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Highlights 

•   Two-way coupled CFD model captures thermal-PM2.5 interactions in urban blocks 

•   RSM achieves 95% accuracy (R²=0.98-0.99) while reducing computational cost 

•   Optimal H/W ratios: 0.7-1.0 for low density, 1.3-1.6 for high density zones 

•   Case study achieves 2.09°C temperature reduction with regulatory compliance 
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Abstract  

Urban block morphology can influence thermal comfort and air quality, yet existing studies 

have focused on single environmental objectives. This study develops an integrated optimization 

framework simultaneously addressing thermal environment and PM2.5 concentration through a 

novel two-way coupled numerical model. Key morphological parameters, including building 

length, width, height, spacing, and orientation, establish a parametric geometric model of idealized 

residential blocks. The methodology integrates physics-driven computational fluid dynamics with 

data-driven response surface modeling and multi-objective genetic algorithms. The two-way 

coupled model captures interactions between thermal environment and particulate matter 

dispersion, while Latin Hypercube Sampling generates 200 morphology samples for CFD 

simulations. Response surface models linking morphology parameters to Universal Thermal 

Climate Index (UTCI) and AQIPM2.5 achieve 95% accuracy (R² = 0.98-0.99), enabling efficient 

optimization. Multi-objective optimization reveals trade-offs between thermal comfort and air 

quality, yielding Pareto-optimal solutions with distinct parameter ranges for different floor area 

ratios. Building orientation within 15° of prevailing winds optimizes both objectives, while 

longitudinal spacing exhibits the strongest influence (correlation ±0.81). Optimal height-to-width 

ratios range from 0.7-1.0 for low-density to 1.3-1.6 for high-density developments. Case study 

validation in Shenzhen achieves air temperature reductions up to 2.09°C while maintaining 

regulatory compliance. The framework provides evidence-based design guidelines for hot-humid 

climates, offering urban planners practical tools for creating healthier residential environments 

while balancing development viability and environmental performance. 

 

Keywords: Urban morphology, Thermal environment, Air quality, Multi-objective optimization, 

Computational fluid dynamics 
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Nomenclature 

Abbreviations 

 
Definition 

AQI Air Quality Index 

AQIPM2.5 Air Quality Index for PM2.5 

CFD Computational Fluid Dynamics 

CF Coverage Factor 

DPM Discrete Phase Model 

DO Discrete Ordinates 

DOE Design of Experiment 

FAR Floor Area Ratio 

H/W Height-to-Width ratio 

LHS Latin Hypercube Sampling 

MAE Mean Absolute Error 

MOGA Multi-Objective Genetic Algorithm 

PM2.5 Particulate Matter with diameter ≤ 2.5 μm 

RANS Reynolds-Averaged Navier-Stokes 

RMSE Root Mean Square Error 

RNG Renormalization Group 

RSM Response Surface Model/Methodology 

SHAP SHapley Additive exPlanations 

SR Spacing Ratio 

UDF User-Defined Function 

UHI Urban Heat Island 

UTCI Universal Thermal Climate Index 

VKT Vehicle Kilometers Traveled 

XGBoost eXtreme Gradient Boosting 
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1 Introduction 

Rapid global urbanization and climate change have intensified environmental stresses that 

pose significant threats to energy use, thermal comfort, and public health [1-3]. Urban heat islands 

and air pollution represent two of the most pressing challenges facing modern cities, with building 

morphology playing a critical role in mediating both phenomena [4]. Extreme heat exposure 

causes a spectrum of health impacts ranging from heat exhaustion and dehydration to 

cardiovascular stress, with vulnerable populations facing elevated morbidity and mortality risks 

[5], increasing human morbidity and mortality [6, 7]. The severity of these impacts is exemplified 

by major heat wave events, including the 2003 European heat wave that caused approximately 

15,000 deaths in France alone [8] and the 2009 Melbourne heat wave responsible for 374 fatalities 

over just four days [9]. Concurrently, the accumulation of pollutants in urban boundary layers 

leads to the occurrence of many diseases [10-12] with serious implications for human health and 

safety [13, 14]. Ambient air pollution kills 4.2 million people annually [15], indicating air 

pollution as a major environmental and health problem in many countries [16]. The spatial 

distribution and concentration of fine particulate matter (PM2.5) are strongly influenced by urban 

morphological characteristics, including building geometry, street configuration, and block layout 

patterns. 

The morphology of urban blocks—including building height, width, orientation, and street 

layout—significantly influences both the urban thermal environment and the distribution and 

concentration of PM2.5 [17, 18]. These morphological parameters affect solar radiation reception 

and ventilation efficiency [18], thereby shaping local microclimates. In recent years, rapid 

urbanization has exacerbated global climate change, urban heat island effects, and air pollution 

problems [19], highlighting the necessity of balancing thermal environment and air quality in 

urban design. However, existing studies indicate that urban block morphology exerts dual and 

sometimes contradictory effects on thermal comfort and PM2.5 concentrations [4]. Design 

strategies that optimize one environmental factor often compromise the other, creating complex 

trade-offs that current planning approaches inadequately address. 

This study develops an integrated optimization framework for residential block morphology 

that simultaneously addresses thermal comfort and air quality through a novel two-way coupled 

numerical model. The primary objective is to establish a systematic methodology for optimizing 
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building morphology parameters that balances the often conflicting requirements of thermal 

environment improvement and PM2.5 concentration reduction. By combining physics-driven 

computational fluid dynamics with data-driven optimization techniques, this research provides 

practical design guidance for creating healthier residential environments in hot-humid climates 

while maintaining development density requirements. 

 

2 Literature Review 

2.1 Urban Block Morphology Effects on Thermal Environment and Air Quality 

The morphology of urban blocks can influence the reception of solar radiation and ventilation 

efficiency [20], thereby shaping the thermal environment. An essential parameter in evaluating 

urban morphology is the height-to-width ratio (H/W) of urban canyons, which is directly linked to 

thermal comfort. Variations in H/W result in distinct thermal environments: wide urban canyons 

(H/W < 0.5), balanced urban canyons (H/W = 1), and deep urban canyons (H/W > 2) exhibit 

markedly different thermal characteristics [21]. During hot summers, deep urban canyons 

effectively block solar radiation [21] and mitigate unheated airflow [22], leading to lower internal 

temperatures [23] and more comfortable thermal environments [24]. However, studies have also 

highlighted conflicting findings—the combination of high-rise buildings with deep urban canyons 

may reduce wind speed [25], potentially compromising thermal comfort through reduced 

ventilation and heat removal. 

Recent computational advances have enhanced the efficiency of thermal environment 

assessment. Cui et al. demonstrated that machine learning models, specifically XGBoost with 

SHAP analysis, can predict pedestrian-level thermal conditions with high accuracy while 

providing explainable insights into morphological influences [18]. Their findings emphasize the 

importance of spatial positioning variables over traditional building parameters, suggesting that 

urban context can affects local thermal environments. This represents a shift from purely 

geometric considerations to more holistic spatial analyses. 

The relationship between urban morphology and air quality presents equally complex 

dynamics. In deep urban canyons, PM concentrations are considerably higher compared to 

balanced and wide urban canyons [17]. Elevated temperatures on building surfaces and the ground 

can further influence particulate diffusion through thermophoretic forces and buoyancy-driven 
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flows. For instance, in balanced urban canyons with Froude numbers between 0.19 and 0.38, 

particulate dispersion is enhanced through optimal mixing conditions. However, in deep urban 

canyons, a clockwise vortex forms above the canyon while a weaker counterclockwise vortex 

develops within, severely suppressing particulate dispersion [26]. This vortex structure creates a 

"lid effect" that traps pollutants at pedestrian level, exacerbating exposure risks. 

These contradictory findings highlight a fundamental challenge in urban design: compact 

urban layouts remain widely recommended for thermal comfort [27], as shading is a primary 

strategy for improving thermal conditions in urban streetscapes [28]. Deep urban canyons can 

notably lower the physiological equivalent temperature (PET) [23], and implementing effective 

shading measures within wide urban canyons can also substantially enhance thermal comfort [29]. 

Conversely, to reduce urban canyon PM concentrations, lower H/W values are recommended [29], 

creating an inherent conflict between thermal and air quality objectives. 

Building orientation represents another vital morphological parameter with dual impacts. The 

orientation can affect thermal environment by determining solar radiation exposure and wind 

patterns [30, 31], particularly in deep urban canyons [32]. Strategic building layouts can facilitate 

mutual shading and self-shading, effectively reducing daytime temperatures [33]. Field 

measurements by Georgakis and Santamouris revealed temperature differences of up to 14°C 

between opposing walls of streets during summer [34], while Offerle et al. [35] in Gothenburg, 

Sweden, showed that for streets with H/W below 0.48, temperature differences of up to 15 ℃ were 

observed between street-facing walls and between walls and the surrounding air. 

The angular relationship between street axes and prevailing wind directions [36] 

fundamentally affects both ventilation and pollutant dispersion. When wind flows obliquely to the 

street axis, a helical vortex forms along the street length [37], while perpendicular wind flow 

generates either single or dual counter-rotating vortices [38]. Changes in wind direction not only 

alter the pathways of PM dispersion but also induce turbulence variations that can lead to 

significant differences in PM concentrations [39]. These flow patterns directly influence PM 

dispersion pathways—perpendicular winds increase PM concentrations on windward sides while 

decreasing them on leeward sides [40]. Buccolieri et al. found that perpendicular wind directions 

reduce canyon wind speeds, resulting in higher PM concentrations, while parallel winds enhance 

roof-level airflow and turbulence intensity, promoting dispersion [41]. García et al. further 
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demonstrated that parallel wind directions enhance recirculation within canyons, improving both 

wind speed and dispersion efficiency [42]. Interestingly, some studies indicate that 45° wind 

angles provide optimal PM dispersion compared to fully parallel or perpendicular orientations 

[17], though this finding lacks consensus across different urban contexts. 

 

2.2 Multi-objective Optimization of Urban Block Morphology 

Urban morphology, thermal environment, air quality are interconnected in multifaceted and 

even contradictory ways, which underlines the inadequacy of designing with one goal. Though 

these studies give very good insights into each specific environmental phenomenon, they do not 

establish a solution to the main problem urban planners are dealing with: how to optimize several, 

sometimes competing environmental targets simultaneously. This awareness has also encouraged 

researchers to look into unified optimization frameworks which can strike a balance between 

thermal comfort and air quality factors, although these methods are still very early in the literature 

as the current literature reveals gaps in integrated optimization frameworks. Most existing studies 

adopt single-objective approaches, optimizing either thermal conditions [18, 43] or air quality [26, 

44] in isolation, potentially leading to suboptimal or even counterproductive outcomes for the 

neglected objective. 

Li et al. [45] represent one of the few attempts at simultaneous assessment, evaluating both 

thermal environments and air quality under varying frontal area densities of buildings. They 

recommended an optimal range of 0.82 to 0.84 for frontal area density. However, their study 

notably lacks consideration of the interactive dynamics between thermal environments and air 

pollutants—treating them as independent phenomena rather than coupled systems. This limitation 

is critical, as thermal buoyancy affects pollutant dispersion [46], while pollutant concentrations 

influence radiative transfer and thus thermal conditions [47]. 

The computational complexity of multi-objective optimization in urban contexts presents 

another challenge. Traditional CFD approaches, while physically accurate, require substantial 

computational resources that make iterative optimization impractical [48]. Each simulation may 

require hours or days of computation time, rendering genetic algorithms or other optimization 

methods that require thousands of evaluations infeasible [49]. This computational bottleneck has 

limited most studies to sensitivity analyses rather than true optimization, examining a handful of 
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scenarios rather than systematically searching the design space [50]. 

Recent advances in surrogate modeling offer potential solutions. Response surface 

methodology (RSM) and machine learning approaches can approximate CFD results with 

sufficient accuracy for optimization purposes while reducing computational time by orders of 

magnitude [51, 52]. However, these methods have seen limited application in integrated thermal-

air quality optimization. Most applications focus on single objectives—either using surrogate 

models for thermal comfort prediction [18, 53] or for air quality assessment [54], but rarely for 

simultaneous multi-objective optimization. 

