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Abstract

Urban block morphology can influence thermal comfort and air quality, yet existing studies
have focused on single environmental objectives. This study develops an integrated optimization
framework simultaneously addressing thermal environment and PM, s concentration through a
novel two-way coupled numerical model. Key morphological parameters, including building
length, width, height, spacing, and orientation, establish a parametric geometric model of idealized
residential blocks. The methodology integrates physics-driven computational fluid dynamics with
data-driven response surface modeling and multi-objective genetic algorithms. The two-way
coupled model captures interactions between thermal environment and particulate matter
dispersion, while Latin Hypercube Sampling generates 200 morphology samples for CFD
simulations. Response surface models linking morphology parameters to Universal Thermal
Climate Index (UTCI) and AQIppp s achieve 95% accuracy (R* = 0.98-0.99), enabling efficient
optimization. Multi-objective optimization reveals trade-offs between thermal comfort and air
quality, yielding Pareto-optimal solutions with distinct parameter ranges for different floor area
ratios. Building orientation within 15° of prevailing winds optimizes both objectives, while
longitudinal spacing exhibits the strongest influence (correlation +0.81). Optimal height-to-width
ratios range from 0.7-1.0 for low-density to 1.3-1.6 for high-density developments. Case study
validation in Shenzhen achieves air temperature reductions up to 2.09°C while maintaining
regulatory compliance. The framework provides evidence-based design guidelines for hot-humid
climates, offering urban planners practical tools for creating healthier residential environments

while balancing development viability and environmental performance.

Keywords: Urban morphology, Thermal environment, Air quality, Multi-objective optimization,

Computational fluid dynamics
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Nomenclature
Abbreviations Definition
AQI Air Quality Index
AQlpm2s Air Quallty Index for PM, 5
CFD Computational Fluid Dynamics
CF Coverage Factor
DPM Discrete Phase Model
DO Discrete Ordinates
DOE Design of Experiment
FAR Floor Area Ratio
H/W Height-to-Width ratio
LHS Latin Hypercube Sampling
MAE Mean Absolute Error
MOGA Multi-Objective Genetic Algorithm
PM, 5 Particulate Matter with diameter < 2.5 um
RANS Reynolds-Averaged Navier-Stokes
RMSE Root Mean Square Error
RNG Renormalization Group
RSM Response Surface Modei/Methodology
SHAP SHapley Additive exPlanations
SR Spacing Ratio
UDF User-Defined Function
UHI Urban Heat Island
UTCI Universal Thermal Climate Index
VKT Vehicle Kilometers Traveled
XGBoost eXtreme Gradient Boosting
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1 Introduction

Rapid global urbanization and climate change have intensified environmental stresses that
pose significant threats to energy use, thermal comfort, and public health [1-3]. Urban heat islands
and air pollution represent two of the most pressing challenges facing modern cities, with building
morphology playing a critical role in mediating both phenomena [4]. Extreme heat exposure
causes a spectrum of health impacts ranging from heat exhaustion and dehydration to
cardiovascular stress, with vulnerable populations facing elevated morbidity and mortality risks
[5], increasing human morbidity and mortality [6, 7]. The severity of these impacts is exemplified
by major heat wave events, including the 2003 European heat wave that caused approximately
15,000 deaths in France alone [8] and the 2009 Melbourne heat wave responsible for 374 fatalities
over just four days [9]. Concurrently, the accumulation of pollutants in urban boundary layers
leads to the occurrence of many diseases [10-12] with serious implications for human health and
safety [13, 14]. Ambient air pollution kills 4.2 million people annually [15], indicating air
pollution as a major environmental and health problem in many countries [16]. The spatial
distribution and concentration of fine particulate matter (PM,s) are strongly influenced by urban
morphological characteristics, including building geometry, street configuration, and block layout
patterns.

The morphology of urban blocks—including building height, width, orientation, and street
layout—significantly influences both the urban thermal environment and the distribution and
concentration of PM; 5 [17, 18]. These morphological parameters affect solar radiation reception
and ventilation efficiency [18], thereby shaping local microclimates. In recent years, rapid
urbanization has exacerbated global climate change, urban heat island effects, and air pollution
problems [19], highlighting the necessity of balancing thermal environment and air quality in
urban design. However, existing studies indicate that urban block morphology exerts dual and
sometimes contradictory effects on thermal comfort and PM,s concentrations [4]. Design
strategies that optimize one environmental factor often compromise the other, creating complex
trade-offs that current planning approaches inadequately address.

This study develops an integrated optimization framework for residential block morphology
that simultaneously addresses thermal comfort and air quality through a novel two-way coupled

numerical model. The primary objective is to establish a systematic methodology for optimizing
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building morphology parameters that balances the often conflicting requirements of thermal
environment improvement and PM,s concentration reduction. By combining physics-driven
computational fluid dynamics with data-driven optimization techniques, this research provides
practical design guidance for creating healthier residential environments in hot-humid climates

while maintaining development density requirements.

2 Literature Review

2.1 Urban Block Morphology Effects on Thermal Environment and Air Quality

The morphology of urban blocks can influence the reception of solar radiation and ventilation
efficiency [20], thereby shaping the thermal environment. An essential parameter in evaluating
urban morphology is the height-to-width ratio (H/W) of urban canyons, which is directly linked to
thermal comfort. Variations in H/W result in distinct thermal environments: wide urban canyons
(H/W < 0.5), balanced urban canyons (H/W = 1), and deep urban canyons (H/W > 2) exhibit
markedly different thermal characteristics [21]. During hot summers, deep urban canyons
effectively block solar radiation [21] and mitigate unheated airflow [22], leading to lower internal
temperatures [23] and more comfortable thermal environments [24]. However, studies have also
highlighted conflicting findings-—the combination of high-rise buildings with deep urban canyons
may reduce wind speed [25], potentially compromising thermal comfort through reduced
ventilation and heat removal.

Recent computational advances have enhanced the efficiency of thermal environment
assessment. Cui et al. demonstrated that machine learning models, specifically XGBoost with
SHAP analysis, can predict pedestrian-level thermal conditions with high accuracy while
providing ¢xplainable insights into morphological influences [18]. Their findings emphasize the
importance of spatial positioning variables over traditional building parameters, suggesting that
urban context can affects local thermal environments. This represents a shift from purely
geometric considerations to more holistic spatial analyses.

