in its warming effect markedly diminishes when SSRD 

exceeds 1.5 J m−2. Regarding the non-ERA5 variables, LCZ11 (proportion of dense trees) generally 

manifests a slight cooling effect, with its SHAP values predominantly distributed around zero or in 

the negative range. In comparison, the variables SAD and FAR have minimal impact, as their SHAP 

values fluctuate closely around the zero line, indicating negligible contributions to temperature 

prediction. 

  

(a) Global feature importance (b) Local explanation 

Fig. 8. The ranking of importance of the relationship between air temperature mapping and 

various variables. 
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3.2.2. Relative humidity analysis 

This study quantifies the nonlinear contributions of multi-source environmental variables to the 

mapping of relative humidity at a height of 2 meters using the SHAP model. Fig. 9(a) shows that 

ERA5 data has the most significant contribution, accounting for 79%. Local explanation visualizes 

the SHAP values and directions of the variables, as shown in Fig. 9(b). Variables such as 2m 

dewpoint temperature, total cloud cover and surface pressure have a positive impact, while variables 

like surface solar radiation downwards and surface area density have a negative impact. 

Next is the SHAP dependence analysis. As shown in Appendix 3(b), this figure illustrates the impact 

of each variable on relative humidity prediction in the XGBoost model. Among the ERA5 variables, 

D2M exhibits a significant and approximately linear positive effect on relative humidity mapping, 

with its SHAP values steadily increasing as the dew point temperature rises. In contrast, SSRD 

demonstrates a clear negative correlation, with its SHAP values decreasing linearly as radiation 

intensity increases. TP also shows an important positive effect that its SHAP value rises sharply to 

a high positive level as precipitation increases from zero, and then climbs more gradually with 

further increases in precipitation. For the non-ERA5 variables, LCZ11 (proportion of dense trees) 

displays a clear positive association with relative humidity, indicating that higher tree coverage leads 

to a stronger humidifying effect. The land use type of residential (101) exhibits a nonlinear influence. 

As its coverage increases from zero to approximately 5%, its SHAP value rapidly shifts from 

positive to negative; within the 5% to 60% coverage range, the SHAP value remains stably negative; 

and when the coverage exceeds 60%, the SHAP value begins to rise, gradually approaching zero. 

The effect of SAD is relatively complex that it has a slight positive impact in low-density areas 

(SAD < 0.2 m−1), but shifts to a negative correlation in higher-density regions. 
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(a)Global feature importance (b)Local explanation 

Fig. 9. The ranking of importance of the relationship between relative humidity mapping and 

various variables. 

3.2.3. Wind speed analysis 

We examine the nonlinear contributions of variables to the mapping of the 2-minute average wind 

speed at a height of 10 meters. Fig. 10(a) shows that ERA5 data contributes the most, accounting 

for 59%. The local explanation visualizes the SHAP values and directions of the variables, as shown 

in Fig. 10(b). Variables such as the percentage of residential area have a positive impact, whereas 

variables like surface solar radiation downwards, building height standard deviation, and building 

floor area ratio exert a negative impact. Due to the influence of wind direction, the U10 and V10 

components require separate SHAP dependence analysis. 

Next is the SHAP dependence analysis, as shown in Appendix 3(c). In the V10 plot, the north 

corresponds to positive values and south to negative values. In the U10 plot, east corresponds to 

positive values and west to negative values. Among the ERA5 data variables, the impact of V10 

exhibits a nonlinear pattern. Its SHAP value is positive when the wind direction is southerly, but 
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turns negative when the wind direction is northerly or weakly southerly, with the critical threshold 

for this sign change occurring at approximately -5 m/s. In contrast, U10 displays a strong linear 

negative correlation, with its SHAP value steadily decreasing as the wind direction shifts from 

westerly to easterly. The effect of SSRD shows that as SSRD increases from 0 to approximately 0.5 

J m⁻², its SHAP value shifts from negative to positive, and then stabilizes at a positive value under 

higher radiation levels. For non-ERA5 variables, the SHAP value of the land use type for sport and 

cultural activities (504) drops sharply to a negative value as its coverage increases from 0 to about 

5%, and then remains stable. The SHAP value of LCZ11 (dense trees) fluctuates closely around zero 

throughout the entire coverage range, exhibiting a weakly positive trend. Finally, LCZ4 (open high-

rise) shows an initial sharp decline in its SHAP value when the area percentage is less than 2%, but 

for higher coverage, the SHAP value stabilizes at a level close to zero, indicating a less significant 

impact compared to other variables. 