The coupling mechanisms between thermal and air quality phenomena remain poorly 

understood in the optimization context. Two-way coupling, where thermal conditions affect 

pollutant dispersion through buoyancy and thermophoresis while pollutants influence radiative 

transfer, has rarely been implemented in optimization studies. Wang et al. recently developed a 

two-way coupled model demonstrating these interactions, but their work focused on analysis 

rather than optimization [55]. The absence of coupled models in optimization frameworks 

represents a critical gap, as it may lead to solutions that appear optimal under decoupled analysis 

but perform poorly when coupling effects manifest in reality [56]. 

Furthermore, existing optimization studies typically employ simplified geometric models that 

may not capture the complexity of real urban environments [57, 58]. Idealized arrays of uniform 

buildings, while useful for parametric studies, fail to represent the heterogeneity of actual urban 

blocks. The scalability of optimization results from simplified to realistic geometries remains 

largely unexplored, raising questions about the practical applicability of published optimization 

strategies [59]. Constraint handling in multi-objective optimization of urban morphology presents 

additional challenges inadequately addressed in current literature. Real-world urban design must 

satisfy multiple constraints including floor area ratios (FAR), building codes, setback 

requirements, and economic viability [60, 61]. These constraints significantly reduce the feasible 

design space and may fundamentally alter optimal solutions. However, most optimization studies 

either ignore these constraints or apply them post-hoc, rather than incorporating them directly into 

the optimization framework. Moreover, the validation of optimization results against real-world 

performance represents a critical gap. While individual CFD models may be validated [62], the 

performance of optimized designs in actual urban environments is rarely verified. This absence of 

                  



10 

 

empirical validation raises questions about the reliability of optimization recommendations and 

their transferability across different climatic and urban contexts [63, 64]. 

 

2.3 Contribution of This Research 

According to the identified gaps in the existing literature, this research will be considered in 

the context of the following main research questions: How do interactive effects between thermal 

environment and PM2.5 dispersion affect optimal morphological parameters, and are they able to 

be represented by two-way coupling? Is it possible that a CFD-machine learning framework can 

lead to the development of an accurate model that will have reduced computational needs to be 

useful in practice? What are the preferable ranges of morphological parameters of various 

development density, which provide a balance between air quality and thermal comfort? How do 

UTCI-AQIPM2.5 trade-offs appear when solutions that are Pareto-optimal exist on real-world 

constraints? 

The major contributions of this research include: we developed a novel two-way coupled 

numerical model to describe dynamic coupling between thermal environment and PM2.5 

dispersion, with consideration of the effects of PM2.5 on radiative transfer, and also taking into 

account thermal buoyancy and thermophoretic forces on particle transport. Secondly, we 

combined physics-based computationally intensive CFD simulation with data-driven surrogate-

based optimization, multi-objective genetic algorithms, and high-level of accuracy, trading off 

computational time of days, with minutes. Thirdly, we offered quantitative morphological design 

strategies in hot-humid climates, in which optimal H/W ratios vary by development density (0.7-

1.0 for FAR ~3, 1.3-1.6 for FAR ~6) and the orientation of buildings to the prevailing winds. 

Constrained multi-objective optimization was conducted, in which FAR, building density, and 

setback requirements were included during the optimization process. Lastly, we made practical 

applicability by testing it out in Shenzhen by demonstrating temperature reductions and regulatory 

compliance. The combined effects of these contributions are that they can equip the urban 

planners with scientifically sound and computationally affordable means to design healthier living 

environments that will promote thermal comfort and air quality without compromising the 

viability of development. 
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3 Methodology 

3.1 Overall approach and workflow 

In this study, the authors target residential blocks as a typical and most common type of urban 

block development, especially in the environment of rapid urbanization as a place where 

residential land use encompasses the largest part of urban space. There are some special 

optimization complexities associated with residential blocks, considering that buildings need to 

facilitate comfort to occupants and healthy outdoor resources for community activities. Combining 

physics-driven numerical simulation calculations with data-driven multi-objective optimization, 

the complex numerical simulation process is transformed into mathematical relationships, 

effectively reducing computation time and quickly obtaining output variables for optimization 

iteration, achieving rapid optimization of urban outdoor space forms. Specifically, physics-driven 

methods focus on establishing detailed physical models, which can deeply understand the 

coupling mechanism between thermal environments and fine particulate matter, but they are slow 

in computation and difficult to optimize quickly. Data-driven methods, based on computational 

fluid dynamics (CFD) technology and optimization algorithms, store the input and output data of 

CFD simulations in a dataset, and construct RSM with the dataset, which can effectively handle 

multiple objectives in complex systems and achieve optimization results. These results can then be 

verified using CFD simulations. The optimization process of urban residential block morphology 

based on bidirectional coupling models and multi-objective optimization algorithms is shown in 

Fig. 1. 

(1) First, the stage of constructing and designing variables for the CFD numerical model, 

which mainly includes the construction of the basic geometric model, the design of variables, and 

the setup of numerical simulation. Morphology parameters (building length, width, spacing, angle, 

height) are set as design variables to control the changes in the block geometry. In conjunction 

with Shenzhen's residential design specifications, the range of parameter changes is set. Outdoor 

temperature, wind speed, and PM2.5 concentration are set as output parameters for CFD 

simulation. Then, in the CFD module, complete the steps of mesh generation, boundary condition 

setup, model and solver selection, confirm the parameter set, and carry out simulation 

calculations. 

(2) Next, enter the design of experiment (DOE) and CFD batch simulation phase. By 
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sampling the morphology design variables, a certain number of uniformly distributed block 

morphology samples are formed to construct the DOE matrix. Afterward, the samples are 

simulated one by one according to the CFD calculation plan set in the initial scheme. Then, export 

the output parameters and calculate the universal thermal climate index (UTCI) and air quality 

index of PM2.5 (AQIPM2.5). Merge the input parameters with the new output parameters (UTCI and 

AQIPM2.5) into a new DOE matrix and import it into the dataset. 

(3) Based on the DOE matrix, apply interpolation algorithms to fit the input variables and 

output parameters, creating an RSM. Verify the prediction accuracy of the RSM; if it meets the 

accuracy requirements, proceed to the optimization process; if not, redo the experimental design 

and follow the above process for a new RSM construction until the accuracy requirements are met. 

(4) Finally, use a multi-objective genetic algorithm to call the RSM for optimization iteration. 

Under the two objective functions of the lowest UTCI and AQIPM2.5, find the optimal solution set 

and compare the optimized solution with the CFD simulation results. Select the best range of 

morphology parameters for residential blocks to provide a scientific reference for urban design. 

 

Fig. 1 Multi-objective optimization computational process based on numerical simulation and 

RSM 
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3.2. Performance Indicators 

To comprehensively evaluate the dual environmental impacts of residential block morphology, this 

study employs two complementary performance indicators that quantify both human thermal 

comfort and air quality conditions. 

3.2.1 Universal Thermal Climate Index (UTCI) 

The Universal Thermal Climate Index (UTCI) serves as the primary indicator for assessing 

outdoor thermal comfort, representing the human physiological response to combined 

meteorological conditions. UTCI effectively quantifies the influence of climate parameter 

variations on outdoor thermal comfort through a sophisticated biometeorological model that 

considers the complex interactions between environmental factors and human thermoregulation. 

UTCI is determined using a sixth-order polynomial regression function that integrates four key 

meteorological parameters: air temperature, wind speed, mean radiant temperature, and relative 

humidity (expressed as water vapor partial pressure)[65]. 

𝑈𝑇𝐶𝐼 = offset(𝑇𝑎 + 𝑇𝑀𝑅𝑇 + 𝑈 + 𝑃vapor) + 𝑇𝑎         (1) 

where, Ta  represents air temperature, ℃; TMRT  is mean radiation temperature, ℃; U represents 

wind speed, m/s; Pvapor represents water vapor partial pressure, Pa. 

The UTCI classification system provides clear thermal stress categories: values below 9°C 

indicate extreme cold stress, 9-26°C represents no thermal stress, 26-32°C indicates moderate heat 

stress, 32-38°C represents strong heat stress, 38-46°C indicates very strong heat stress, and values 

above 46°C represent extreme heat stress. For hot-humid climates like Shenzhen, the optimization 

target focuses on minimizing UTCI values to reduce heat stress during summer months. 

3.2.2 Air Quality Index for PM2.5 (AQIPM2.5) 

The Air Quality Index for PM2.5 (AQIPM2.5) serves as the air quality performance indicator, 

providing a standardized measure of fine particulate matter concentration levels and their potential 

health impacts. This index transforms raw PM2.5 concentration data into a dimensionless scale that 

facilitates direct comparison across different urban morphological configurations. AQIPM2.5 is 

calculated according to the provisions outlined in the Ambient Air Quality Standards [66], using a 

piecewise linear function that relates pollutant concentrations to health risk categories: 

𝐴𝑄𝐼𝑃𝑀2.5 =
𝐴𝑄𝐼𝐻𝑖−𝐴𝑄𝐼𝐿𝑜

𝐵𝑃𝐻𝑖−𝐵𝑃𝐿𝑜
(𝐶𝑃𝑀2.5 − 𝐵𝑃𝐿𝑜) + 𝐴𝑄𝐼𝐿𝑜        (2) 

where, AQI
Hi

 and AQI
Lo

 are the upper and lower limit values of the AQI for PM2.5; BPHi and BPLo 
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are the upper and lower limit value of the concentration range for PM2.5; CPM2.5 represents the 

concentration of PM2.5. 

The AQIPM2.5 classification system defines air quality levels as follows: 0-50 indicates good 

air quality with minimal health impact, 51-100 represents moderate quality with acceptable 

conditions for most people, 101-150 indicates unhealthy conditions for sensitive groups, 151-200 

represents unhealthy air quality for all individuals, 201-300 indicates very unhealthy conditions 

requiring health warnings, and values above 300 represent hazardous conditions. For urban 

planning applications, the optimization objective targets AQIPM2.5 values below 100 to ensure 

acceptable air quality standards. 

3.3. Parametric Model Development 

3.3.1 Geometric Model and Typological Considerations 

This study establishes a 6×6 building array surrounded by four main roads, forming an 

idealized urban residential block. While this regularized grid pattern represents a common 

typology in modern Chinese residential developments, it is important to acknowledge that 

different residential block typologies can impact environmental performance. Recent research has 

demonstrated that block configuration—including perimeter blocks, courtyard typologies, point 

towers, and slab arrangements—substantially influences solar radiation absorption, wind patterns, 

and resulting thermal conditions [67, 68]. The grid typology selected for this study represents a 

balance between computational feasibility and practical relevance. Grid patterns remain prevalent 

in rapid urbanization contexts due to their development efficiency and standardized planning 

approval processes [69]. Studies have shown that tall building blocks can improve outdoor thermal 

comfort through enhanced shading while potentially restricting ventilation [70], while their shape 

can influence air circulation and air quality in various part of the building and site [71]. A review 

of 258 studies (2011–2022) found that variations in urban morphology indicators—such as 

building density, street canyon aspect ratio, and sky view factor—affect solar radiation absorption, 

with certain configurations enhancing or reducing potential heat gain, thereby influencing outdoor 

thermal comfort [72]. 

The initial layout of the buildings, road lengths, and computational domain of this research is 

illustrated in Fig. 2. Key variables, including the length (L), width (W), height (H), the angle with 

the wind direction (A), transverse spacing (S), and longitudinal spacing (S') of the buildings, are 

                  



15 

 

depicted in Fig. 2. While maintaining the grid typology constant, these parametric variations allow 

exploration of morphological optimization within this specific urban form. The optimization 

results should therefore be interpreted within the context of grid-pattern residential blocks, with 

different optimal parameters likely emerging for alternative typologies. 

It is important to note that during the optimization process, changes in parameters may result 

in final morphology parameters differing from their initial definitions. To maintain consistency, 

the same naming convention is applied for changed parameters, supplemented by corresponding 

notations for distinction. The actual research area is the 4×4 buildings array inside Fig. 2, with the 

outermost buildings set to simulate the impact of surrounding buildings on the physical 

environment of the research area. Inside the research area, three measurement points are set near 

each external facade of the buildings at a height of 1.5 m, 3 m away from the buildings, and 

located at the 1/4, 1/2, and 3/4 positions of the facade, respectively, as shown in Fig. 2. These 

measurement points change with the variations in building length and width. 