The relationship between urban morphology and air quality presents equally complex
dynamics. In deep urban canyons, PM concentrations are considerably higher compared to
balanced and wide urban canyons [17]. Elevated temperatures on building surfaces and the ground

can further influence particulate diffusion through thermophoretic forces and buoyancy-driven
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flows. For instance, in balanced urban canyons with Froude numbers between 0.19 and 0.38,
particulate dispersion is enhanced through optimal mixing conditions. However, in deep urban
canyons, a clockwise vortex forms above the canyon while a weaker counterclockwise vortex
develops within, severely suppressing particulate dispersion [26]. This vortex structure creates a
"lid effect" that traps pollutants at pedestrian level, exacerbating exposure risks.

These contradictory findings highlight a fundamental challenge in urban design: compact
urban layouts remain widely recommended for thermal comfort [27], as shading is a primary
strategy for improving thermal conditions in urban streetscapes [28]. Deep urban canyons can
notably lower the physiological equivalent temperature (PET) [23], and implementing effective
shading measures within wide urban canyons can also substantially enhance thermal comfort [29].
Conversely, to reduce urban canyon PM concentrations, lower H/W values are recommended [29],
creating an inherent conflict between thermal and air quality objectives.

Building orientation represents another vital morphological parameter with dual impacts. The
orientation can affect thermal environment by determining solar radiation exposure and wind
patterns [30, 31], particularly in deep urban canyons [32]. Strategic building layouts can facilitate
mutual shading and self-shading, ~effectively reducing daytime temperatures [33]. Field
measurements by Georgakis and Santamouris revealed temperature differences of up to 14°C
between opposing walls of streets during summer [34], while Offerle et al. [35] in Gothenburg,
Sweden, showed that for streets with H/W below 0.48, temperature differences of up to 15 [ were
observed between street-facing walls and between walls and the surrounding air.

The angular relationship between street axes and prevailing wind directions [36]
fundamentally affects both ventilation and pollutant dispersion. When wind flows obliquely to the
street axis, a helical vortex forms along the street length [37], while perpendicular wind flow
generates either single or dual counter-rotating vortices [38]. Changes in wind direction not only
alter the pathways of PM dispersion but also induce turbulence variations that can lead to
significant differences in PM concentrations [39]. These flow patterns directly influence PM
dispersion pathways—perpendicular winds increase PM concentrations on windward sides while
decreasing them on leeward sides [40]. Buccolieri et al. found that perpendicular wind directions
reduce canyon wind speeds, resulting in higher PM concentrations, while parallel winds enhance

roof-level airflow and turbulence intensity, promoting dispersion [41]. Garcia et al. further
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demonstrated that parallel wind directions enhance recirculation within canyons, improving both
wind speed and dispersion efficiency [42]. Interestingly, some studies indicate that 45° wind
angles provide optimal PM dispersion compared to fully parallel or perpendicular orientations

[17], though this finding lacks consensus across different urban contexts.

2.2 Multi-objective Optimization of Urban Block Morphology

Urban morphology, thermal environment, air quality are interconnected in multifaceted and
even contradictory ways, which underlines the inadequacy of designing with one goal. Though
these studies give very good insights into each specific environmental phenomenon, they do not
establish a solution to the main problem urban planners are dealing with: how to optimize several,
sometimes competing environmental targets simultaneously. This awareness has also encouraged
researchers to look into unified optimization frameworks which can strike a balance between
thermal comfort and air quality factors, although these methods are still very early in the literature
as the current literature reveals gaps in integrated optimization frameworks. Most existing studies
adopt single-objective approaches, optimizing either thermal conditions [18, 43] or air quality [26,
44] in isolation, potentially leading to suboptimal or even counterproductive outcomes for the
neglected objective.

Li et al. [45] represent one of the few attempts at simultaneous assessment, evaluating both
thermal environments and air quality under varying frontal area densities of buildings. They
recommended an optimal range of 0.82 to 0.84 for frontal area density. However, their study
notably lacks consideration of the interactive dynamics between thermal environments and air
pollutants—treating them as independent phenomena rather than coupled systems. This limitation
is critical, as thermal buoyancy affects pollutant dispersion [46], while pollutant concentrations
influence radiative transfer and thus thermal conditions [47].

The computational complexity of multi-objective optimization in urban contexts presents
another challenge. Traditional CFD approaches, while physically accurate, require substantial
computational resources that make iterative optimization impractical [48]. Each simulation may
require hours or days of computation time, rendering genetic algorithms or other optimization
methods that require thousands of evaluations infeasible [49]. This computational bottleneck has

limited most studies to sensitivity analyses rather than true optimization, examining a handful of
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scenarios rather than systematically searching the design space [50].

Recent advances in surrogate modeling offer potential solutions. Response surface
methodology (RSM) and machine learning approaches can approximate CFD results with
sufficient accuracy for optimization purposes while reducing computational time by orders of
magnitude [51, 52]. However, these methods have seen limited application in integrated thermal-
air quality optimization. Most applications focus on single objectives—either using surrogate
models for thermal comfort prediction [18, 53] or for air quality assessment [54], but rarely for
simultaneous multi-objective optimization.

The coupling mechanisms between thermal and air quality phenomena remain poorly
understood in the optimization context. Two-way coupling, where thermal conditions affect
pollutant dispersion through buoyancy and thermophoresis while pollutants influence radiative
transfer, has rarely been implemented in optimization studies. Wang et al. recently developed a
two-way coupled model demonstrating these interactions, but their work focused on analysis
rather than optimization [55]. The absence of coupled models in optimization frameworks
represents a critical gap, as it may lead to solutions that appear optimal under decoupled analysis
but perform poorly when coupling effects manifest in reality [56].

Furthermore, existing optimization studies typically employ simplified geometric models that
may not capture the complexity of real urban environments [57, 58]. Idealized arrays of uniform
buildings, while useful for parametric studies, fail to represent the heterogeneity of actual urban
blocks. The scalability of optimization results from simplified to realistic geometries remains
largely unexplored, raising questions about the practical applicability of published optimization
strategies [59]. Constraint handling in multi-objective optimization of urban morphology presents
additional challenges inadequately addressed in current literature. Real-world urban design must
satisfy multiple constraints including floor area ratios (FAR), building codes, setback
requirements, and economic viability [60, 61]. These constraints significantly reduce the feasible
design space and may fundamentally alter optimal solutions. However, most optimization studies
either ignore these constraints or apply them post-hoc, rather than incorporating them directly into
the optimization framework. Moreover, the validation of optimization results against real-world
performance represents a critical gap. While individual CFD models may be validated [62], the

performance of optimized designs in actual urban environments is rarely verified. This absence of
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empirical validation raises questions about the reliability of optimization recommendations and

their transferability across different climatic and urban contexts [63, 64].