  

(a)Global feature importance (b)Local explanation 

Fig. 10. The ranking of importance of the relationship between wind speed mapping and various 

variables. 
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3.3. Spatial estimation of local-scale urban climate 

In addition to evaluating the overall goodness-of-fit of the model, this study further investigated its 

performance across specific spatiotemporal dimensions. Fig. 11 visualizes and compares the spatial 

mapping outcomes of the ERA5 data, the traditional Kriging interpolation method, and the model 

developed in this study for temperature, relative humidity, and wind speed, using the case of 12:00 

PM on the summer solstice in 2018. 

Fig. 11(a) focuses on the spatial distribution of air temperature. The ERA5 data exhibit the coarsest 

spatial resolution, with a grid size of approximately 30 km, and are therefore only capable of 

capturing macroscopic temperature trends at the urban scale. While the Kriging interpolation 

method produces a smooth and continuous surface and is able to identify several thermal hotspots, 

its inherent tendency toward over-smoothing obscures the sharp boundaries of temperature variation 

induced by complex land surface heterogeneity. In contrast, our TEM RF model provides superior 

spatial detail of the urban thermal environment during the summer solstice noon. It reveals a distinct 

“west-high, east-low; north-high, south-low” temperature pattern, directly corresponding to 

Shenzhen’s “dense west, sparse east” development. At a finer scale, the model precisely captures 

the complex thermal landscape of the urban heat island. It identifies the city center as a primary 

hotspot, distinguishes smaller hot and cool islands linked to building density and land use, and even 

resolves localized extreme hotspots of 32.3–33.5℃. This level of fine-scale differentiation, a 

product of the complex urban surface, is absent in both ERA5 data and Kriging interpolations. 

Similarly, Fig. 11(b) compares the spatial distribution of relative humidity. ERA5’s coarse resolution 

only provides a vague south-to-north gradient. While Kriging outlines the general pattern of higher 

coastal humidity, its inherent smoothing effect obscures local variations driven by land surface 
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morphology. In contrast, our RHU XGBoost model successfully captures the city’s complex 

humidity heterogeneity. It accurately reveals that built-up areas are significantly drier than eastern 

suburbs and ecological lands, a pattern corresponding to the high-temperature zones in Fig. 11(a). 

Furthermore, the model faithfully depicts the coastal effect, showing narrow coastal zones with the 

highest relative humidity (94–100%). This fine-scale differentiation, shaped by both urban and 

natural geography, is beyond the capabilities of ERA5 and Kriging, demonstrating our model’s 

superior performance. 

Finally, Fig. 11(c) compares the wind speed mapping results. ERA5 provides an extremely coarse 

distribution, showing higher wind speeds in the east but failing to capture any internal heterogeneity. 

While Kriging produces smooth contours, its wind speed patterns are scattered and do not 

correspond well with the urban morphology. In contrast, our WIND RF model accurately reproduces 

the complex wind environment within the urban canopy layer. The results clearly show the 

impedance effect of built-up areas: wind speeds are lower in dense western and central districts but 

higher in open eastern coastal zones. More importantly, the model captures micro-scale wind 

variations induced by building layout and surface roughness, presenting a detailed 1 km-scale map 

closely coupled with the urban fabric. This fine-scale characterization underscores the substantial 

advantages of our approach. 
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Fig. 11. Comparison of spatial distribution mapping for air temperature, relative humidity, and 

wind speed at 12:00 noon on the summer solstice. 