  

Fig. 2 Ideal residential block morphology layout and parameterized control variables 

Referring to the regulations for buildings and roads in the "Shenzhen City Planning Standards 

and Guidelines" (2021 version) [73], the range of variation for the basic variables of the ideal 

residential block morphology is shown in Table 1. Since the floor area ratio (FAR) of residential 

land in Shenzhen is mostly in density zones two and three, the FAR is set between 3.0 and 6.0, 

with residential buildings being multi-story and high-rise. Roads are aligned with the buildings 

and are designed as six-lane dual carriageways, with each lane having a width of 3.25 m and the 

total road width being 19.5 m, and the buildings' setback is set to 9 m. 

Table 1 Parameterized control variables and ranges 

Buildings parameters Range Initial Value Type of Variation 

Length (L) 25 m ~ 70 m 26 m Continuous 

Width (W) 25 m ~ 70 m 48 m Continuous 
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Height (H) 24 m ~ 100 m 62 m Continuous 

Angle with the wind direction (A) -2.55° ~ 87.45° 42.45° Continuous 

Transverse Spacing (S) 24 m ~ 80 m 52 m Continuous 

Longitudinal Spacing (S') 24 m ~ 80 m 52 m Continuous 

The limitations of focusing on a single typology are acknowledged. Future research should 

extend this optimization framework to comparative analyses across different block typologies, as 

the interactive effects between thermal environment and air quality may manifest differently in 

perimeter, courtyard, or hybrid configurations. Nevertheless, the grid typology provides a valuable 

baseline for understanding morphological optimization principles that can inform broader urban 

design strategies. 

3.3.2 Boundary Conditions and Input Parameters 

When simulating the thermal environment of urban residential blocks, it is common to use 

meteorological parameters from a typical meteorological day in the local area as input to ensure 

broadly applicable results. However, identifying a "typical pollution day" involves more 

complexity. It depends on factors such as the dates when air quality exceeds standards for a 

sustained period, the influence of pollution sources, and specific meteorological conditions. 

Additionally, PM2.5 concentrations are largely influenced by dispersion from the surrounding 

environment and emission sources. While closely tied to meteorological factors, PM2.5 exhibits 

strong randomness and regional variability, making it unsuitable to describe using the concept of a 

"typical day" as applied to meteorological parameters. To address this, this study compiled 

meteorological parameters and PM2.5 concentrations in Shenzhen over the past five years (2018–

2022). Analysis revealed that September had the highest number of pollution days, with a total of 

39 days—far exceeding other months. Thus, the average PM2.5 concentration and meteorological 

parameters at noon in September were selected as input parameters. Since the recorded pollution 

days in the study were not rainy days, the compiled input parameters exclude rainy days. These 

parameters are detailed in Table 2. 

The emission rate of fine particulate matter from roads is calculated based on the methods 

described in “Technical Guidelines for the Compilation of Road Mobile Source Emission 

Inventories”, and the number of vehicles and their driving conditions, vehicles/1000m 

(https://opendata.sz.gov.cn). The total emission rate of PM2.5 concentration from roads varies with 

the length of the road and is modeled mathematically within the parametric model. 

Table 2 Inlet parameters of CFD model 

                  



17 

 

Parameter Value 

Air temperature 29.97 (°C) 

Radial wind speed (10m) -1.17 (m/s) 

Zonal wind speed (10m) -1.07 (m/s) 

Direct radiation 545.40 (W/m
2
) 

Diffuse radiation 123.34 (W/m
2
) 

Effective sky temperature 15.79 (°C) 

PM2.5 Concentration at Inlet 35.78（ug/m
3
） 

3.3.3 Two-way Coupled Numerical Simulation 

The computational logic of the two-way coupled numerical model for the outdoor thermal 

environment and PM2.5 has been developed by the authors in previous research [55], and its 

workflow has been illustrated in Fig. 3. Input parameters include ambient conditions, material 

properties, and geometric factors. The two-way coupling model employs steady-state three-

dimensional Reynolds-Averaged Navier-Stokes equations for incompressible turbulence, 

incorporating the Boussinesq approximation. Energy coupling is achieved through the Discrete 

Ordinates model, with atmospheric absorption and scattering coefficients dynamically adjusted 

based on PM2.5 concentrations and incorporated into the iterative calculation process. This process 

is implemented through a user-defined function, and the file is read when the Discrete Ordinates 

model is called. Momentum coupling is implemented using the Discrete Phase Model, which 

accounts for forces such as gravity, fluid drag, Saffman lift, pressure gradient, and thermophoretic 

force, all based on velocity terms. The numerical discretization method uses the finite volume 

method, and the upwind second-order format is adopted; the pressure-based coupled algorithm is 

used to solve the equations. The residual convergence standard is set to 10E-6, and the calculation 

parameters of the measurement points are monitored to ensure that they reach a stable state. The 

complete governing equations, boundary conditions, and numerical solution methodology are 

provided in Appendix A.3, with comprehensive model validation presented in Appendix A.4. 
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Fig. 3 Two-way coupled numerical simulation between outdoor thermal environment and PM2.5 in 

residential blocks 

3.4. Response Surface Model Development 

The selection of an appropriate surrogate modeling technique is critical for achieving 

accurate predictions while maintaining computational efficiency. Several methods were 

considered for constructing the response surface model, including polynomial regression, kriging 

(Gaussian process regression), radial basis functions (RBF), and non-parametric regression. Table 

3 provides a comparative analysis of these approaches. 

Table 3 Comparison of surrogate modeling methods for urban environmental optimization 

Method Advantages Limitations Suitability 

Polynomial 

Regression 

Simple 

implementation; Fast 

evaluation;  

Clear mathematical 

form 

Poor for highly 

nonlinear relationships;  

Requires predetermined 

order;  

Prone to overfitting with 

high dimensions 

Limited - Urban 

environmental relationships 

are highly nonlinear 

Kriging/Gaussian 

Process 

Provides uncertainty 

estimates;  

Excellent for smooth 

functions;  

Optimal interpolation 

Computationally 

expensive for large 

datasets;  

Assumes stationarity; 

Struggles with 

discontinuities 

Moderate - Good accuracy 

but computational cost can 

be prohibitive  

Radial Basis Flexible for complex Can become ill- Moderate - Good flexibility 
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Functions shapes;  

Good for scattered 

data;  

No need for 

structured grid 

conditioned;  

Requires careful 

selection of basis 

centers;  

No uncertainty 

quantification 

but stability concerns 

Non-Parametric 

Regression 

No assumptions 

about data 

distribution; 

Captures complex 

interactions;  

Robust to outliers; 

Adaptive to local 

features 

Less interpretable; 

Can overfit without 

proper regularization 

High - Best suited for 

complex urban phenomena 

with unknown relationships 

In this research, the DOE is structured to efficiently and comprehensively capture the key 

morphology characteristics of residential block configurations by simulating diverse combinations 

of input parameters with a limited number of samples. Experimental evaluation metrics are 

referred to as output variables, while factors potentially influencing these metrics are termed input 

variables. The discrete or continuous states of these influencing factors are designated as levels. 

For parametric analyses, the input variables vary continuously, as summarized in Table 1. To 

ensure a uniform and representative distribution of sample points across the entire design space, 

this study employs the Latin Hypercube Sampling technique. This method systematically 

distributes sample points to evenly cover the parameter space, even with a constrained number of 

samples. The ranges and types of variation for morphology variables are detailed in Table 1. A 

total of 200 sample points is generated. These samples are subsequently analyzed using RSM to 

explore and quantify the relationships between input variables and output variables.  

The Non-Parametric Regression method was selected for this study based on several key 

advantages particularly relevant to urban environmental modeling. First, it does not rely on 

specific assumptions about data distribution or functional form, allowing the data to reveal the 

complex, potentially discontinuous relationships between morphological parameters and 

environmental outcomes [74]. This is crucial given the nonlinear interactions between building 

geometry, thermal environment, and pollutant dispersion that may include threshold effects and 

local phenomena. Secondly, non-parametric methods excel at capturing local features and 

interactions that parametric models might smooth over [75]. Urban microclimates often exhibit 

localized effects where small changes in morphology can cause disproportionate environmental 

responses—phenomena that global parametric models struggle to represent. The method's 

adaptive bandwidth selection automatically adjusts model complexity based on local data density, 
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providing more flexibility in regions with rapid changes while maintaining stability in smoother 

regions. Thirdly, the method demonstrates superior performance with the moderate sample size 

(200 points) generated through Latin Hypercube Sampling. While kriging might provide slightly 

better interpolation accuracy in smooth regions, its computational requirements scale poorly with 

sample size (O(n³) for matrix inversion), making it impractical for iterative optimization. Non-

parametric regression achieves comparable accuracy with better computational efficiency, fit for 

the thousands of evaluations required during genetic algorithm optimization. The specific 

implementation employs locally weighted scatterplot smoothing (LOESS) with automatic 

bandwidth selection through cross-validation.  

To validate this methodological choice, preliminary tests compared polynomial regression 

(third-order), kriging, and non-parametric regression on a subset of 50 samples. Non-parametric 

regression in this study achieved the lowest cross-validation error (RMSE = 0.42°C for UTCI, 

1.23 for AQIPM2.5) compared to polynomial regression (RMSE = 0.89°C, 2.67) and kriging 

(RMSE = 0.51°C, 1.45), while requiring 73% less computational time than kriging for model 

construction. The DOE sample points are divided into two sets: 80% (160 samples) for the 

training dataset and 20% (40 samples) for the validation dataset. Both datasets are designed to 

maintain as uniform a distribution of the design variables as possible. After removing outliers, the 

training dataset contains 153 samples, while the validation dataset includes 36 samples. More 

detailed discussions on the non-parametric regression based RSM validation and analysis will be 

included in the Results chapter. 

 

 

 

3.5. Multi-objective Optimization 

3.5.1 Optimization Problem Formulation 

In the process of optimizing the morphology of urban residential block, the results do not 

manifest as a single, absolute optimal solution. Instead, they form a set of relatively optimal 

solutions that balance the two design objectives: UTCI and AQIPM2.5. As indicated by the RSM 

analysis, UTCI and AQIPM2.5 exhibit differing trends with variations in the input parameters. This 

study employs a multi-objective optimization approach aimed at minimizing both UTCI and 
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AQIPM2.5. When it is not feasible to achieve optimality for all objectives simultaneously, a 

balanced set of solutions is obtained. The mathematical model for multi-objective optimization is 

presented as follows:  

min𝑥∈𝐸 : 𝑓𝑗(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥))            (3) 

𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)             (4) 

E ={x|xi
'≤xi≤xi

'', i=1, 2, ⋯, 6}             (5) 

where, x is design variables, consisting of the six morphology parameter variables listed in Table 

1; f
j
(x) is the j objective function of the model; E is the boundary constraints for the set of 

morphology parameter variables. xi
'  and xi

'' are lower and upper boundary of the value range for the 

design variable. 

In the multi-objective optimization experiments, morphology parameter constraints were 

further considered to ensure the practical applicability of the optimization results and compliance 

with the Shenzhen Urban Planning Standards and Guidelines (2021) [73]. Four additional 

variables were introduced during the optimization phase: FAR, spacing ratios (SR), and coverage 

ratio (CF). The value ranges for these variables were determined with reference to [73]. The range 

of R being 6.0 and 3.0 has the most extensive distribution in Shenzhen. Thus, the buildings were 

designed as multi-story or high-rise structures. The height range was set between 24 m and 99 m, 

with a fixed floor height of 3 m per story. The upper limits for SR and CF were set to 0.6 and 0.25, 

respectively. 

The guidelines in [73] recommend that for buildings taller than 60 m, the maximum building 

width should not exceed 60 m. Additionally, the minimum transverse and longitudinal spacing for 

high-rise residential buildings should be no less than 24 m and 18 m, respectively. In this study, 

the building length and width are allowed to vary freely during optimization, but the minimum 

spacing between buildings is uniformly set to 24 m. Although the guidelines do not specify a 

maximum spacing, this study sets the maximum buildings spacing to 80 m. Furthermore, the angle 

between buildings and the dominant summer wind direction is required to be less than 30°. To 

achieve this, the orientation of buildings was adjusted by rotating them clockwise and 

counterclockwise by 45° from their original alignment, resulting in an angle range of -2° to 87°. 