2.3 Contribution of This Research

According to the identified gaps in the existing literature, this research will be considered in
the context of the following main research questions: How do interactive effects between thermal
environment and PM, 5 dispersion affect optimal morphological parameters, and are they able to
be represented by two-way coupling? Is it possible that a CFD-machine learning framework can
lead to the development of an accurate model that will have reduced computational needs to be
useful in practice? What are the preferable ranges of morphological parameters of various
development density, which provide a balance between air quality and thermal comfort? How do
UTCI-AQIpyp 5 trade-offs appear when solutions that are Pareto-optimal exist on real-world
constraints?

The major contributions of this research include: we developed a novel two-way coupled
numerical model to describe dynamic coupling between thermal environment and PM;;
dispersion, with consideration of the effects of PM, s on radiative transfer, and also taking into
account thermal buoyancy and thermophoretic forces on particle transport. Secondly, we
combined physics-based computationally intensive CFD simulation with data-driven surrogate-
based optimization, multi-objective genetic algorithms, and high-level of accuracy, trading off
computational time of days, with minutes. Thirdly, we offered quantitative morphological design
strategies in hot-humid climates, in which optimal H/W ratios vary by development density (0.7-
1.0 for FAR ~3, 1.3-1.6 for FAR ~6) and the orientation of buildings to the prevailing winds.
Constrained multi-objective optimization was conducted, in which FAR, building density, and
setback requirements were included during the optimization process. Lastly, we made practical
applicability by testing it out in Shenzhen by demonstrating temperature reductions and regulatory
compliance. The combined effects of these contributions are that they can equip the urban
planners with scientifically sound and computationally affordable means to design healthier living
environments that will promote thermal comfort and air quality without compromising the

viability of development.
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3 Methodology
3.1 Overall approach and workflow

In this study, the authors target residential blocks as a typical and most common type of urban
block development, especially in the environment of rapid urbanization as a place where
residential land use encompasses the largest part of urban space. There are some special
optimization complexities associated with residential blocks, considering that buildings need to
facilitate comfort to occupants and healthy outdoor resources for community activities. Combining
physics-driven numerical simulation calculations with data-driven multi-objective optimization,
the complex numerical simulation process is transformed into mathematical relationships,
effectively reducing computation time and quickly obtaining output variables for optimization
iteration, achieving rapid optimization of urban outdoor space forms. Specifically, physics-driven
methods focus on establishing detailed physical models, which can deeply understand the
coupling mechanism between thermal environments and fine particulate matter, but they are slow
in computation and difficult to optimize quickly. Data-driven methods, based on computational
fluid dynamics (CFD) technology and optimization algorithms, store the input and output data of
CFD simulations in a dataset, and construct RSM with the dataset, which can effectively handle
multiple objectives in complex systems and achieve optimization results. These results can then be
verified using CFD simulations. The optimization process of urban residential block morphology
based on bidirectional coupling models and multi-objective optimization algorithms is shown in
Fig. 1.

(1) First, the stage of constructing and designing variables for the CFD numerical model,
which mainly includes the construction of the basic geometric model, the design of variables, and
the setup of numerical simulation. Morphology parameters (building length, width, spacing, angle,
height) are set as design variables to control the changes in the block geometry. In conjunction
with Shenzhen's residential design specifications, the range of parameter changes is set. Outdoor
temperature, wind speed, and PM,s concentration are set as output parameters for CFD
simulation. Then, in the CFD module, complete the steps of mesh generation, boundary condition
setup, model and solver selection, confirm the parameter set, and carry out simulation
calculations.

(2) Next, enter the design of experiment (DOE) and CFD batch simulation phase. By

11
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sampling the morphology design variables, a certain number of uniformly distributed block
morphology samples are formed to construct the DOE matrix. Afterward, the samples are
simulated one by one according to the CFD calculation plan set in the initial scheme. Then, export
the output parameters and calculate the universal thermal climate index (UTCI) and air quality
index of PM, 5 (AQIppp.5). Merge the input parameters with the new output parameters (UTCI and
AQIpyp 5) into a new DOE matrix and import it into the dataset.

(3) Based on the DOE matrix, apply interpolation algorithms to fit the input variables and
output parameters, creating an RSM. Verify the prediction accuracy of the RSM; if it meets the
accuracy requirements, proceed to the optimization process; if not, redo the experimental design
and follow the above process for a new RSM construction until the accuracy requirements are met.

(4) Finally, use a multi-objective genetic algorithm to call the RSM for optimization iteration.
Under the two objective functions of the lowest UTCI and AQIlpy, 5, find the optimal solution set
and compare the optimized solution with the CFD simulation results. Select the best range of

morphology parameters for residential blocks to provide a scientific reference for urban design.

r 3
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Fig. 1 Multi-objective optimization computational process based on numerical simulation and
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3.2. Performance Indicators

To comprehensively evaluate the dual environmental impacts of residential block morphology, this
study employs two complementary performance indicators that quantify both human thermal
comfort and air quality conditions.

3.2.1 Universal Thermal Climate Index (UTCI)

The Universal Thermal Climate Index (UTCI) serves as the primary indicator for assessing
outdoor thermal comfort, representing the human physiological response to combined
meteorological conditions. UTCI effectively quantifies the influence of climate parameter
variations on outdoor thermal comfort through a sophisticated biometeorological model that
considers the complex interactions between environmental factors and human thermoregulation.
UTCI is determined using a sixth-order polynomial regression function that integrates four key
meteorological parameters: air temperature, wind speed, mean radiant temperature, and relative
humidity (expressed as water vapor partial pressure)[65].

UTCI = offset(T, + Tygr + U + Prapor) + Ta (1)
where, T, represents air temperature, [1; Typy 15 mean radiation temperature, [1; U represents
wind speed, m/s; Py, represents water vapor partial pressure, Pa.

The UTCI classification system provides clear thermal stress categories: values below 9°C
indicate extreme cold stress, 9-26°C represents no thermal stress, 26-32°C indicates moderate heat
stress, 32-38°C represents strong heat stress, 38-46°C indicates very strong heat stress, and values
above 46°C represent extreme heat stress. For hot-humid climates like Shenzhen, the optimization
target focuses on minimizing UTCI values to reduce heat stress during summer months.

3.2.2 Air Quality Index for PM, 5 (AQIpp2.5)

The Air Quality Index for PM; s (AQIpmo.5) serves as the air quality performance indicator,
providing a standardized measure of fine particulate matter concentration levels and their potential
health impacts. This index transforms raw PM, 5 concentration data into a dimensionless scale that
facilitates direct comparison across different urban morphological configurations. AQIpyp 5 is
calculated according to the provisions outlined in the Ambient Air Quality Standards [66], using a

piecewise linear function that relates pollutant concentrations to health risk categories:

AQlyi—AQlL,
AQlppzs = BPH—BP:) (Cpmzs — BPy,) + AQIL, ()

where, AQI,, and AQI| are the upper and lower limit values of the AQI for PM, 5; BPy; and BPy,

13



Journal Pre-proof

are the upper and lower limit value of the concentration range for PM,; s; Cpypo 5 represents the
concentration of PM; s.