4. Discussions 

4.1. Model Performance and Comparative Analysis 

In recent years, ERA5 data has been widely used in climate research, but its reliability in air 

temperature, relative humidity, and wind speed mapping has not been fully validated. Barry 

McNicholl et al. systematically compared temperature differences between ERA5 and the Global 

Historical Climatology Network (GHCN), a quality-controlled global database of land-based station 

observations, revealing the seasonal bias characteristics of ERA5[29]. Following this established 
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validation principle, other researchers have also developed correction methods for various 

parameters. Kevin Wolf et al. assessed ERA5’s performance for upper-atmospheric data and used a 

bivariate quantile mapping method for calibration [59] , while Freddy Houndekindo et al. developed 

a deep learning framework to correct ERA5 hourly wind speed [60]. Building on this principle of 

ground-truth validation, this study proposes a framework for combining multi-source heterogeneous 

data with ERA5 for microclimate mapping, utilizing the authoritative observational data from the 

China Meteorological Administration (CMA) as the benchmark for our study region. 

To validate our methodology, we compared model predictions with ERA5 data (0.25°×0.25° 

resolution) and station observations for 10 test sites, as shown in Table 5. For temperature, the model 

improved R² from 0.927 to 0.956, with corresponding decreases in MAE and RMSE. Relative 

humidity showed a more pronounced gain, with R² jumping from 0.465 to 0.781. The improvement 

for wind speed was most notable, its R² turned positive (0.151) while MAE and RMSE fell to 0.93 

m/s and 1.28 m/s. While the absolute wind speed accuracy is not particularly high, this is expected, 

as coarse ERA5 data cannot resolve site-level variations. Crucially, our goal is not merely to 

outperform ERA5 but to use it as a reliable, spatiotemporally continuous background field, which 

we refine with high-resolution urban data to achieve a 1 km resolution. Therefore, our model’s 

superior performance in ground-based validation is an expected outcome. It demonstrates that 

integrating localized geographic information is essential for accurate downscaling in heterogeneous 

urban areas.  

Table 5. Compare the ERA5 air temperature, relative humidity, and wind speed data at a resolution 

of 0.25° × 0.25° from 10 testing stations, along with model predictions and actual meteorological 

station values (using the best model).  

Meteorological 

Parameters 

Validation of ERA5 against ground 

meteorological measurements 

Validation of Model Predictions against 

ground meteorological measurements 
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R2 MAE RMSE R2 MAE RMSE 

Temperature (℃) 0.927 1.18 1.52 0.956 0.98 1.25 

RHU(%) 0.465 7.42 9.25 0.781 5.69 7.41 

Wind speed(m/s) -0.238 1.51 1.98 0.151 0.93 1.28 

 

In addition, we selected data from the 10 test set stations at 12:00 noon on the summer solstice of 

2018 to quantitatively compare the model predictions with both ERA5 and the traditional Kriging 

interpolation method. The validation results are presented in Table 6. Both ERA5 and Kriging 

showed significant limitations against ground observations, yielding negative R² values. This 

indicates their inability to capture fine-grained spatiotemporal climate characteristics within 

heterogeneous urban areas, leading to occasional discrepancies with empirical observations. In 

contrast, our model achieves a substantial improvement in performance, with R² values shifting 

from negative to positive correlations (0.546 for temperature, 0.425 for relative humidity, and 0.221 

for wind speed), and significant reductions in MAE and RMSE. Furthermore, the superiority of the 

model in quantitative metrics is also visually confirmed in Fig. 11. 

Table 6. Accuracy validation and comparison of ERA5, Kriging, and the proposed model against 

ground station measurements at 12:00 noon on the summer solstice. 