The step size for this variable was set to 1°. The value ranges, step sizes, and relationships for the 

design variables are detailed in Table 4.  
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Table 4 Characteristics of design variables 

Type Design 

Variables 

Value Range Step Size Parameter Relationship 

Design 

Variables 

L 25 m ~ 60 m 1 m  

W 25 m ~ 60 m 1 m  

A 
-

2.55°~87.45° 

1° － 

S' 24 m~80m 1 m － 

S 24 m~80m 1 m － 

Constraints 

FAR 3~6 
Continuous (L*W*36*H/3)/(L*6+S*5+18)/(W*6+ 

S'*5+18) 

J1 ≤0.6 Continuous (L*6)/(L*6+S*5+18) 

J2 ≤0.6 Continuous (W*6)/(W*6+ S'*5+18) 

F ≤0.25 
Continuous (L*W*36)/(L*6+S*5+18)/(W*6+ 

S'*5+18) 

 

3.5.2 Optimization Algorithm 

The study employed the Multi-Objective Genetic Algorithm (MOGA), which integrates 

population evolution strategies and a non-dominated solution screening mechanism. This 

approach facilitates a comprehensive exploration of the solution space, identifies a richer set of 

solutions, and avoids the pitfalls of local optima, making it particularly suitable for the 

optimization requirements of this research. In addition, three convergence criteria were 

established: maximum of 500 iterations, convergence threshold of 0.01, and maximum Pareto 

percentage of 80%. The parameters related to the MOGA are summarized in Table 5. 

Table 5 Parameter settings for multi-objective optimization calculations 

Category Parameter 
Minimum 

Value 

Maximum 

Value 
Objective Weight 

Attribute 

 

UTCI 30 40 Minimize 0.5 

AQIPM2.5 0 30 Minimize 0.5 

Algorithm 
MOGA 

 

Initial 

Population 

2000 

Per 

Population 

2000 

Convergence 

Stability 

1% 

Maximum 

Iterations 

Pareto 

Ranking 

1-5 

Crossover 

Rate 

0.9 

Mutation Rate 

0.01 

Pareto 

Percentage 

500 

Initially, the multi-objective optimization module received morphology parameters. The 

genetic algorithm autonomously generated 2,000 initial samples, which were subsequently passed 

to the RSM. The model rapidly computed the output parameters, and the results were fed back into 

the genetic algorithm. Through selection, crossover, and mutation operations, a new generation of 

2,000 samples was created, with input parameters forwarded again to the RSM. The algorithm 
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evaluated the convergence conditions to determine whether the optimization should terminate. If 

the criteria were satisfied, the optimization process concluded, and results were output; otherwise, 

iterations continued until the objectives were met.  

 

3.5.3 Sensitivity Analysis 

To examine the impact of simultaneous changes in multiple input parameters on model 

outputs and determine the sensitivity of each parameter in the Pareto front solution set, this study 

utilizes the Parameter Correlation module in ANSYS Workbench. The Spearman rank correlation 

coefficient is employed to quantify parameter sensitivity, ranging from [-1, 1], where the sign 

indicates positive or negative correlation. The calculation method is as follows: 

 r=
∑ (Xi-X̅)(Yi-Y̅)n

i

√∑ (Xi-X̅)
2n

i  √∑ (Yi-Y̅)
2n

i

 （6） 

where, Xi represents the rank value of the design variable X in i sample; Yi represents the rank 

value of the optimization objective Y in the i sample; n represents the total number of samples; X̅ 

and Y̅ represent the average rank value of the design variables and optimization objectives. 

3.6 Case Study 

The residential block analyzed in this study is located in Bao’an District, Shenzhen. As 

shown in Fig. 4, the renewal area is divided into three zones by newly constructed residential 

communities and public buildings. The morphology parameters of the Pareto frontier solutions are 

combined with the requirements outlined in the Shenzhen Urban Planning Standards and 

Guidelines [73] regarding floor area ratio (FAR), building density, and setback distances. 

According to the guidelines, secondary roads should have a width of 12m to 20m, and residential 

buildings adjacent to streets must maintain a minimum setback of 9m. When the layouts of 

buildings on adjacent zones are parallel or form an angle of less than 30°, and at least one of the 

buildings is residential, the minimum setback distance from the plot boundary must not be less 

than 12m. This residential block is classified under Density Zone 2 in Shenzhen, where the 

maximum FAR is 6, and the building density is capped at 25%. In optimization scheme, the angle 

between the building layout and the prevailing wind direction is constrained to 0°-15°, with all 

parameters determined based on the ratio values of the Pareto frontier solutions. The buildings are 

adjusted to maintain a length-to-width ratio within the range of 1.04 to 1.43. The block 
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morphology parameters corresponding to the optimized design scheme are listed in Table 6. The 

computational domain configuration, mesh generation procedures, and material properties are 

detailed in Appendix A.1 and A.2. 

   

(a) Subdivision of construction 

land 
(b) Layout of original block (c) Layout of optimized block 

Fig. 4 Research area land use division and geometric models  

Table 6 Residential block morphological schemes 

Building parameters A B C1 C2 C3 

Length (m) 24 35 32 27 31 

Width (m) 22 30 24 23 26 

Length/Width Ratio 1.09 1.17 1.33 1.17 1.19 

Lateral Spacing (m) 38 42.5 43 44 58 

Longitudinal Spacing (m) 28.5 23 26 25 46 

Height (m) 60;81 66 66, 72 69, 75 54, 82 

Lateral Spacing/Height Ratio 1.58 1.55 1.53 1.57 1.59 

Density 0.25 0.25 0.25 0.25 0.25 

The measured inlet parameters for numerical simulation at the research area’s observation 

sites from 2021 to 2023 were statistically analyzed. Parameters measured at 2:00 pm in September 

over the past two years were selected, as this time period features high temperatures and elevated 

PM2.5 concentrations. In addition, the inlet parameters represent the average values recorded under 

sunny or partly cloudy-to-sunny conditions. The prevailing wind direction was determined based 

on 16-direction wind statistics, identified as southerly, with an average wind speed of 1.03 m/s. To 

ensure effective simulation of air pollution, days with pollution under southerly wind conditions 

were selected, where the average PM2.5 concentration was 37.01 ug/m
3
. Solar radiation intensity 

parameters were obtained from the Xihe Energy Big Data Platform (https://xihe-energy.com/). The 

direct and diffuse solar radiation intensities recorded at the specified time over the past two years 

under sunny or partly cloudy-to-sunny conditions were averaged, and the results are listed in Table 

7. 

Table 7 Inlet parameter for numerical simulation in target area 
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Parameters Values Notes 

Wind Speed (m/s) 
1.03  

Average Wind Speed under Prevailing 

Wind Direction 

Wind Direction Southerly 

wind 

Prevailing wind direction 

Air Temperature (℃) 32.16   

PM2.5 Concentration (ug/m
3
) 37.01   

Direct Solar Radiation Intensity 

(W/m
2
) 

435.67   

Diffuse Solar Radiation Intensity 

(W/m
2
) 

291.10   

To accommodate the complex geometry of the building clusters, utilized a tetrahedral mesh. 

The grid size at the domain inlet was set to 3 m, while surface meshes for buildings, roads, and the 

ground were assigned a size of 5 m. The boundary surface meshes of the domain were set to 10 m, 

and the maximum cell size within the domain was limited to 15 m, with a growth rate of 1.1. The 

boundary layer mesh had an initial size of 0.1 m, also with a growth rate of 1.1. The two-way 

coupled model between thermal environment and PM2.5 as shown in Fig. 4 is used. The model 

validation demonstrates good agreement with field measurements as detailed in Appendix A.4, 

with temperature predictions achieving MAE of 1.03°C and PM℃.℃ concentration predictions 

showing relative errors below 20%. 

 

4 Results 

4.1. Response Surface Model Validation and Analysis 

Prior to employing the response surface model for optimization, its predictive accuracy 

should be evaluated against CFD simulation results to ensure reliable performance across the 

design space. The maximum absolute errors of the RSM for the AQIPM2.5 and UTCI validation 

points are found to be 8.13% and 5.37%, respectively, while the coefficients of determination (R
2
) 

for the training data are 0.98 and 0.99. The results demonstrate good predictive performance, both 

locally and globally. Detailed statistical performance metrics and validation procedures are 

described in Appendix A.6.  

Fig. 5 illustrate the predicted versus actual values for the validation dataset, showing 

controlled deviations, further validating the model's accuracy. Given its strong predictive 

performance, the RSM is considered a reliable substitute for computationally intensive CFD 

numerical simulations during the optimization phase, offering significant reductions in 

computational time without compromising the quality of the results.  
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（a） UTCI （b） AQIPM2.5 

Fig. 5 Accuracy verification of RSM 

As shown in Fig. 6(a), when the building length (L) is 70 m and the transverse spacing (S) is 

approximately 25 m or 60 m, the UTCI values are lower. Conversely, when both the length and 

transverse spacing are large, the outdoor UTCI reaches its maximum value of 36.80 ℃. In Fig. 

6(b), the lowest UTCI value of 35.61 °C occurs when the building width (W) is 70 m and the 

longitudinal spacing (S') is 20 m. In contrast, when the width is 24 m, variations in longitudinal 

spacing have negligible effects on UTCI. This suggests that, in architectural optimization, width 

should take precedence over longitudinal spacing. The relationship between the angle of building 

and wind direction (A), height (H), and UTCI is depicted in Fig. 6(c).  

To quantify the relative importance of these parameters, we conducted a comprehensive 

sensitivity analysis using the Spearman rank correlation coefficient (detailed in Section 4.3. 

Sensitivity Analysis Results). The analysis reveals that among the morphology parameters, 

building longitudinal spacing (S') has the most significant impact on UTCI with a correlation 

coefficient of -0.81, followed by building height (H) at -0.73, and building width (W) at -0.63. The 

angle between building and wind direction (A), while showing strong effects in the response 

surface visualization, demonstrates a relatively lower sensitivity (±0.18) within the Pareto front 

solution set due to the constrained angle range in optimal solutions. Specifically, when the angle is 

approximately -2.55° or 87.5°, the outdoor UTCI is minimized at 34.12°C. Conversely, within the 

range of 20° to 40°, UTCI values remain consistently high regardless of height. These quantitative 

findings, derived from sensitivity analysis of Pareto-optimal solutions (Section 4.2), highlight that 

the optimal configuration for a single parameter may not necessarily correspond to the most 

effective strategy for improving the thermal environment. 
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(a) building length (L) and transverse spacing 

(S) 

(b) building width (W) and longitudinal spacing 

(S')  

 

(c) building angle (A) and height (H)  

Fig. 6 RSM of morphology parameters for residential blocks and UTCI 

Fig. 7(a) illustrated the relationship between building length (L) and transverse spacing (S) 

with AQIPM2.5. When length and transverse spacing are relatively small, AQIPM2.5 values are 

highest. Conversely, when the transverse spacing is approximately 75 m, AQIPM2.5 values tend to 

be low. Notably, even if the length increases to 70 m, AQIPM2.5 remains high when the transverse 

spacing is limited. This highlights the significant influence of transverse spacing on AQIPM2.5. Fig. 

7(b) further demonstrates that smaller building widths (W) and longitudinal spacings (S') result in 

higher AQIPM2.5 values, reinforcing the observation that dense buildings layout hinder the 

dispersion of PM2.5. When the building width and longitudinal spacing are around 70 m and 55 m, 

respectively, AQIPM2.5 values also appear elevated. In contrast, AQIPM2.5 values are generally lower 

when the longitudinal spacing is approximately 80 m. The effects of the angle of building and 
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wind direction (A) and height (H) on AQIPM2.5 are shown in Fig. 7(c). AQIPM2.5 reaches its 

maximum value when both angle and height are at maximum. However, when the height is 24 m, 

AQIPM2.5 values remain low regardless of changes in the angle. Interestingly, when the buildings 

align more closely with the wind direction, air pollution in the target area is exacerbated. 

  

(a) building length (L) and transverse spacing 

(S) 

(b) building width (W) and longitudinal 

spacing (S')  

 

 

(c) building angle (A) and height (H)  

Fig. 7 RSM of morphology parameters for residential blocks and AQIPM2.5 

 

4.2. Optimization Results and Pareto Front 

Following the validation of the response surface model, multi-objective genetic algorithm 

optimization was performed to identify morphological configurations that balance thermal comfort 

and air quality objectives.  As illustrated in Fig. 8, convergence was achieved after 21 iterations 

for the MOGA optimization, with 80% of the solutions forming the Pareto front. The convergence 
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stability reached 0.91, indicating robust performance. 