The AQIppp 5 classification system defines air quality levels as follows: 0-50 indicates good
air quality with minimal health impact, 51-100 represents moderate quality with acceptable
conditions for most people, 101-150 indicates unhealthy conditions for sensitive groups, 151-200
represents unhealthy air quality for all individuals, 201-300 indicates very unhealthy conditions
requiring health warnings, and values above 300 represent hazardous conditions. For urban
planning applications, the optimization objective targets AQIpyps values below 100 to ensure
acceptable air quality standards.

3.3. Parametric Model Development
3.3.1 Geometric Model and Typological Considerations

This study establishes a 6x6 building array surrounded by four main roads, forming an
idealized urban residential block. While this regularized grid pattern represents a common
typology in modern Chinese residential developments, it is important to acknowledge that
different residential block typologies can impact environmental performance. Recent research has
demonstrated that block configuration—including perimeter blocks, courtyard typologies, point
towers, and slab arrangements—substantially influences solar radiation absorption, wind patterns,
and resulting thermal conditions [67, 68]. The grid typology selected for this study represents a
balance between computational feasibility and practical relevance. Grid patterns remain prevalent
in rapid urbanization contexts due to their development efficiency and standardized planning
approval processes [69]. Studies have shown that tall building blocks can improve outdoor thermal
comfort through enhanced shading while potentially restricting ventilation [70], while their shape
can influence air circulation and air quality in various part of the building and site [71]. A review
of 258 studies (2011-2022) found that variations in urban morphology indicators—such as
building density, street canyon aspect ratio, and sky view factor—affect solar radiation absorption,
with certain configurations enhancing or reducing potential heat gain, thereby influencing outdoor
thermal comfort [72].

The initial layout of the buildings, road lengths, and computational domain of this research is
illustrated in Fig. 2. Key variables, including the length (L), width (W), height (H), the angle with

the wind direction (A), transverse spacing (S), and longitudinal spacing (S') of the buildings, are

14
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depicted in Fig. 2. While maintaining the grid typology constant, these parametric variations allow
exploration of morphological optimization within this specific urban form. The optimization
results should therefore be interpreted within the context of grid-pattern residential blocks, with
different optimal parameters likely emerging for alternative typologies.

It is important to note that during the optimization process, changes in parameters may result
in final morphology parameters differing from their initial definitions. To maintain consistency,
the same naming convention is applied for changed parameters, supplemented by corresponding
notations for distinction. The actual research area is the 4x4 buildings array inside Fig. 2, with the
outermost buildings set to simulate the impact of surrounding buildings on the physical
environment of the research area. Inside the research area, three measurement points are set near
each external facade of the buildings at a height of 1.5 m, 3 m away from the buildings, and
located at the 1/4, 1/2, and 3/4 positions of the facade, respectively, as shown in Fig. 2. These

measurement points change with the variations in building length and width.

Top and Sides of the Flow Domain
Symmetrical Boundaries

Wind direction

Fig. 2 Ideal residential block morphology layout and parameterized control variables
Referring to the regulations for buildings and roads in the "Shenzhen City Planning Standards
and Guidelines" (2021 version) [73], the range of variation for the basic variables of the ideal
residential block morphology is shown in Table 1. Since the floor area ratio (FAR) of residential
land in Shenzhen is mostly in density zones two and three, the FAR is set between 3.0 and 6.0,
with residential buildings being multi-story and high-rise. Roads are aligned with the buildings
and are designed as six-lane dual carriageways, with each lane having a width of 3.25 m and the

total road width being 19.5 m, and the buildings' setback is set to 9 m.

Table 1 Parameterized control variables and ranges

Buildings parameters Range Initial Value Type of Variation
Length (L) 25m~70m 26 m Continuous
Width (W) 25m~70m 48 m Continuous

15
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Height (H) 24 m~ 100 m 62 m Continuous

Angle with the wind direction (A) -2.55° ~ 87.45° 42.45° Continuous
Transverse Spacing (S) 24m~80m 52m Continuous
Longitudinal Spacing (S") 24 m~80m 52m Continuous

The limitations of focusing on a single typology are acknowledged. Future research should
extend this optimization framework to comparative analyses across different block typologies, as
the interactive effects between thermal environment and air quality may manifest differently in
perimeter, courtyard, or hybrid configurations. Nevertheless, the grid typology provides a valuable
baseline for understanding morphological optimization principles that can inform broader urban
design strategies.

3.3.2 Boundary Conditions and Input Parameters

When simulating the thermal environment of urban residential blocks, it is common to use
meteorological parameters from a typical meteorological day in the local area as input to ensure
broadly applicable results. However, identifying a "typical pollution day" involves more
complexity. It depends on factors such as the dates when air quality exceeds standards for a
sustained period, the influence of pollution sources, and specific meteorological conditions.
Additionally, PM, 5 concentrations are largely influenced by dispersion from the surrounding
environment and emission sources.. While closely tied to meteorological factors, PM, s exhibits
strong randomness and regional variability, making it unsuitable to describe using the concept of a
"typical day" as applied to meteorological parameters. To address this, this study compiled
meteorological parameters and PM, 5 concentrations in Shenzhen over the past five years (2018—
2022). Analysis revealed that September had the highest number of pollution days, with a total of
39 days—far exceeding other months. Thus, the average PM, 5 concentration and meteorological
parameters at noon in September were selected as input parameters. Since the recorded pollution
days in the study were not rainy days, the compiled input parameters exclude rainy days. These
parameters are detailed in Table 2.

The emission rate of fine particulate matter from roads is calculated based on the methods
described in “Technical Guidelines for the Compilation of Road Mobile Source Emission
Inventories”, and the number of vehicles and their driving conditions, vehicles/1000m
(https://opendata.sz.gov.cn). The total emission rate of PM; s concentration from roads varies with
the length of the road and is modeled mathematically within the parametric model.