Meteorological 

Parameters 

ERA5 Kriging Model prediction 

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE 

Temperature (℃) -2.280 2.87 3.61 -3.528 3.67 4.24 0.546 1.04 1.34 

RHU(%) -0.141 12.19 13.03 -0.750 14.46 16.14 0.425 8.12 9.25 

Wind speed(m/s) -3.420 1.83 2.04 -1.595 1.46 1.57 0.221 0.75 0.86 

 

4.2. Influencing factors 

4.2.1. Air temperature 

This study conducted a comprehensive analysis of the influence of multiple environmental 

parameters on temperature mapping. As shown in Fig. 8, ERA5 data contributed the most to 
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temperature inversion, accounting for 93%, while LCZ types and building form contributed 4% and 

3%, respectively. In contrast, the contributions of other types of variables were negligible. 

Firstly, by integrating Fig. 8 and Appendix 3(a), it can be observed that the ERA5 exhibits a high 

contribution. Among these, the SHAP plot confirms a strong linear positive correlation between 

T2M and the model’s contribution. This finding is consistent with the physical understanding that 

near-surface air temperature is the most direct indicator of the regional thermal environment [61]. 

In contrast, the second and third most important variables, SP and SSRD, display more complex 

nonlinear effects. When SP is less than 100.5 kPa, it has a positive contribution to air temperature, 

but beyond this threshold, its contribution sharply shifts to a strong negative effect. This may reflect 

the influence of different weather systems. For example, moderate pressure may correspond to 

warming under clear skies, whereas high-pressure systems are sometimes associated with cold air 

activity [62]. Similarly, although SSRD is positively correlated with air temperature, its warming 

effect becomes saturated at higher radiation levels (above approximately 1.5 J m−2). This 

phenomenon aligns with physical principles, as the energy received by the surface, once increased 

to a certain extent, is dissipated through other processes such as convection and evaporation, thereby 

limiting the unlimited linear increase in temperature [63]. 

Although ERA5 variables are predominant, high-resolution non-ERA5 variables are crucial for 

capturing the fine-scale spatial heterogeneity of temperature. Among all non-ERA5 variables, 

LCZ11 (Dense Trees) exhibits the most significant impact. Its dependence plot clearly demonstrates 

that as the coverage of LCZ11 increases, it consistently exerts a slight but stable cooling effect on 

air temperature. This finding is fully consistent with the well-established mechanism by which 

vegetation mitigates the urban heat island effect through transpiration and shading [64]. In contrast, 

                  



 

41 

 

global importance scores for urban morphological indicators such as Surface Area Density (SAD) 

and Floor Area Ratio (FAR) are relatively low, suggesting that, within the study area and modeling 

framework, the cooling effect of vegetation cover may be more widespread and pronounced than 

the direct influence of urban morphological characteristics. 

In summary, while ERA5 variables offer a solid foundation for air temperature mapping, 

incorporating non-ERA5 variables like building morphology or LCZ types helps overcome ERA5’s 

spatial limitations and captures real-world environmental features not represented in physical 

models, thus improving the accuracy and guidance of temperature mapping models. 

4.2.2. Relative humidity 

In terms of relative humidity mapping, as shown in Fig. 9, the overall contributions of the different 

categories of variables are as follows: ERA5 data > LCZ types > land use types > building form > 

landscape index. 

Firstly, by combining Fig. 9 and Appendix 3(b), it can be observed that ERA5 parameters contribute 

up to 79% to temperature mapping. D2M shows a positive correlation with SHAP values, meaning 

that as D2M increases, relative humidity also rises. This is because D2M directly reflects the 

absolute water vapor content in the air; a higher dew point naturally leads to higher relative humidity 

[65]. In contrast, SSRD shows a clear linear negative correlation. This is because enhanced radiation 

increases air temperature, thereby raising the air’s capacity to hold water vapor. If absolute humidity 

remains unchanged, this directly results in a decrease in relative humidity [66]. Notably, the effect 

of TP is characterized by a nonlinear stepwise pattern. Once precipitation occurs (TP > 0), its SHAP 

value immediately jumps to a higher positive plateau. This suggests that the model has accurately 

identified the occurrence of precipitation as a key signal for predicting saturated or near-saturated 
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atmospheric conditions, whose importance far exceeds the actual amount of precipitation [67]. 