 

Fig. 8 The iterative convergence process of multi-objective optimization 

To optimize the thermal environment and PM2.5 levels in an ideal residential block, the 

distribution of the Pareto solution set is illustrated in Fig. 9. The solution set is categorized into 

five levels: red points indicate Pareto front solutions, representing non-dominated options, while 

the remaining-colored points signify dominated solutions. A clear trade-off emerges between 

UTCI and AQIPM2.5, where a decrease in UTCI corresponds to an increase in AQIPM2.5. The 

AQIPM2.5 values within the Pareto set are notably low, ranging from 9.91 to 20.04, indicating high 

air quality. Conversely, the UTCI values are relatively high, between 34.32 ℃ and 36.31 ℃, with 

minimal variation, yet still indicating conditions of overheating. Given that outdoor overheating is 

a major environmental challenge during Shenzhen's summer, and the air quality in the Pareto set 

remains excellent, candidate solutions with lower UTCI should be prioritized. 

 

Fig. 9 Dominated and non-dominated solutions of UTCI and AQIPM2.5 

In Fig. 10, the distribution of morphology parameters within the Pareto front solution set is 

presented. The dual objectives of UTCI and AQIPM2.5 were considered, with constraints applied to 

the FAR, interspace rate, and density according to relevant specifications. As a result, the range of 
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the Pareto front solution set from the multi-objective optimization differs from the optimal results 

derived via the RSM. The building length (L) exhibits a distinct three-stage interval distribution, 

with corresponding UTCI and AQIPM2.5 values aligned with the intervals listed in Table 8. 

Similarly, the building transverse spacing (S) also follows a clear interval distribution, forming a 

corresponding relationship with the building length intervals. To further analyze the interaction 

between design variables and objective functions and identify the optimal combination of 

morphology parameters, an interval analysis is conducted on the Pareto rank 1 solution set. 

 

Fig. 10 Parameter intervals corresponding to the pareto front solution 

The building length (L) can be divided into three distinct intervals: 26 m to 36 m, 42 m to 46 

m, and 60 m, with the corresponding parameter ranges detailed in Table 8. Among these, the UTCI 

value is highest when the building length is 60 m. However, this interval contains only 10 sample 

points, notably fewer than the other intervals, and is therefore excluded from further discussion. 

For intervals 1 and 2, the FAR range from 3.00 to 4.08 and 5.11 to 6.00, respectively, representing 

the lower and upper limits of the design variable range. The corresponding building heights (H) 

are 39 m to 57 m for the first interval and 75 m to 84 m for the second. The angle range between 

the building and the wind direction is generally consistent, falling within -2° to 9°. Therefore, 

when optimizing building morphology, the appropriate length and FAR can be selected based on 

specific FAR requirements.  

Table 8 Statistical analysis of parameter intervals for Pareto front 

Design Variables Value Range 1 Value Range 2 Value Range 3 

L 26 m~36 m 42 m~52 m 60 m 

S 26 m~34 m 54 m~73 m 66 m~69 m 

W 42 m~52 m 48 m~53 m 59 m~60 m 

S' 55 m~64m 53 m~59 m 72 m~74 m 
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A -2°~8° -2°~9° -47°~59° 

H 39 m~57m 75 m~84 m 39 m~42m 

AFR 3.00~4.08 5.11~6.00 3.16~3.47 

SR1 0.28~0.43 0.33~0.41 0.41~0.42 

SR2 0.35~0.45 0.39~0.43 0.39~0.40 

CF 15.79%~24.96% 20.22%~23.99% 23.96%~24.80% 

UTCI 34.86~35.83 34.32~34.86 36.10~36.17 

AQIPM2.5 10.91~15.32 15.62~20.04 9.91~10.86 

In the Pareto front solution set, where equal target weights were applied, three non-

dominated solutions were selected, demonstrating advantages over other alternatives. As shown in 

Table 9, the optimal solution, alternative C, adheres to restrictions on FAR, interspace rate, and 

density. Through optimization algorithm screening, the building length (L) and width (W) were 

determined to be 45 m and 52 m, respectively. The RSM results indicate that a lower UTCI 

correlates with larger bulding dimensions. Additionally, the transverse spacing (S) of alternative C 

is 67 m, closely matching the 68.14 m spacing associated with the lowest UTCI in the RSM. The 

building length axis aligns parallel to the wind direction, consistent with RSM. The building 

heights (H) in the three candidate schemes are 39 m, 48 m, and 81 m, respectively. Using the 

geometric parameters of the optimal solution C, a new geometric model was created in ANSYS 

Workbench. Based on the parameter settings in Section 5.2, CFD simulations were conducted. The 

calculated UTCI and AQIPM2.5 values were 34.52 ℃ and 16.67, respectively, compared to the 

optimal solution C’s values of 34.31 ℃ and 16.19, resulting in relative errors of 0.61% and 2.96%. 

This confirms that the method can effectively replace bidirectional coupling model calculations, 

providing accurate predictions of the thermal environment and air quality within the ideal 

residential block. 

Table 9 Alternative optimization schemes 

Design Variables A B C 

L (m) 29 31 45 

S (m) 33 31 67 

W (m) 49 48 52 

S' (m) 60 61 56 

A (°) -2 -2 1 

H (m) 39 48 81 

UTCI（℃） 35.15 35.01 34.52 

AQIPM2.5 12.31 13.75 16.67 

 

4.3. Sensitivity Analysis Results 

To understand the relative importance of morphological parameters and guide practical 
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design decisions, a sensitivity analysis was conducted on the Pareto-optimal solutions. Fig. 11 

illustrates the local sensitivity of UTCI and AQIPM2.5 to the morphology parameters of the 

residential block. The parameters exhibit opposite effects on UTCI and AQIPM2.5. Among them, 

the building longitudinal spacing (S') has the most significant impact, with a sensitivity indicator 

of ±0.81, whereas the transverse spacing (S) shows negligible influence on the physical 

environment. This indicates that ventilation channels aligned with the wind direction have a 

considerable effect on the environment and should be prioritized during block morphology 

optimization. Conversely, ventilation channels perpendicular to the wind direction can be adjusted 

flexibly based on practical needs. The building height (H) also plays an important role, with a 

sensitivity indicator of ±0.73. Increasing building height improves shading, thereby reducing the 

thermal environment index (UTCI). However, taller buildings enhance wind resistance, potentially 

degrading outdoor air quality, necessitating careful monitoring of its overall impact. The building 

width (W) shows a sensitivity of ±0.63, exerting a greater influence on the physical environment 

than the length (L). Additionally, while the rotation angle (A) of the buildings has the greatest 

effect in the RSM, its impact within the Pareto front solution set is minimal (±0.18) due to the 

narrow range of angle values, which limits its influence on the physical environment. 

 
Fig. 11 Sensitivity indicators of physical environment to morphology parameters  

When optimizing the physical environment of urban residential block, it is crucial to balance 

the positive and negative impacts of various parameters. The sensitivity ranking of morphology 

parameters with respect to UTCI and AQIPM2.5 is as follows: building longitudinal spacing (S'), 

height (H), length (L), width (W), building rotation angle (A), and transverse spacing (S). During 
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optimization, parameters with low sensitivity can be adjusted more flexibly based on design 

requirements and the specific conditions of the site, while parameters with high sensitivity should 

be kept within their optimal range as much as possible. 

 

4.4. Optimization Strategy  

4.4.1 Building Orientation Guidelines 

Based on the optimization results and sensitivity analysis, practical design strategies are 

developed to guide morphological decisions for different urban development contexts in this 

study. Building orientation emerged as a critical factor influencing both thermal and air quality 

performance, though its optimal configuration depends on local pollution sources and prevailing 

wind patterns. In the RSM, the variation of the building rotation angle has the greatest impact on 

UTCI, AQIPM2.5, and wind speed. The worst thermal environment quality occurs when the angle is 

53.64°, while the best outdoor air quality is at an angle of 46.18°. This phenomenon is attributed 

to the consideration of PM2.5 at the inlet of the catchment area as the main pollution source in the 

multi-objective optimization calculation. When the wind direction is almost parallel to the 

building longitudinal passage, the ventilation effect is optimal, effectively carrying away the 

building's residual heat, but at the same time, it may also introduce more fine particulate matter. 

Therefore, when determining the orientation of a group of buildings, it is also necessary to clearly 

understand the pollution source situation in the study area. 

The "Shenzhen City Planning Standards and Guidelines" (2021) [73] require consideration of 

the prevailing wind direction's impact on buildings layout. In the "Standard for Energy-efficient 

Design of Residential Buildings in Hot Summer and Warm Winter Regions" (JGJ75-2012), it is 

also emphasized that when designing a group of buildings, natural ventilation should be 

considered, and the layout of buildings should preferably be north-south or close to the north-

south direction. In the Pareto front solution, the angle between the building orientation and the 

wind direction is -2° to 9°, where the incoming wind direction is basically parallel to the axis of 

the building width direction. However, in actual research, due to the influence of the surrounding 

area on the wind environment of the block, it may not be possible to simultaneously meet the 

requirements of the prevailing wind direction and sunlight, or the direction of the plot and streets 

may not meet the requirements for the north-south arrangement of buildings. In this case, try to 
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control the angle between the building width and the prevailing wind within 15° to promote 

ventilation within the block. 

4.4.2 Spacing and Height Optimization 

The interplay between building spacing and height represents the most influential 

morphological relationship, requiring careful balance to achieve environmental objectives while 

meeting density requirements. The RSM results show that a larger building height corresponds to 

lower UTCI and AQIPM2.5 values. At the same time, the larger the building spacing, the smaller the 

corresponding UTCI value. For example, in the non-dominated solution C, the transverse spacing 

and perpendicular building spacing are 56 m and 67 m, respectively. Due to the restrictions of the 

FAR, they did not reach the upper limit of the optimization range of 80 m. Building design and 

urban planning design codes often only stipulate the minimum spacing of buildings. 

The sensitivity ranking of morphology parameters indicates that the impact of building transverse 

spacing and height on UTCI and AQIPM2.5 is the greatest. Therefore, when optimizing the 

morphology design of residential block, these two parameters should be reasonably designed. In 

the Pareto front solution set, when the FAR is close to 3, the transverse spacing is 55 m to 64 m, 

and the building height is 39 m to 57 m; when the FAR is close to 6, the transverse spacing is 53 

m to 59 m, and the building height is 75 m to 84 m. 

However, in actual building design and urban planning design, not only the building spacing 

and height need to be considered, but also the optimization of the plot's form, FAR, building 

density, and other restrictions. It is not possible to optimize the design according to the interval 

values of the Pareto solution set in all study areas in Shenzhen. The specific parameters of 

building transverse spacing (S) and building height (H) can be transformed into interval control of 

H/S to describe the openness of the residential block. Therefore, when designing block ventilation 

corridors, it is necessary to avoid using a high H/W ratio. The following are recommended 

optimization parameters: for areas with a lower FAR (approximately 3.0), the H/W ratio should be 

controlled between 0.7 and 1.0; for areas with a higher FAR (approximately 6.0), the H/W ratio is 

recommended to be set between 1.3 and 1.6. 

4.4.3 Building Geometry Adaptation 

To enhance the thermal comfort and air quality of the block, the design of building length and 

width should balance the needs for shading and ventilation. Sensitivity analysis indicates that the 
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size ratio of buildings can impact the thermal environment and air circulation. Therefore, in the 

early stages of block planning, the length-to-width ratio of buildings should be reasonably set in 

conjunction with the FAR and density. The Pareto front solution set shows that in scenarios with a 

lower FAR (approximately 3.0), the building length should be between 42 m and 52 m, the width 

between 26 m and 36 m, the length-to-width ratio between 1.4 and 1.8, and the height between 39 

m and 57 m. Such buildings tend to have a combination of slab and tower forms, maintaining the 

characteristics of slab buildings while being more compact. 