Table 2 Inlet parameters of CFD model

16
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Parameter Value

Air temperature 29.97 (°C)

Radial wind speed (10m) -1.17 (m/s)

Zonal wind speed (10m) -1.07 (m/s)
Direct radiation 545.40 (W/m®)
Diffuse radiation 123.34 (W/mz)

Effective sky temperature 15.79 (°C)
PM, 5 Concentration at Inlet 35.78 ( ug/m3 )

3.3.3 Two-way Coupled Numerical Simulation

The computational logic of the two-way coupled numerical model for the outdoor thermal
environment and PM, s has been developed by the authors in previous research [55], and its
workflow has been illustrated in Fig. 3. Input parameters include ambient conditions, material
properties, and geometric factors. The two-way coupling model employs steady-state three-
dimensional Reynolds-Averaged Navier-Stokes equations for incompressible turbulence,
incorporating the Boussinesq approximation. Energy coupling is achieved through the Discrete
Ordinates model, with atmospheric absorption and scattering coefficients dynamically adjusted
based on PM, 5 concentrations and incorporated into the iterative calculation process. This process
is implemented through a user-defined function, and the file is read when the Discrete Ordinates
model is called. Momentum coupling is implemented using the Discrete Phase Model, which
accounts for forces such as gravity, fluid drag, Saffman lift, pressure gradient, and thermophoretic
force, all based on velocity terms. The numerical discretization method uses the finite volume
method, and the upwind second-order format is adopted; the pressure-based coupled algorithm is
used to solve the equations. The residual convergence standard is set to 10E-6, and the calculation
parameters of the measurement points are monitored to ensure that they reach a stable state. The
complete  governing equations, boundary conditions, and numerical solution methodology are

provided in Appendix A.3, with comprehensive model validation presented in Appendix A.4.
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Fig. 3 Two-way coupled numerical simulation between outdoor thermal environment and PM, s in
residential blocks
3.4. Response Surface Model Development
The selection of an appropriate surrogate modeling technique is critical for achieving
accurate predictions while maintaining computational efficiency. Several methods were
considered for constructing the response surface model, including polynomial regression, kriging
(Gaussian process regression), radial basis functions (RBF), and non-parametric regression. Table

3 provides a comparative analysis of these approaches.

Table 3 Comparison of surrogate modeling methods for urban environmental optimization

Method Advantages Limitations Suitability
Simple Poor_ for hlghly -
; . nonlinear relationships; -
. implementation; Fast - - Limited - Urban
Polynomial - Requires predetermined - . .
- evaluation; ) environmental relationships
Regression . order; . .
Clear mathematical - . are highly nonlinear
Prone to overfitting with
form . . .
high dimensions
. . m ionall
Provides uncertainty ec)? erﬁ):it\il; ?o?la}; e
. . estimates; P ) 9 Moderate - Good accuracy
Kriging/Gaussian datasets; .
Excellent for smooth . . but computational cost can
Process N Assumes stationarity; o
functions; . be prohibitive
; . . Struggles with
Optimal interpolation 7. o
discontinuities
Radial Basis Flexible for complex  Can become ill- Moderate - Good flexibility
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Functions shapes; conditioned,; but stability concerns
Good for scattered Requires careful
data; selection of basis
No need for centers;
structured grid No uncertainty

quantification
No assumptions

about data
. distribution; Less interpretable; High - Best suited for
Non-Parametric Captures complex v
. . e Can overfit without complex urban phenomena
Regression interactions; o . . .
proper regularization with unknown relationships

Robust to outliers;
Adaptive to local
features

In this research, the DOE is structured to efficiently and comprehensively capture the key
morphology characteristics of residential block configurations by simulating diverse combinations
of input parameters with a limited number of samples. Experimental evaluation metrics are
referred to as output variables, while factors potentially influencing these metrics are termed input
variables. The discrete or continuous states of these influencing factors are designated as levels.
For parametric analyses, the input variables vary continuously, as summarized in Table 1. To
ensure a uniform and representative distribution of sample points across the entire design space,
this study employs the Latin Hypercube Sampling technique. This method systematically
distributes sample points to evenly cover the parameter space, even with a constrained number of
samples. The ranges and types of variation for morphology variables are detailed in Table 1. A
total of 200 sample points is generated. These samples are subsequently analyzed using RSM to
explore and quantify the relationships between input variables and output variables.

The Non-Parametric Regression method was selected for this study based on several key
advantages particularly relevant to urban environmental modeling. First, it does not rely on
specific assumptions about data distribution or functional form, allowing the data to reveal the
complex, potentially discontinuous relationships between morphological parameters and
environmental outcomes [74]. This is crucial given the nonlinear interactions between building
geometry, thermal environment, and pollutant dispersion that may include threshold effects and
local phenomena. Secondly, non-parametric methods excel at capturing local features and
interactions that parametric models might smooth over [75]. Urban microclimates often exhibit
localized effects where small changes in morphology can cause disproportionate environmental
responses—phenomena that global parametric models struggle to represent. The method's

adaptive bandwidth selection automatically adjusts model complexity based on local data density,
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providing more flexibility in regions with rapid changes while maintaining stability in smoother
regions. Thirdly, the method demonstrates superior performance with the moderate sample size
(200 points) generated through Latin Hypercube Sampling. While kriging might provide slightly
better interpolation accuracy in smooth regions, its computational requirements scale poorly with
sample size (O(n*®) for matrix inversion), making it impractical for iterative optimization. Non-
parametric regression achieves comparable accuracy with better computational efficiency, fit for
the thousands of evaluations required during genetic algorithm optimization. The specific
implementation employs locally weighted scatterplot smoothing (LOESS) with automatic
bandwidth selection through cross-validation.

To validate this methodological choice, preliminary tests compared polynomial regression
(third-order), kriging, and non-parametric regression on a subset of 50 samples. Non-parametric
regression in this study achieved the lowest cross-validation error (RMSE = 0.42°C for UTCI,
1.23 for AQIpyas) compared to polynomial regression (RMSE = 0.89°C, 2.67) and kriging
(RMSE = 0.51°C, 1.45), while requiring 73% less computational time than kriging for model
construction. The DOE sample points are divided into two sets: 80% (160 samples) for the
training dataset and 20% (40 samples) for the validation dataset. Both datasets are designed to
maintain as uniform a distribution of the design variables as possible. After removing outliers, the
training dataset contains 153 samples, while the validation dataset includes 36 samples. More
detailed discussions on the non-parametric regression based RSM validation and analysis will be

included in the Results chapter.

3.5. Multi-objective Optimization
3.5.1 Optimization Problem Formulation

In the process of optimizing the morphology of urban residential block, the results do not
manifest as a single, absolute optimal solution. Instead, they form a set of relatively optimal
solutions that balance the two design objectives: UTCI and AQIpyp5. As indicated by the RSM
analysis, UTCI and AQIppp 5 exhibit differing trends with variations in the input parameters. This

study employs a multi-objective optimization approach aimed at minimizing both UTCI and
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AQIpyps. When it is not feasible to achieve optimality for all objectives simultaneously, a
balanced set of solutions is obtained. The mathematical model for multi-objective optimization is

presented as follows:

minyeg fj(x) = (f1(x):f2 (x)) (3)
X = (x11x21x3'x4' X5,X6) (4)
E ={xpx;<x,<x;, i=1,2,, 6} (5)

where, x is design variables, consisting of the six morphology parameter variables listed in Table
1; j;(x) is the j objective function of the model; £ is the boundary constraints for the set of
morphology parameter variables. x; and x; are lower and upper boundary of the value range for the
design variable.