Secondly, analyze the variables from non-ERA5 data. The LCZ11 (dense trees) shows a clear 

positive correlation with relative humidity, meaning more tree cover leads to higher humidity. This 

is mainly due to plant evapotranspiration, where vegetation releases water vapor into the air, 

increasing near-surface humidity and thus raising relative humidity [68]. Residential land 

nonlinearly impacts relative humidity. An initial increase in coverage sharply decreases RHU, as 

impervious surfaces replace natural landscapes, reducing evapotranspiration and increasing sensible 

heat. However, this drying effect diminishes at high densities (>60%), suggesting a saturation point 

or the compensatory influence of anthropogenic moisture sources [69]. Similarly, SAD is negatively 

correlated with relative humidity, particularly in high-density regions (SAD > 0.2 m⁻¹). This is 

because built structures increase sensible heat flux and reduce evaporative surfaces, contributing to 

the urban dry island effect [70]. In summary, the mapping of relative humidity is still dominated by 

ERA5 data; however, the influence of non-ERA5 variables has made a greater contribution 

compared to temperature mapping. 

4.2.3. Wind speed 

In the mapping of wind speed, as illustrated in Fig. 10, the integrated contributions of various 

variables are as follows: ERA5 data > land use types > LCZ types > building form > landscape 

index > DEM. 

First, analyze the ERA5 parameters. By integrating the information from Fig. 10 and Appendix 3(c), 

it is evident that the 10-metre V-component and U-component of wind emerge as the two most 

significant features, and their influence mechanisms directly reflect the model’s capacity to learn 

the background wind field. The U10 exhibits a linear negative correlation with model predictions. 

                  



 

43 

 

In contrast, the V10 displays a V-shaped nonlinear effect, where southerly winds contribute 

positively and northerly winds negatively. This suggests the model captures direction-dependent 

influences attributable to regional monsoon characteristics and land-sea distribution. SSRD exhibits 

a stepwise positive influence on wind speed. Its impact becomes positive only after surpassing a key 

threshold, aligning with its physical role in driving thermal circulations. The model accurately 

captures that significant solar insolation enhances wind, whereas stable atmospheric conditions 

under low insolation lead to weaker winds [71]. 

Secondly, analyze the variables of non-ERA5 categories. High-resolution non-ERA5 variables, 

especially land use types representing surface roughness, play a crucial role in correcting wind speed. 

Both the land use type of sport and cultural (504) and LCZ4 (open high-rise buildings) exert a 

negative influence on near-surface wind. Even minimal coverage introduces significant surface 

roughness, causing a sharp, stable reduction in wind speed. This suggests their presence, rather than 

their fractional coverage, is the dominant factor in establishing this obstructive effect at the 1 km 

scale. In contrast, LCZ11 (dense trees) shows a negligible influence, with SHAP values consistently 

near zero. This suggests that dense trees are a secondary factor for 1 km scale wind speed, less 

critical than dominant drivers in the model. In summary, the contribution of ERA5 variables to wind 

speed effects decreases, while the contributions of LCZ type, land use type and building form 

significantly increase, indicating the importance of incorporating non-ERA5 variables in wind speed 

mapping.  

4.3. Comparison to other studies 

This study demonstrates the advantages of machine learning in depicting hourly air temperature, 

relative humidity and wind speed distributions. In terms of hourly air temperature mapping, existing 
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studies typically achieve root mean square errors (RMSE) and mean absolute errors (MAE) ranging 

from 0.8 to 1.9°C and 0.6 to 1.5°C, respectively [72,73]. In this study, the RMSE for the hourly 

temperature mapping test set is 1.25°C and the MAE is 0.98°C, indicating that our model achieves 

an upper-middle level of performance compared to existing mainstream machine learning studies 

and demonstrates competitive accuracy. Additionally, for relative humidity mapping, the test set 

yields an RMSE of 7.41% and an MAE of 5.69%, with an R² of 0.781, which represents a relatively 

favorable result. Regarding wind speed mapping, although the absolute accuracy of our model is 

limited, this outcome remains significant given the extreme complexity of wind fields within the 

urban canopy. In contrast to the negative R² produced by multiple linear regression (MLR) and the 

failure of traditional interpolation methods, our model represents a substantial methodological 

breakthrough. It demonstrates that machine learning approaches are capable of capturing certain 

nonlinear patterns in wind fields, thereby providing a valuable baseline and perspective for future 

in-depth research in this challenging domain. 