In contrast, under the requirement of a higher FAR (approximately 6), the building length is 

recommended to be between 48 m and 53 m, the width between 42 m and 53 m, the length-to-

width ratio between 1.0 and 1.3, and the height range from 75 m to 84 m. This kind of tower-style 

building, with its larger building volume and height, not only meets the FAR requirements but also 

ensures an appropriate distance between buildings, promoting ventilation. In summary, for areas 

pursuing a low FAR, it is recommended to use slab building designs with a length-to-width ratio 

of about 1.8; for areas with a higher FAR, it is suitable to plan for taller tower-style residences. 

 

4.5. Case Study Application 

4.5.1 Improved thermal environment 

Field simulations of the optimized morphology demonstrate improvements in outdoor 

thermal conditions compared to the original design. To validate the practical applicability of the 

optimization framework and demonstrate real-world performance improvements, the derived 

morphological strategies were applied to an actual urban renewal project in Shenzhen. The 

optimization results have been further applied to the case study area. The air temperature 

distribution at the height of 1.5 m of the case study area is shown in Fig. 12, with ranges between 

32 ℃ and 40 ℃. Due to the absorption and reflection of solar radiation by building façades, air 

temperatures near building exteriors were higher, particularly in areas with high building density. 

In Zones B, C2, and C3, the original building scheme exhibited high density, which hindered heat 

dissipation from building façades, resulting in the formation of high-temperature zones. In the 

optimized scheme, increased building spacing enhanced both convective heat transfer and 

radiative heat exchange on building surfaces. For optimized block, outdoor air temperatures were 

significantly reduced. In Fig. 12, the red-highlighted regions in Zones B, C2, and C3, where 
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maximum air temperatures in the original scheme reached up to 38.67 ℃, experienced air 

temperature reductions of 4.15 ℃, 2.92 ℃, and 4.71 ℃ under the optimized scheme. 

Moreover, in the original scheme, the area near newly constructed high-rise residential 

complexes exhibited the lowest outdoor air temperatures, likely due to stronger ventilation 

through narrow gaps and effective shading. In the optimized scheme, the same areas maintained 

relatively lower outdoor air temperatures, ranging between 31 ℃ and 34 ℃. For Zones A, C2, and 

the public building zone, the average air temperature in the research area under the original 

scheme was 36.60 ℃, while the optimized scheme reduced the average temperature by 2.09 ℃. 

  
(a) Original block (b) Optimized block 

Fig. 12 Simulated air temperature contours of the research area 

The wind speed within the research area is substantially influenced by morphology. The wind 

speed distribution at the 1.5 m height cross-section is shown in Fig. 13, where the maximum wind 

speed reached 5.06 m/s and 4.56 m/s for original and optimized block, respectively. Due to the 

high building density of the original residential block, continuous street-facing façades were 

formed on both sides of the streets, resulting in relatively low wind speeds within the research 

area. Additionally, wind speeds exceeding 5 m/s were observed around the new residential 

buildings in the original scheme, causing strong slit winds that created discomfort for pedestrians. 

Although the optimized design moderately increased the overall wind speed in the area, it 

strategically redirected airflow through newly added roads, reducing the maximum wind speed in 

the region to below 5 m/s. In Zones C1, C2, and C3, the original scheme adopted a grid layout 

with high building density, and the street-facing buildings can obstruct ventilation. This led to 

large stagnant wind zones (wind speeds of 0-0.2 m/s) in the area. For optimizied block, the 

increased building spacing widened airflow corridors, allowing more air to flow into the interior 

of the study area, with most regions achieving wind speeds above 1 m/s. 
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In particular, in Zone C1, the street-facing buildings channeled wind into the interior of the 

building clusters, forming wind corridors between buildings. In this plot, the maximum wind 

speed in the optimized scheme reached 3.28 m/s, representing a significant improvement 

compared to the original scheme’s inter-building wind speed of 0.45 m/s. Additionally, the slit 

winds around newly constructed high-rise buildings extended to the street, markedly improving 

ventilation conditions in the stagnant wind zones of the original residential block. 

  
(a) Original block (b) Optimized block 

Fig. 13 Simulated wind speed contours of the research area 

4.5.2 Improved PM2.5 concentration 

Beyond thermal improvements, the optimized configuration achieved notable enhancements 

in air quality through strategic manipulation of wind flow patterns. As shown in Fig. 14, since 

PM2.5 is discrete phase, there are some areas where PM2.5 concentrations remain relatively high or 

near zero. The primary source of pollution in the research area originates from the diffusion of 

PM2.5 from surrounding regions. In the original scheme, the relatively low wind speeds caused 

PM2.5 to accumulate predominantly within the block. The continuous façades of street-facing 

buildings restricted airflow into the residential block, resulting in lower PM2.5 concentrations in 

the inner areas. Higher wind speeds around the newly constructed residential areas led to 

relatively elevated PM2.5 concentrations. Moreover, in the interior of the building clusters, the 

optimization increased wind speeds, allowing more outdoor airflow to enter block, which slightly 

raised PM2.5 concentrations. For instance, in Zone B, where wind speeds were low in the original 

scheme, the optimized scheme increased PM2.5 concentration by 5.5 ug/m³ at the same area. 

Nevertheless, enhancing ventilation remains crucial for preventing the accumulation of PM2.5 

within the block. For optimized residential block, the increased wind speeds within the streets 

facilitated the dispersion of pollutants. This effect was particularly evident on roads adjacent to 
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Zone C, where areas with reduced PM2.5 concentrations corresponded to regions with increased 

wind speeds. In Zone C1, the original scheme exhibited low wind speeds. However, due to high 

PM2.5 concentrations in nearby streets, pollutant concentrations around buildings in this area were 

also elevated. For optimized block, PM2.5 accumulation in the streets was reduced, and despite 

higher wind speeds, concentrations in this area decreased distinctly. At the same area, PM2.5 

concentrations were reduced by 19.66 ug/m
3
 under the optimized scheme. 

Similarly, near the outer façades of street-facing buildings in Zone C3, PM2.5 concentrations 

decreased by 24.31 ug/m
3
 in the optimized scheme. Overall, morphology optimization effectively 

reduced PM2.5 concentrations in areas with severe pollution. 

  
(a) Original block (b) Optimized block 

Fig. 14 Simulated PM2.5 concentration contours of the research area 

4.5.3. Case Study Insights 

The comparative analysis between original and optimized designs reveals both the potential 

benefits and practical considerations for implementing morphological optimization strategies. 

After in-depth comparative analysis of the optimized schemes, it is evident that optimized scheme 

demonstrates significant improvements in reducing air temperature, enhancing wind speeds, and 

lowering PM2.5 concentrations. Tshis study employs a combination of numerical simulations, 

parametric modeling, and multi-objective optimization to propose a computational design 

approach for the morphology of residential block. This approach effectively integrates 

considerations of thermal environment and air quality, showcasing high feasibility and 

effectiveness. 

However, the results obtained from the numerical simulations also highlight potential issues 

within the physical environment of the block. To further improve block optimization design, the 

following aspects should be prioritized: 
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(1) Mitigating high-speed wind tunnels between tall and super-tall buildings 

For densely built clusters of tall and super-tall buildings, rational planning of surrounding 

building layouts is essential to create smooth airflow channels. This would help direct ventilation 

while reducing localized high wind speeds. In areas awaiting redevelopment, efforts should focus 

on widening ventilation corridors as much as possible, while ensuring compliance with building 

density and floor area ratio requirements, to effectively prevent the formation of high-speed wind. 

(2) Avoiding outdoor activity areas in highly polluted zones 

While morphology optimization can significantly enhances ventilation, it can also lead to 

increased diffusion of air pollutants from surrounding areas into the block interior. Particularly in 

vortex zones behind buildings, turbulence and eddies often result in elevated concentrations of air 

pollutants. Wind field analyses should guide adjustments to building layouts to minimize vortex 

zones. During detailed block design, it is essential to accurately identify areas with high PM2.5 

concentrations and avoid overlapping outdoor activity spaces with polluted areas. 

 

5 Discussions 

5.1 Key Findings and Comparison with Previous Research 

This study's integrated optimization framework reveals several important findings that both 

confirm and extend previous research on urban morphology optimization. The two-way coupled 

model demonstrates that thermal environment and air quality exhibit complex interdependencies 

that single-objective studies cannot capture effectively. 

The optimal building orientation results align with established ventilation principles, with 

angles less than 15° to prevailing winds proving most effective for both thermal comfort and air 

quality. This finding corroborates García et al. [42] who demonstrated the positive role of parallel 

wind directions in facilitating PM dispersion, while extending their work by quantifying the 

thermal comfort benefits simultaneously. However, our results contradict studies suggesting 45° 

angles are optimal for PM dispersion [21], likely due to our consideration of thermal environment 

interactions and local emission sources. 

Building height effects show more complex relationships than previously reported. While 

deep urban canyons (H/W > 2) effectively reduce thermal stress through shading [19], our results 

demonstrate they simultaneously elevate PM2.5 concentrations, consistent with Miao et al. [17] 
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who found PM concentrations are higher in deep versus balanced canyons. The optimal H/W 

ratios identified in this study (0.7-1.0 for low FAR, 1.3-1.6 for high FAR) represent a compromise 

between these competing effects, providing new quantitative guidance for practitioners. 

The sensitivity analysis reveals that longitudinal spacing (aligned with wind direction) has 

the greatest impact on both objectives, with correlation coefficients of ±0.81. This finding extends 

Kurppa et al. [76] who recommended lower H/W values for PM reduction, by demonstrating that 

spacing orientation matters more than absolute dimensions. The minimal impact of transverse 

spacing contradicts conventional wisdom about cross-ventilation but aligns with computational 

studies showing that wind-aligned corridors dominate pollutant dispersion patterns. 

 

5.2 Methodological Contributions and Validation 

Beyond the specific morphological findings, this research advances urban environmental 

modeling methodology through its coupled simulation-optimization framework. The RSM-based 

optimization approach successfully bridges the gap between computationally intensive CFD 

modeling and practical design applications. With R² values of 0.98-0.99 and maximum errors 

below 8.13%, the surrogate model demonstrates superior accuracy compared to typical urban 

design approximations while reducing computational time by orders of magnitude. This addresses 

a critical limitation identified by Li et al. [45], who noted the lack of systematic optimization 

frameworks for residential block planning. 

The two-way coupling mechanism represents a significant advance over conventional one-

way models. By incorporating PM2.5 effects on radiative transfer and momentum exchange, the 

model captures thermal-pollutant interactions that previous studies overlooked. Case study 

conducted for Shenzhen demonstrates the model's predictive capability. The reduction of air 

temperature by  2.09°C and improved air circulation were achieved while maintaining 

development density requirements. 

The results of the Pareto optimization indicate trade-offs inherent between thermal comfort 

and air quality that sheds light on conflicting recommendations found in earlier literature sources. 

The prioritization of UTCI settings usually comes at the expense of air quality and vice versa, 

showing why one-objective techniques supply conflicting advice. The determination of two 

different ranges of parameter intervals that represent various ranges of FAR has practical 
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flexibility to the designers without compromising environmental performance. 

 

5.3 Practical Implications for Urban Design 

The quantitative relationships and optimization strategies identified in this study should be 

translated into specific design recommendations that can inform planning practice and regulatory 

frameworks. The optimization strategies developed provide evidence-based alternatives to 

conventional planning approaches. The recommendation for building orientations within 15° of 

prevailing winds directly challenges traditional north-south orientation mandates in many planning 

codes, particularly where site conditions or street layouts make such orientations impractical. The 

flexible H/W ratio guidelines (0.7-1.6 depending on FAR) offer more nuanced design guidance 

than existing binary recommendations for "compact" versus "open" urban forms. 

For regulatory framework updates, planners should implement graduated H/W ratios based 

on development density: 0.7-1.0 for low-density zones (FAR 3.0-4.0), 1.0-1.3 for medium-density 

(FAR 4.0-5.0), and 1.3-1.6 for high-density zones (FAR 5.0-6.0). Longitudinal spacing parallel to 

prevailing winds should be prioritized with minimum requirements 1.5 times transverse spacing, 

acknowledging its dominant influence (correlation ±0.81) on both thermal comfort and air quality. 

Building typology selection should adapt to density constraints: slab buildings with length-to-

width ratios ~1.8 for low FAR areas (<4.0) and tower configurations with ratios 1.0-1.3 for high 

FAR areas (>5.0). This differentiation optimizes environmental performance while maintaining 

development viability. Performance verification through CFD modeling should be required at key 

design stages, with environmental performance bonuses (FAR increases of 0.2-0.5) offered for 

developments achieving UTCI reductions >2°C and maintaining AQIPM2.5 ＜50. 