In the multi-objective optimization experiments, morphology parameter constraints were
further considered to ensure the practical applicability of the optimization results and compliance
with the Shenzhen Urban Planning Standards and Guidelines (2021) [73]. Four additional
variables were introduced during the optimization phase: FAR, spacing ratios (SR), and coverage
ratio (CF). The value ranges for these variables were determined with reference to [73]. The range
of R being 6.0 and 3.0 has the most extensive distribution in Shenzhen. Thus, the buildings were
designed as multi-story or high-rise structures. The height range was set between 24 m and 99 m,
with a fixed floor height of 3 m per story. The upper limits for SR and CF were set to 0.6 and 0.25,
respectively.

The guidelines in [73] recommend that for buildings taller than 60 m, the maximum building
width should not exceed 60 m. Additionally, the minimum transverse and longitudinal spacing for
high-rise residential buildings should be no less than 24 m and 18 m, respectively. In this study,
the building length and width are allowed to vary freely during optimization, but the minimum
spacing between buildings is uniformly set to 24 m. Although the guidelines do not specify a
maximum spacing, this study sets the maximum buildings spacing to 80 m. Furthermore, the angle
between buildings and the dominant summer wind direction is required to be less than 30°. To
achieve this, the orientation of buildings was adjusted by rotating them clockwise and
counterclockwise by 45° from their original alignment, resulting in an angle range of -2° to 87°.
The step size for this variable was set to 1°. The value ranges, step sizes, and relationships for the

design variables are detailed in Table 4.
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Table 4 Characteristics of design variables

Type Design Value Range  Step Size Parameter Relationship
Variables
L 25m~60m I m
w 25m~ 60 m I m
Design A - 1° —
Variables 2.55°~87.45°
S' 24 m~80m I m —
S 24 m~80m I m —
Continuous  (L*W*36*H/3)/(L*6+S*5+18)/(W*6+
FAR 36 S'*5+18)
Consiraints 5 <0.6 Continuous (L*6)/(L*6+S*5+18)
1, <0.6 Continuous (W*6)/(W*6+ S'*5+18)
Continuous (L*W*36)/(L*6+S*5+18)/(W*6+
F <0.25 S$*5118)

3.5.2 Optimization Algorithm

The study employed the Multi-Objective Genetic Algorithm (MOGA), which integrates
population evolution strategies and a non-dominated solution screening mechanism. This
approach facilitates a comprehensive exploration of the solution space, identifies a richer set of
solutions, and avoids the pitfalls of local optima, making it particularly suitable for the
optimization requirements of this research. In addition, three convergence criteria were
established: maximum of 500 iterations, convergence threshold of 0.01, and maximum Pareto

percentage of 80%. The parameters related to the MOGA are summarized in Table 5.

Table 5 Parameter settings for multi-objective optimization calculations

Minimum Maximum _— .
Category  Parameter Value Value Objective Weight
Attribute UTCI 30 40 Minimize 0.5
AleM2.5 0 30 Minimize 0.5
Initial Per Convergence Maximum
Population Population Stability lterations
. MOGA 2000 2000 1%
Algorithm
Pareto Crossover . Pareto
. Mutation Rate
Ranking Rate 001 Percentage
1-5 0.9 ' 500

Initially, the multi-objective optimization module received morphology parameters. The
genetic algorithm autonomously generated 2,000 initial samples, which were subsequently passed
to the RSM. The model rapidly computed the output parameters, and the results were fed back into
the genetic algorithm. Through selection, crossover, and mutation operations, a new generation of

2,000 samples was created, with input parameters forwarded again to the RSM. The algorithm
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evaluated the convergence conditions to determine whether the optimization should terminate. If
the criteria were satisfied, the optimization process concluded, and results were output; otherwise,

iterations continued until the objectives were met.

3.5.3 Sensitivity Analysis

To examine the impact of simultaneous changes in multiple input parameters on model
outputs and determine the sensitivity of each parameter in the Pareto front solution set, this study
utilizes the Parameter Correlation module in ANSYS Workbench. The Spearman rank correlation
coefficient is employed to quantify parameter sensitivity, ranging from [-1, 1], where the sign
indicates positive or negative correlation. The calculation method is as follows:

R s 9

where, X; represents the rank value of the design variable X in i sample; Y; represents the rank
value of the optimization objective Y in the i sample; 11 represents the total number of samples; X
and Y represent the average rank value of the design variables and optimization objectives.
3.6 Case Study

The residential block analyzed in this study is located in Bao’an District, Shenzhen. As
shown in Fig. 4, the renewal area is divided into three zones by newly constructed residential
communities and public buildings. The morphology parameters of the Pareto frontier solutions are
combined with the requirements outlined in the Shenzhen Urban Planning Standards and
Guidelines [73] regarding floor area ratio (FAR), building density, and setback distances.
According to the guidelines, secondary roads should have a width of 12m to 20m, and residential
buildings adjacent to streets must maintain a minimum setback of 9m. When the layouts of
buildings on adjacent zones are parallel or form an angle of less than 30°, and at least one of the
buildings is residential, the minimum setback distance from the plot boundary must not be less
than 12m. This residential block is classified under Density Zone 2 in Shenzhen, where the
maximum FAR is 6, and the building density is capped at 25%. In optimization scheme, the angle
between the building layout and the prevailing wind direction is constrained to 0°-15°, with all
parameters determined based on the ratio values of the Pareto frontier solutions. The buildings are

adjusted to maintain a length-to-width ratio within the range of 1.04 to 1.43. The block
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morphology parameters corresponding to the optimized design scheme are listed in Table 6. The
computational domain configuration, mesh generation procedures, and material properties are

detailed in Appendix A.1 and A.2.