4.4. Potential applications 

In recent years, data-driven methods have emerged in the field of weather forecasting, overcoming 

the challenges of computational efficiency, accuracy, and scalability faced by numerical weather 

prediction (NWP) systems. Some global data-driven weather forecasting models, such as Pangu-

Weather, ClimaX, and Aurora, have already surpassed traditional NWP systems in forecasting 

accuracy, demonstrating immense application potential [74,75]. However, the accuracy of most 

large-scale weather forecasting models remains at the mesoscale level (the prediction accuracy of 

the Pangu model is 0.25°×0.25°, approximately 27.5 kilometers), making it difficult to meet the 

demands of block-scale weather forecasting and predictions in different built environments. This 
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study aims to leverage multi-source data to bridge the gap between AI-based weather forecasting 

and high-precision climate prediction, enabling future weather predictions. 

The high-resolution local climate mapping proposed in this study offers significant application value. 

For air temperature, it allows for a more accurate delineation of urban heat island spatial details, 

providing a scientific basis for health risk assessments and building energy optimization [76]. High-

resolution humidity data facilitates the assessment of human thermal comfort, supporting public 

health interventions and microclimate regulation. Furthermore, refined wind speed data can inform 

the design of urban ventilation corridors, enhance natural ventilation, and improve air pollution 

dispersion models. By integrating the synergistic effects of these variables, the dataset provides a 

more robust decision-making tool for urban planning, environmental health, and energy 

management, thereby supporting urban climate adaptation and low-carbon development. 

4.5. Limitation and future work 

There are still limitations in this study that need to be addressed in future studies. 

1. Spatial scale limitations. The current study only constructs machine learning models at a 1-km 

scale, while the optimal spatial scale for meteorological parameter retrieval remains worthy of 

discussion. Future work will involve multi-scale nested experiments to verify how scale effects 

influence retrieval accuracy. This aligns with research showing that multi-scale approaches using 

variograms for a priori approximations can significantly improve prediction accuracy in 

environmental correlation models. 

2. Temporal generalization limitations. The current training model is based solely on meteorological 

data from 2018, and while this has validated the feasibility of the methodology, its generalization 

capability across other years has not been evaluated. Future work will incorporate multi-decadal 
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data to refine the model and enhance its adaptability to long-term climate fluctuations. This approach 

is supported by research utilizing extensive historical datasets and physics-informed machine 

learning to improve temporal generalization capabilities. 

3. Extreme weather challenges. During extreme weather events such as typhoons, the nonlinear 

interactions between atmospheric variables significantly intensify, potentially making it difficult for 

models to provide reliable predictions. Future work requires designing dynamic calibration 

strategies for such extreme events, such as developing hybrid forecasting frameworks that 

incorporate WRF model outputs. Research has shown that hybrid approaches combining machine 

learning with WRF models through spectral nudging techniques have significantly improved the 

accuracy of typhoon track and intensity forecasts. 

4. Resource requirements for regional applications. When the model is expanded to a regional scale, 

the volume of training data will increase dramatically, leading to higher demand on computational 

resources. Future work can involve ranking feature importance to eliminate redundant variables. 

This will make the model architecture compatible with variable sets used in mainstream AI weather 

forecasting systems like ECMWF, enabling effective integration of multi-scale forecasting. 

5. Limitations of the training target. The weather station data used as ground truth is not free from 

systematic errors, such as instrumental drift. Training on these observations creates a risk that the 

model inadvertently learns and reproduces these biases. Future work could mitigate this by 

integrating diverse data sources, like crowdsourced sensor networks, to create a more robust, bias-

corrected target. 