Nonetheless, policy innovation is necessary because of implementation challenges. The 

existing setback operations and orientation limitations tend to contradict the most appropriate 

designs. Economic barriers to the adoption of larger spacing requirements can be removed through 

environmental performance-based incentives, such as fast-track approvals of pre-validated 

morphologies and access to green financing. 

 

5.4 Open Questions and Future Research Directions 

While this study advances integrated environmental optimization, several fundamental 
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questions remain unresolved, highlighting both the contributions and boundaries of current 

knowledge. Even with the progress in urban environmental modeling in this study, there are 

several basic questions that lack answers, and this aspect evidences the contributions and 

limitations of this study. 

The paradox of the coupling: How does one city design optimize both thermal comfort by 

compact forms and air quality by open ventilation of the design? The coupled model used in our 

study shows that there is no single-point solution to this paradox, but trade-offs must be accepted. 

The Pareto front analysis shows that there is a trade-off relationship between the two objectives, in 

the sense that to increase one, the other has to be degraded, even though the best trade-offs are 

context-dependent. 

Climate and transferability: Are the morphological optimization principles that have been 

determined on the block scale suitable to the district or city scale, and to what extent are 

morphological optimization results transferable between climates? Though our framework will 

offer blockwise optimization in hot-humid climates, larger-scale aggregation issues and 

adjustment to alternative climatic scenarios will necessitate a recalibration of the model. The 

approach is portable, though the best morphologies will probably vary widely among climates. 

Temporal robustness: Can static optimization adequately address dynamic environmental 

conditions? Our steady-state model only contains average circumstances, and which cannot be 

sure of the performance in a severe event and in diurnal and seasonal changes. Follow-up studies 

ought to come up with computationally feasible dynamic optimization methods that take into 

consideration variability over time. 

Geometric complexity: What is the difference between optimized results assuming realistic 

urban heterogeneity and idealized geometries? Our simplified grid typology can do systematic 

analysis, but may not be able to represent all the complexities of mixed-use schemes, odd building 

layout and different topographic situations. Generalisation to more sophisticated geometries is an 

urgent issue. 

Multi-pollutant and multi-objective expansion: How does one extend strategies to take into 

account other pollutants and other objectives beyond PM2.5, and thermal comfort and air quality? 

Alignment with building energy use, gains of green infrastructure, and multiple pollutant species 

may also change optimal configurations in a fundamental way. Such extensions can be based on 
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the framework, but the computational demands and trade-off complexity will grow substantially. 

Validation at long run: What is the performance of optimized designs under real-world 

implementation over long durations? Although the short-term advantages are evident in our case 

study, the long-term observation of the projects constructed in accordance with these guidelines 

would enhance the trust in the methodology and the possibility to continuously improving it. 

These unresolved questions outline the course of subsequent research by recognizing that a 

full understanding might still depend upon some breakthroughs in methods of computational 

modelling, changes in monitoring technologies, and even our knowledge of urban environmental 

systems. The methodological framework and quantitative implications of this study contribute to 

the area by conceptualizing a level of knowledge that contributes to a solution to these broader 

issues. 

 

5.5 Policy Recommendations 

Drawing from the technical findings and practical insights, the following policy 

recommendations target different stakeholders in the urban development process. On the basis of 

our results, we would like to make the following tangible policy recommendations to various 

stakeholders: 

For Urban Planning Departments: Eliminate prescriptive building orientation and replace 

with performance standards that offer density differentiated spacing requirements, H/W of 0.7-1.0 

on FAR 3.0-4.0, 1.0-1.3 on FAR 4.0-5.0 and 1.3-1.6 on FAR 5.0-6.0. Require residential projects 

with floorspace greater than 10,000 m2 to undergo environmental impact assessments via 

validated CFD models to guarantee both UTCI and AQIPM2.5 targets, prior to authorization. 

For Environmental Protection Agencies: Include air quality issues in building regulations 

by mandating a minimum longitudinal spacing 1.5 times the transverse separation along the 

prevailing wind directions. Put in place monitoring guidelines that monitor the thermal comfort 

and the PM2.5 concentration at pedestrian level in the developments, one year after construction 

has been completed. Design publicly available databases of tested morphological arrangements 

that attain two environmental goals to inform future developments. 

For Engineering consultants: Integrate two-way coupled CFD-RSM framework to use in 

environmental assessment and no longer on single-objective studies. Apply the given ranges of 
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parameters and sensitivity coefficients to make quick preliminary evaluations when performing 

conceptual design. Apply iterative optimization in the design development stage, aiming to 

become Pareto-optimal solutions, trade-offs between client density conditions and environmental 

performance. 

For Municipal Governments: Implement new tiered incentive rates of 0.2-0.5 FAR bonuses 

on developments that have shown UTCI reduction > 2 ℃ and AQIPM2.5 < 50 achieved through 

validated modeling. Provide fast-track permitting with up to 30 percent reduction in permitting 

time when the morphological configurations are pre-validated. Couple the environmental 

optimization compliance with green bonds eligibility and preferential loan rates to counter higher 

construction costs incurred due to provision of larger spacing. 

For Professional Associations: Revise design guidelines to make integrated thermal-air 

quality optimization a regular practice. Come up with professional certification programs in multi-

objective optimization and coupled environmental modeling. Peer review systems can be created 

over CFD validations studies in order to impose consistency and reliability of projects. 

The above policy suggestions that can be implemented as practical courses of action that 

ensure the preservation of the viability of development through systematic enhancement of urban 

environmental quality. The process of implementation can start by pilot projects in new 

development zones and be gradually integrated into the comprehensive planning frameworks 

which will be based on monitored performance results. 

 

6 Conclusion 

This study develops an integrated optimization framework for residential block morphology 

that simultaneously addresses thermal comfort and air quality through a novel two-way coupled 

numerical model. The methodology successfully bridges physics-driven CFD simulation with 

data-driven optimization techniques, providing practical design guidance for hot-humid climates. 

The key findings from this research include: 

• Building orientation within 15° of prevailing winds provides optimal environmental 

performance for both thermal comfort and air quality 

• Longitudinal spacing (wind-aligned corridors) exhibits the strongest influence on both 

UTCI and AQIPM2.5 (correlation coefficient ±0.81) 

                  



45 

 

• Optimal height-to-width ratios depend on development density: 0.7-1.0 for low FAR (~3) 

and 1.3-1.6 for high FAR (~6) 

• Slab-type buildings (length-to-width ratio ~1.8) suit low-density areas while tower-type 

configurations (ratio 1.0-1.3) optimize high-density developments 

• Response surface modeling achieves 95% accuracy (R² = 0.98-0.99) while reducing 

computational requirements by orders of magnitude 

• Case study demonstrates air temperature reductions up to 2.09°C with improved wind 

circulation while maintaining regulatory compliance 

The optimization framework reveals fundamental trade-offs between thermal comfort and air 

quality that explain contradictory recommendations in previous literature. The methodology 

provides quantitative tools for evidence-based design decisions while accommodating practical 

constraints including regulatory requirements and economic considerations. This integrated 

approach offers urban planners and designers practical tools for creating healthier residential 

environments while maintaining development viability. The computational accessibility through 

response surface modeling enables adoption without specialized CFD expertise. Future research 

should extend the methodology to different climatic conditions and integrate with green 

infrastructure systems, while policy development should focus on performance-based regulations 

that reward environmental outcomes alongside traditional density criteria.  
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Appendix:  

A.1 Computational Domain and Mesh Configuration 

A.1.1 Geometric Model Setup  

The computational fluid dynamics simulations were performed using ANSYS Fluent 19.2. 

The computational domain was constructed based on electronic map data and field survey 

information, with building geometries simplified to enhance computational efficiency while 

preserving essential morphological characteristics. All building openings (doors and windows) 

were modeled as closed surfaces to represent typical daytime operating conditions. The simplified 

geometric model of the target area including the distribution of measurement points is illustrated 

in Figure A.1. 

 

Figure A.1 Geometric model of the target area 

The computational domain dimensions were established following established best practices 

for urban CFD studies. Specifically, boundaries were positioned at minimum distances of 5H from 

the study area, where H represents the maximum building height. The inlet boundary was located 

5H upstream, the outlet boundary 15H downstream, and the top boundary 6H above the tallest 

building to minimize blockage effects and ensure proper flow development. 

A.1.2 Boundary Condition Classification 

Boundary conditions were configured separately for the continuous phase (air) and discrete 

phase (PM℃.℃) according to established urban CFD protocols. The detailed boundary condition 

specifications are presented in Table A.1. 
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Table A.1 Boundary conditions for numerical model 

Boundary Continuous Phase Discrete Phase 

Inlet Velocity inlet Escape 

Road surfaces Interior Escape 

Outlet Pressure outlet Escape 

Building walls/Ground Wall (no-slip) Reflect 

Domain top/sides Symmetry Symmetry 

The continuous phase boundary conditions follow standard practices for urban atmospheric 

flow modeling, with velocity inlet conditions applied to prescribe logarithmic wind profiles and 

pressure outlet conditions to allow natural flow development. For the discrete phase, escape 

boundaries were specified at inlet, road surfaces, and outlet to allow particle injection and 

removal, while reflect boundaries at solid surfaces simulate particle-wall interactions. 

A.1.3 Mesh Generation and Quality Control 

A tetrahedral mesh was employed to accommodate the complex building geometries within 

the urban environment. The mesh configuration parameters were established based on grid 

independence studies and computational resource constraints: 

 Building and road surfaces: 5 m characteristic length 

 Ground surface mesh: 5 m characteristic length 

 Domain boundaries: 10 m characteristic length 

 Maximum cell size within domain: 15 m 

 Growth rate: 1.1 

 Boundary layer mesh: first layer height 0.1 m, growth rate 1.1, 10 layers total 

The final computational mesh contained 31.12 million cells with a minimum orthogonal 

quality of 0.10, maximum aspect ratio of 336, and y℃ values maintained below 800 at all wall 

surfaces to ensure adequate near-wall resolution for the selected turbulence model. 

 

A.2 Model Setup and Physical Parameters 

A.2.1 Meteorological Input Parameters 

Field measurements were collected for September 28, 2021, utilizing data from the Shenzhen 

government open data platform (https://opendata.sz.gov.cn) and local environmental monitoring 

stations. The comprehensive hourly meteorological parameters including wind velocity and 

direction, air temperature and humidity, solar radiation components, and PM℃.℃ concentrations 
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are presented in Figure A.2. 

  

(a) Wind velocity and direction (The north is 0°) (b) Air temperature and humidity 

  

(c) Solar radiation (d) PM2.5 concentrations 

Figure A.2 Inlet parameters of target area: (a) Wind velocity and direction (The north is 0°), (b) 

Air temperature and humidity, (c) Solar radiation, (d) PM℃.℃ concentrations 

The wind velocity profile was prescribed as a logarithmic function typical of atmospheric 

boundary layer flows over urban terrain. The meteorological data represents typical summer 

pollution conditions in the subtropical climate of Shenzhen, with elevated temperatures and 

moderate PM℃.℃ concentrations suitable for model validation purposes. 

A.2.2 Material Properties and Heat Transfer 

Surface material properties were specified according to typical urban construction materials 
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and established literature values. The thermal and radiative properties are summarized in Table 

A.2. The convective heat transfer coefficient at building surfaces was calculated as a function of 

local wind speed using the empirical correlation: 

ℎ𝑐 = 5.7 + 3.8𝑢                

(A.1) 

where h_c is the convective heat transfer coefficient (W/m²·K) and u is the local wind speed 

(m/s). 