Wind direction Wind direction

V" [ Rescarch Area
= Block Inferior Roads
Renewal Unit

Public Buildings
[ New Communities

(a) Subdivision of construction
(b) Layout of original block  (c) Layout of optimized block
land
Fig. 4 Research area land use division and geometric models

Table 6 Residential block morphological schemes

Building parameters A B Cl1 C2 C3
Length (m) 24 35 32 27 31
Width (m) 22 30 24 23 26
Length/Width Ratio 1.09 1.17 1.33 1.17 1.19
Lateral Spacing (m) 38 425 43 44 58
Longitudinal Spacing (m) 28.5 23 26 25 46
Height (m) 60;81 66 66, 72 69, 75 54, 82
Lateral Spacing/Height Ratio 1.58 1.55 1.53 1.57 1.59
Density 0.25 0.25 0.25 0.25 0.25

The measured inlet parameters for numerical simulation at the research area’s observation
sites from 2021 to 2023 were statistically analyzed. Parameters measured at 2:00 pm in September
over the past two years were selected, as this time period features high temperatures and elevated
PM, 5 concentrations. In addition, the inlet parameters represent the average values recorded under
sunny or partly cloudy-to-sunny conditions. The prevailing wind direction was determined based
on 16-direction wind statistics, identified as southerly, with an average wind speed of 1.03 m/s. To
ensure effective simulation of air pollution, days with pollution under southerly wind conditions
were selected, where the average PM, s concentration was 37.01 ug/m’. Solar radiation intensity
parameters were obtained from the Xihe Energy Big Data Platform (https://xihe-energy.com/). The
direct and diffuse solar radiation intensities recorded at the specified time over the past two years
under sunny or partly cloudy-to-sunny conditions were averaged, and the results are listed in Table

7.

Table 7 Inlet parameter for numerical simulation in target area
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Parameters Values Notes
Wind Speed (m/s) 1.03 Average Wind Speed under Prevailing
' Wind Direction
Wind Direction Southerly Prevailing wind direction

wind

Air Temperature (L) 32.16

PM, s Concentration (ug/m’) 37.01
Direct Solar Radiation Intensity

(W/md) 435.67

Diffuse Solar(\l;e/l;dnlza)tlon Intensity 291.10

To accommodate the complex geometry of the building clusters, utilized a tetrahedral mesh.
The grid size at the domain inlet was set to 3 m, while surface meshes for buildings, roads, and the
ground were assigned a size of 5 m. The boundary surface meshes of the domain were set to 10 m,
and the maximum cell size within the domain was limited to 15 m, with a growth rate of 1.1. The
boundary layer mesh had an initial size of 0.1 m, also with a growth rate of 1.1. The two-way
coupled model between thermal environment and PM, s as shown in Fig. 4 is used. The model
validation demonstrates good agreement with field measurements as detailed in Appendix A.4,
with temperature predictions achieving MAE of 1.03°C and PM.0J concentration predictions

showing relative errors below 20%.

4 Results
4.1. Response Surface Model Validation and Analysis

Prior to employing the response surface model for optimization, its predictive accuracy
should be evaluated against CFD simulation results to ensure reliable performance across the
design space. The maximum absolute errors of the RSM for the AQIpy;p5 and UTCI validation
points are found to be 8.13% and 5.37%, respectively, while the coefficients of determination (R%)
for the training data are 0.98 and 0.99. The results demonstrate good predictive performance, both
locally and globally. Detailed statistical performance metrics and validation procedures are
described in Appendix A.6.

Fig. 5 illustrate the predicted versus actual values for the validation dataset, showing
controlled deviations, further validating the model's accuracy. Given its strong predictive
performance, the RSM is considered a reliable substitute for computationally intensive CFD
numerical simulations during the optimization phase, offering significant reductions in

computational time without compromising the quality of the results.
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Fig. 5 Accuracy verification of RSM

As shown in Fig. 6(a), when the building length (L) is 70 m and the transverse spacing (S) is
approximately 25 m or 60 m, the UTCI values are lower. Conversely, when both the length and
transverse spacing are large, the outdoor UTCI reaches its maximum value of 36.80 []. In Fig.
6(b), the lowest UTCI value of 35.61 °C occurs when the building width (W) is 70 m and the
longitudinal spacing (S') is 20 m. In contrast, when the width is 24 m, variations in longitudinal
spacing have negligible effects on UTCI. This suggests that, in architectural optimization, width
should take precedence over longitudinal spacing. The relationship between the angle of building
and wind direction (A), height (H), and UTCI is depicted in Fig. 6(c).

To quantify the relative importance of these parameters, we conducted a comprehensive
sensitivity analysis using the Spearman rank correlation coefficient (detailed in Section 4.3.
Sensitivity Analysis Results). The analysis reveals that among the morphology parameters,
building longitudinal spacing (S') has the most significant impact on UTCI with a correlation
coefficient of -0.81, followed by building height (H) at -0.73, and building width (W) at -0.63. The
angle between building and wind direction (A), while showing strong effects in the response
surface visualization, demonstrates a relatively lower sensitivity (+0.18) within the Pareto front
solution set due to the constrained angle range in optimal solutions. Specifically, when the angle is
approximately -2.55° or 87.5°, the outdoor UTCI is minimized at 34.12°C. Conversely, within the
range of 20° to 40°, UTCI values remain consistently high regardless of height. These quantitative
findings, derived from sensitivity analysis of Pareto-optimal solutions (Section 4.2), highlight that
the optimal configuration for a single parameter may not necessarily correspond to the most

effective strategy for improving the thermal environment.
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Fig. 6 RSM of morphology parameters for residential blocks and UTCI

Fig. 7(a) illustrated the relationship between building length (L) and transverse spacing (S)
with AQIpyas. When length and transverse spacing are relatively small, AQlpyp s values are
highest. Conversely, when the transverse spacing is approximately 75 m, AQIpy;p.5s values tend to
be low. Notably, even if the length increases to 70 m, AQIpyp.5 remains high when the transverse
spacing is limited. This highlights the significant influence of transverse spacing on AQIpy 5. Fig.
7(b) further demonstrates that smaller building widths (W) and longitudinal spacings (S') result in
higher AQIpyo 5 values, reinforcing the observation that dense buildings layout hinder the
dispersion of PM, 5. When the building width and longitudinal spacing are around 70 m and 55 m,
respectively, AQIppp 5 values also appear elevated. In contrast, AQIpyp 5 values are generally lower

when the longitudinal spacing is approximately 80 m. The effects of the angle of building and
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wind direction (A) and height (H) on AQIpy, s are shown in Fig. 7(c). AQIpyps reaches its
maximum value when both angle and height are at maximum. However, when the height is 24 m,
AQIpyp 5 values remain low regardless of changes in the angle. Interestingly, when the buildings
align more closely with Fhe wind direction, air pollution in the target area is exacerbated.

| |

AQI,,

— e e e B RO MO MO

(a) building length (L) and transverse spacing (b) building width (W) and longitudinal

S) A spacing (S")

AQIPMI

(c) building angle (A) and height (H)