6. Absence of explicit physical constraints. This study focuses on statistical bias correction and does 

not incorporate explicit physical constraints into the machine learning model. Future work will 
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explore the potential of physics-informed neural networks (PINNs) and hybrid frameworks to 

incorporate governing atmospheric dynamics into the training process, enabling more physically 

consistent correction of reanalysis outputs. 

5. Conclusions 

This study developed a comprehensive indicator system utilizing multi-source data to analyze the 

complex relationships between environmental variables and climate patterns in urban environments. 

The research integrated multiple data sources from 2018, including the ERA5 reanalysis dataset, 

building morphology metrics, and landscape indices, creating a multi-dimensional dataset across six 

categories. It was further combined with temperature-humidity-wind data collected from 53 urban 

meteorological monitoring stations distributed across Shenzhen, enabling the mapping of these 

parameters at a 1-km resolution. Using the machine learning model and the SHAP analysis method 

to explain the nonlinear relationships between variables and temperature-humidity-wind. The main 

conclusions are as follows: 

1. The machine learning model demonstrated strong performance in temperature and humidity 

mapping, achieving high accuracy in predicting air temperature (R² = 0.956, MAE = 0.98 °C) and 

relative humidity (R² = 0.781, MAE = 5.69%). 

2. Based on the trained model, this study produced high spatiotemporal resolution (1 km, 1 hour) 

maps of air temperature, relative humidity, and wind speed for Shenzhen, revealing the 

spatiotemporal heterogeneity of meteorological elements across the entire city at the 1 km scale. 

3. This paper applies interpretable machine learning to quantify the importance of the variables 

used in systematic downscale of meteorological parameters (0.25°×0.25° to 1 km). Our feature 
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importance analysis reveals that the key predictors learned by the models are highly task-specific, 

aligning closely with the underlying physics of each target variable. For instance, 2m dewpoint 

temperature (D2M) is paramount for the relative humidity mapping, which is expected as RHU is 

physically derived from it. In contrast, the air temperature model is overwhelmingly driven by 

ERA5’s own T2M. Similarly, the wind speed model is dominated by the U10 and V10 wind 

components. This task-specific nature of feature importance underscores that our models have 

successfully identified the most direct and physically relevant drivers for each microclimate variable. 

For non-meteorological parameters, the LCZ types and building form are consistently more 

significant than other categories. These findings collectively suggest that successful high-resolution 

meteorological downscaling critically depends on the integration of large-scale atmospheric 

conditions with small-scale urban morphology. 

Despite its promising results, this study has several limitations. The current model is limited to a 1-

km spatial scale and a single year’s data, requiring further validation across different spatial 

resolutions and extended time periods. Additionally, challenges remain in accurately modeling 

extreme weather events and scaling the approach for broader regional applications. Future work will 

focus on multi-scale experiments, incorporating multi-year datasets, developing strategies for 

extreme events, and optimizing computational efficiency for large-scale use. In addition, the 

limitations of the training target and the absence of explicit physical constraints are also limitations 

of this study. In summary, this research not only bridges the gap between AI-driven weather 

forecasting and high-precision urban climate prediction, but also provides a valuable scientific basis 

and decision-making tool for urban heat island analysis, public health risk assessment, building 
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energy optimization, and climate adaptation planning, highlighting its broad application potential 

and research significance.  
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Appendix 

Appendix 1. Selected Feature Variables for Model Training 

To construct robust and efficient predictive models, a rigorous feature selection process was applied 

to the initial set of variables. This process involved Spearman Correlation Analysis to assess the 

monotonic relationship between each variable and the target parameters (temperature, humidity, and 

wind speed), followed by Multicollinearity Analysis to eliminate redundant features that were highly 

correlated with each other. 

The table below details the final feature variables selected through this process for training the three 

independent models. The Temperature (TEM) model includes 37 variables, the Relative Humidity 

(RHU) model includes 35 variables, and the Wind Speed model includes 38 variables. 