Table A.2 Material properties for model surfaces 

Surface Absorptivity Emissivity 

Specific 

Heat 

(J/kg·K) 

Density 

(kg/m³) 

Thermal 

Conductivity 

(W/m·K) 

Thickness 

(m) 

Ground/Road 0.6 0.95 880 2600 2.0 0.15 

Building 

walls 
0.6 0.7 750 2400 1.5 0.24 

A.2.3 Anthropogenic Heat Sources 

Building heat rejection from air conditioning systems was modeled as distributed internal 

heat sources on exterior wall surfaces, representing the thermal impact of building mechanical 

systems on the outdoor environment. Heat load calculations were performed according to Chinese 

residential building energy efficiency standards (JGJ75-2012) with the following specifications: 

 Window-to-wall ratios: North facade 0.45, East/West facades 0.3, South facade 0.5 

 Overall building envelope heat transfer coefficient: 1.5 W/(m²·K) 

 Indoor design temperature: 26°C 

 Window overall heat transfer coefficient: 2.0 W/(m²·K) 

 Solar heat gain coefficient: 0.6 

The calculated hourly anthropogenic heat emissions exhibit significant diurnal variation, 

ranging from less than 50 W/m² during nighttime hours to exceeding 140 W/m² during peak 

afternoon conditions, as illustrated in Figure A.3. 
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Figure A.3 Hourly anthropogenic heat emission from buildings 

A.2.4 PM₂.₂ Emission Sources 

Vehicle-generated PM℃.℃ emissions were calculated using methodologies prescribed in the 

Chinese technical guidelines for mobile source emission inventories. The emission rate calculation 

employed the following formulation: 

𝐸1 = ∑ 𝐵𝑖𝑖 × 𝐸𝐹𝑖 × 𝑉𝐾𝑇𝑖 × 10−6            

 (A.2) 

where E℃ represents the annual PM℃.℃ emission rate (kg), Bᵢ is the number of vehicles of 

type i, EFᵢ is the emission factor (g/km), and VKTᵢ is the vehicle kilometers traveled per year 

(km/vehicle). 

The emission factor was calculated as: 

𝐸𝐹𝑖,𝑗 = 𝐵𝐸𝐹𝑖 × φ𝑗               

 (A.3) 

where BEFᵢ is the base emission factor (0.003 g/km for gasoline vehicles) and φ℃ is the 

meteorological correction factor (0.8372). Vehicle operating conditions assumed an average speed 

of 30 km/h and annual mileage of 18,000 km per vehicle. 

 

A.3 Numerical Solution Methodology 

A.3.1 Governing Equations and Turbulence Modeling 

The numerical model employs the steady-state three-dimensional Reynolds-Averaged 

Navier-Stokes (RANS) equations for incompressible turbulent flow. The continuity equation for 

incompressible flow is expressed as: 
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∂𝑢𝑖

∂𝑥𝑖
= 0                 

 (A.4) 

The momentum conservation equation incorporating the Boussinesq approximation for 

buoyancy effects is written as:  

∂(𝑢𝑖𝑢𝑗)

∂𝑥𝑗
= −

1

ρ

∂𝑝

∂𝑥𝑖
+

∂

∂𝑥𝑗
[(ν + ν𝑡) (

∂𝑢𝑖

∂𝑥𝑗
+

∂𝑢𝑗

∂𝑥𝑖
)] + 𝑔𝑖β(𝑇 − 𝑇0)      

 (A.5) 

where uᵢ are the velocity components, p is pressure, ρ is density, ν is molecular viscosity, ν℃ 

is turbulent viscosity, gᵢ are gravitational acceleration components, β is the thermal expansion 

coefficient, T is temperature, and T℃ is the reference temperature. 

The RNG k-ε turbulence model was selected for closure of the Reynolds stress terms due to 

its superior performance in urban flow simulations with adverse pressure gradients and flow 

separation. The transport equations for turbulent kinetic energy (k) and dissipation rate (ε) are: 

∂(ρ𝑘𝑢𝑖)

∂𝑥𝑖
=

∂

∂𝑥𝑗
[(μ +

μ𝑡

σ𝑘
)

∂𝑘

∂𝑥𝑗
] + 𝐺𝑘 + 𝐺𝑏 − ρ          

 (A.6) 

∂(ρε𝑢𝑖)

∂𝑥𝑖
=

∂

∂𝑥𝑗
[(μ +

μ𝑡

σε
)

∂ε

∂𝑥𝑗
] + 𝐶1ε

ε

𝑘
(𝐺𝑘 + 𝐶3ε𝐺𝑏) − 𝐶2ερ

ε2

𝑘
− 𝑅ε     

 (A.7) 

where G℃ represents the generation of turbulent kinetic energy due to mean velocity 

gradients, Gᵦ is the generation due to buoyancy, and Rε is an additional strain rate term in the 

RNG model. 

A.3.2 Radiation and Discrete Phase Modeling 

Solar radiation transfer was simulated using the Solar Ray Tracing algorithm in conjunction 

with the Discrete Ordinates (DO) method. The radiative transfer equation is expressed as: 

∇ ⋅ (𝐼𝑠) + (𝑎 + σ𝑠)𝐼 = 𝑎𝑛2 σ𝑇4

π
+

σ𝑠

4π
∫ 𝐼(𝑠′⃗⃗⃗ ⃗)Φ(𝑠 ⋅ 𝑠′⃗⃗⃗ ⃗)𝑑Ω′4π

0
      

 (A.8) 

where I is the radiation intensity, s⃗ is the direction vector, a is the absorption coefficient, σ℃ 

is the scattering coefficient, n is the refractive index, σ is the Stefan-Boltzmann constant, T is 

temperature, and Φ is the phase function. 

PM℃.℃ dispersion was modeled using the Discrete Phase Model (DPM) with Lagrangian 
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particle tracking. The equation of motion for individual particles is: 

𝑑𝑢𝑝⃗⃗⃗⃗⃗⃗

𝑑𝑡
= 𝐹𝐷(𝑢⃗⃗ − 𝑢𝑝⃗⃗ ⃗⃗⃗) + 𝑔⃗

(ρ𝑝−ρ)

ρ𝑝
+ 𝐹⃗           

 (A.9) 

where u⃗℃ is the particle velocity, u⃗ is the fluid velocity, Fᴅ is the drag force per unit 

particle mass, ρ℃ is the particle density, and F⃗ represents additional forces including Saffman lift, 

pressure gradient, and thermophoretic forces. 

The atmospheric absorption and scattering coefficients in the DO model vary dynamically 

with PM℃.℃ concentrations through user-defined functions (UDF), enabling two-way coupling 

between the thermal environment and particulate matter dispersion. 

A.3.3 Solution Algorithm and Convergence Criteria 

The pressure-based coupled algorithm was employed to achieve complete pressure-velocity 

coupling with enhanced convergence characteristics for complex urban flows. Spatial 

discretization employed second-order upwind schemes for all transport equations to minimize 

numerical diffusion while maintaining solution stability. 

Convergence criteria required simultaneous satisfaction of multiple conditions: 

 Scaled residuals below 10℃℃ for all governing equations 

 Stability of monitored variables (temperature, velocity components, mean radiant 

temperature, turbulent kinetic energy, and dissipation rate) over a minimum of 500 

iterations 

 Mass flux balance across domain boundaries within 1% tolerance 

A.3.4 Adaptive Mesh Refinement 

Grid adaptation was performed every 300 iterations based on gradient-based refinement criteria 

for temperature, velocity magnitude, and PM℃.℃ concentration fields. The refinement thresholds 

are specified in Table A.3. This adaptive approach increased the total cell count from 31.12 to 

32.12 million while improving the minimum orthogonal quality to 0.12. 

Table A.3 Adaptive mesh refinement criteria 

Field Variable Gradient Range Coarsening Threshold Refinement Threshold 

Velocity 5.09×10℃℃ ~ 35.59 0.01 10 

Temperature 1.42×10℃¹℃ ~ 44.23 0.001 10 

PM℃.℃ 

concentration 

1.42×10℃¹℃ ~ 

3.41×10℃℃ 
1×10℃℃ 3×10℃¹℃ 
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The convergence behavior of field variables under grid adaptivity is illustrated in Figure A.4, 

demonstrating progressive reduction in relative errors between successive adaptive iterations. Air 

temperature relative errors decreased from 0.53% to 0.27%, wind velocity errors reduced from 

22.98% to 6.28%, while PM℃.℃ concentration errors, though larger due to the inherently discrete 

nature of particulate matter transport, decreased from 52.25% to 24.8%. 

  

(a) Air temperature (b) Wind velocity 

 

(c) PM2.5 concentration 

Figure A.4 Field variables under grid adaptivity: (a) Air temperature, (b) Wind velocity, (c) 

PM℃.℃ concentration 

 

A.4 Model Validation Results 

A.4.1 Temperature Validation 

The thermal environment model was validated against field measurements collected at three 
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strategically positioned monitoring sites within the study domain. The temporal comparison 

between simulated and observed air temperatures is presented in Figure A.5. The model 

demonstrates robust predictive capability with coefficient of determination (R²) values of 0.83, 

0.78, and 0.82 for Sites A, B, and C respectively, overall mean absolute error (MAE) of 1.03°C, 

and root mean square error (RMSE) of 1.14°C. 

   

(a) Site A (b) Site B (c) Site C 

Figure A.5 Comparison between simulated air temperature and measured values: (a) Site A, (b) 

Site B, (c) Site C 

These accuracy metrics fall well within the acceptable range for urban thermal environment 

simulations, where published studies typically report MAE values between 1-4.36°C. The model 

exhibits systematic deviations with nighttime temperatures consistently underestimated (maximum 

deviation 1.89°C) and morning temperatures slightly overestimated (average error 0.76°C). These 

discrepancies are attributed to the steady-state modeling approach which does not capture thermal 

inertia effects in building materials and urban surfaces. 

A.4.2 Wind Flow Validation 

Wind speed validation results are presented in Figure A.6, demonstrating good agreement between 

simulated and measured values. The model achieves R² values of 0.81, 0.56, and 0.82 for Sites A, 

B, and C respectively, with an overall MAE of 0.08 m/s and site-specific MAE values of 0.10 m/s 

(Site A), 0.03 m/s (Site B), and 0.12 m/s (Site C). 
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(a) Site A (b) Site B (c) Site C 

Figure A.6 Comparison between simulated wind speed and measured values: (a) Site A, (b) Site 

B, (c) Site C 

The model exhibits slight overprediction of wind speeds under low-wind conditions, 

particularly evident at Site B where the area experiences calm wind conditions throughout the 

diurnal cycle with average measured wind speeds of only 0.04 m/s. This discrepancy is attributed 

to simplified representation of building facade details and vegetation, which reduces wind 

resistance in the numerical model compared to actual conditions. 

A.4.3 PM₂.₂ Concentration Validation 

PM℃.℃ dispersion validation demonstrates the model's capability to accurately predict 

pollutant transport patterns within the urban environment, as illustrated in Figure A.7. The 

validation achieves R² values of 0.81, 0.71, and 0.83 for Sites A, B, and C respectively, with MAE 

values of 3.18, 7.20, and 5.11 μg/m³ for the respective sites, overall RMSE of 4.79 μg/m³, and 

relative errors of 15.71%, 19.55%, and 16.81%. 

   

(a) Site A (b) Site B (c) Site C 
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Figure A.7 Comparison between simulated PM℃.℃ concentration and measured values: (a) Site 

A, (b) Site B, (c) Site C 

These validation metrics compare favorably with published CFD-based PM℃.℃ studies, 

where relative errors frequently exceed 35% and absolute deviations can exceed a factor of two. 

The larger uncertainty in particulate matter predictions compared to continuous phase variables is 

inherent to the discrete nature of particle tracking methodologies and the complex interactions 

between turbulent dispersion and particle inertia. 

A.5 Grid Independency 

A systematic grid independence study was conducted employing three mesh densities: coarse 

(15 million cells), medium (31 million cells), and fine (47 million cells). Key output variables 

including area-averaged temperature, velocity magnitude, and PM℃.℃ concentration showed 

convergence with less than 3% variation between medium and fine mesh configurations, 

confirming adequate spatial resolution for the selected medium mesh. 

 

A.6 Statistical Performance Metrics 

Model performance was evaluated using standard statistical metrics commonly employed in 

urban environmental modeling: 

Mean Absolute Error (MAE): 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑖 − 𝑂𝑖|𝑛

𝑖=1         (A.10) 

Root Mean Square Error (RMSE): 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1       (A.11) 

Coefficient of Determination (R²): 𝑅2 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

        (A.12) 

Index of Agreement (d): 𝑑 = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|)2𝑛
𝑖=1

         (A.13) 

where Pᵢ and Oᵢ represent predicted and observed values respectively, Ō is the mean of 

observed values, and n is the total number of data points. 
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