Appendix 1. Variables Selected via Spearman Correlation and Multicollinearity Analysis 

Model Variable names (Abbreviations) 

TEM (37) SP，SSRD，STR，T2M，TCC，TP，U10，V10，HSD，SAD，FAR，PD，

LPI，NDVI，101，201，202，301，402，403，501，502，503，504，505，

LCZ1，LCZ3，LCZ4，LCZ5，LCZ8，LCZ9，LCZ10，LCZ11，LCZ12，LCZ14，

LCZ17，DEM 

RHU (35) D2M，SP，SSRD，TCC，TP，U10，V10，HSD，SAD，FAR，SVF，101，

201，202，301，402，501，502，503，504，505，LPI，NDVI，LCZ1，LCZ3，

LCZ4，LCZ5，LCZ8，LCZ9，LCZ10，LCZ11，LCZ12，LCZ14，LCZ17，

DEM 

Wind Speed 

(38) 

D2M，SP，SSRD，STR，TCC，TP，U10，V10，HSD，SAD，FAR，SVF，

101，201，202，301，402，501，502，503，504，505，LPI，NDVI，LCZ2，

LCZ3，LCZ4，LCZ5，LCZ6，LCZ8，LCZ9，LCZ10，LCZ11，LCZ12，LCZ14，

LCZ16，LCZ17，DEM 

 

Appendix 2: Partition of Training and Test Stations 

To rigorously evaluate the model’s spatial generalization performance, a station-based partitioning 

strategy was employed. This approach ensures that the model is tested on geographically unseen 

locations, providing a robust assessment of its real-world applicability. 

From the total of 53 meteorological stations, 43 were randomly selected to form the training set, 
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using their complete annual data (8,760 hours). The data from the remaining 10 stations constituted 

the test set. The table below lists the specific IDs of these 10 test stations. As this random selection 

was conducted independently for each of the three models, the station lists differ accordingly. 

Appendix 2. Sampling results for the test set stations (10 each for the Temperature, Relative 

Humidity, and Wind Speed models) 

TEM G3674, G3527, G3742, G3549, G1125, G1162, G1151, G3682, G3559, G3678 

RHU G1129, G3524, G3535, G3566, G3558, G3635, G3649, G3541, G3678, G3529 

Wind Speed G3540, G3530, G3566, G3553, G3558, G3541, G3682, G3538, G3748, G3539 

 

Appendix 3. SHAP Dependence Plots for Key Feature Interpretation 

To provide deeper insight into the behavior of the "black-box" models (such as RF and XGBoost), 

we employed the SHAP (SHapley Additive exPlanations) framework for model interpretability. 

SHAP quantifies the contribution of each feature to individual predictions, revealing the complex 

non-linear patterns and interaction effects learned by the model. This appendix presents the SHAP 

dependence plots for the most influential variables in the (a) air temperature, (b) relative humidity, 

and (c) wind speed models. The variables shown were selected based on their high mean absolute 

SHAP values (mean (|SHAP value|) and are categorized by their data source (ERA5 vs non-ERA5). 

How to interpret a SHAP dependence plot:  

• X-axis: Shows the actual value of a feature. 

• Y-axis: Shows the SHAP value for that feature. It indicates how much that feature’s value 

contributes to pushing a specific prediction away from the baseline (average) prediction. A positive 

SHAP value increases the prediction, while a negative value decreases it. 

• Each dot: Represents a single instance (sample) from the dataset. 

• Color: The color illustrates the value of a second feature that has the strongest interaction with 
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the feature on the x-axis. In these plots, green corresponds to a high value of the interacting feature, 

while magenta indicates a low value. 

• Vertical Scatter: The vertical dispersion of the dots reveals interaction effects. A wider spread 

signifies that the impact of the primary feature is being modified by other features. 

 

Appendix 3. SHAP dependence plots for variables. (Top 3 |SHAP value| for ERA5 and non-ERA5 

parameters) 
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