Fig. 7 RSM of morphology parameters for residential blocks and AQIppz 5

4.2. Optimization Results and Pareto Front

Following the validation of the response surface model, multi-objective genetic algorithm
optimization was performed to identify morphological configurations that balance thermal comfort
and air quality objectives. As illustrated in Fig. 8, convergence was achieved after 21 iterations

for the MOGA optimization, with 80% of the solutions forming the Pareto front. The convergence
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stability reached 0.91, indicating robust performance.
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Fig. 8 The iterative convergence process of multi-objective optimization

To optimize the thermal environment and PM,s levels in an ideal residential block, the
distribution of the Pareto solution set is illustrated in Fig. 9. The solution set is categorized into
five levels: red points indicate Pareto front solutions, representing non-dominated options, while
the remaining-colored points signify dominated solutions. A clear trade-off emerges between
UTCI and AQIppp5, where a decrease in UTCI corresponds to an increase in AQlpyps. The
AQIpyp 5 values within the Pareto set are notably low, ranging from 9.91 to 20.04, indicating high
air quality. Conversely, the UTCI values are relatively high, between 34.32 [ and 36.31 [, with
minimal variation, yet still indicating conditions of overheating. Given that outdoor overheating is
a major environmental challenge during Shenzhen's summer, and the air quality in the Pareto set

remains excellent, candidate solutions with lower UTCI should be prioritized.
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Fig. 9 Dominated and non-dominated solutions of UTCI and AQIpy5 5
In Fig. 10, the distribution of morphology parameters within the Pareto front solution set is
presented. The dual objectives of UTCI and AQIpy; 5 were considered, with constraints applied to

the FAR, interspace rate, and density according to relevant specifications. As a result, the range of
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the Pareto front solution set from the multi-objective optimization differs from the optimal results
derived via the RSM. The building length (L) exhibits a distinct three-stage interval distribution,
with corresponding UTCI and AQIpy;, s values aligned with the intervals listed in Table 8.
Similarly, the building transverse spacing (S) also follows a clear interval distribution, forming a
corresponding relationship with the building length intervals. To further analyze the interaction
between design variables and objective functions and identify the optimal combination of

morphology parameters, an interval analysis is conducted on the Pareto rank 1 solution set.

Pareto rank

} 1 2 3 4 5|

Design variable range

L s w s A H A0l UTCI
Input parameters Output parameters

Fig. 10 Parameter intervals corresponding to the pareto front solution

The building length (L) can be divided into three distinct intervals: 26 m to 36 m, 42 m to 46
m, and 60 m, with the corresponding parameter ranges detailed in Table 8. Among these, the UTCI
value is highest when the building length is 60 m. However, this interval contains only 10 sample
points, notably fewer than the other intervals, and is therefore excluded from further discussion.
For intervals 1 and 2, the FAR range from 3.00 to 4.08 and 5.11 to 6.00, respectively, representing
the lower and upper limits of the design variable range. The corresponding building heights (H)
are 39 m to 57 m for the first interval and 75 m to 84 m for the second. The angle range between
the building and the wind direction is generally consistent, falling within -2° to 9°. Therefore,
when optimizing building morphology, the appropriate length and FAR can be selected based on

specific FAR requirements.

Table 8 Statistical analysis of parameter intervals for Pareto front

Design Variables Value Range 1 Value Range 2 Value Range 3
L 26 m~36 m 42 m~52 m 60 m
S 26 m~34 m 54 m~73 m 66 m~69 m
W 42 m~52 m 48 m~53 m 59 m~60 m
S' 55 m~64m 53 m~59 m 72 m~74 m
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A -2°~8° -2°~9° -47°~59°
H 39 m~57m 75 m~84 m 39 m~42m
AFR 3.00~4.08 5.11~6.00 3.16~3.47
SR, 0.28~0.43 0.33~0.41 0.41~0.42
SR, 0.35~0.45 0.39~0.43 0.39~0.40
CF 15.79%~24.96% 20.22%~23.99% 23.96%~24.80%
UTCI 34.86~35.83 34.32~34.86 36.10~36.17
AQlIpyo s 10.91~15.32 15.62~20.04 9.91~10.86

In the Pareto front solution set, where equal target weights were applied, three non-
dominated solutions were selected, demonstrating advantages over other alternatives. As shown in
Table 9, the optimal solution, alternative C, adheres to restrictions on FAR, interspace rate, and
density. Through optimization algorithm screening, the building length (L) and width (W) were
determined to be 45 m and 52 m, respectively. The RSM results indicate that a lower UTCI
correlates with larger bulding dimensions. Additionally, the transverse spacing (S) of alternative C
is 67 m, closely matching the 68.14 m spacing associated with the lowest UTCI in the RSM. The
building length axis aligns parallel to the wind direction, consistent with RSM. The building
heights (H) in the three candidate schemes are 39 m, 48 m, and 81 m, respectively. Using the
geometric parameters of the optimal solution C, a niew geometric model was created in ANSYS
Workbench. Based on the parameter settings in Section 5.2, CFD simulations were conducted. The
calculated UTCI and AQIpyp 5 values were 34.52 [1 and 16.67, respectively, compared to the
optimal solution C’s values of 34.31 [J and 16.19, resulting in relative errors of 0.61% and 2.96%.
This confirms that the method can effectively replace bidirectional coupling model calculations,
providing accurate predictions of the thermal environment and air quality within the ideal

residential block.

Table 9 Alternative optimization schemes

Design Variables A B C

L (m) 29 31 45

S (m) 33 31 67

W (m) 49 48 52

S'(m) 60 61 56

A(°) -2 -2 1

H (m) 39 48 81
UTCI (1) 35.15 35.01 34.52
AQIpyo.s 12.31 13.75 16.67

4.3. Sensitivity Analysis Results

To understand the relative importance of morphological parameters and guide practical
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design decisions, a sensitivity analysis was conducted on the Pareto-optimal solutions. Fig. 11
illustrates the local sensitivity of UTCI and AQIpyp, s to the morphology parameters of the
residential block. The parameters exhibit opposite effects on UTCI and AQIlppp 5. Among them,
the building longitudinal spacing (S') has the most significant impact, with a sensitivity indicator
of +0.81, whereas the transverse spacing (S) shows negligible influence on the physical
environment. This indicates that ventilation channels aligned with the wind direction have a
considerable effect on the environment and should be prioritized during block morphology
optimization. Conversely, ventilation channels perpendicular to the wind direction can be adjusted
flexibly based on practical needs. The building height (H) also plays an important role, with a
sensitivity indicator of £0.73. Increasing building height improves shading, thereby reducing the
thermal environment index (UTCI). However, taller buildings enhance wind resistance, potentially
degrading outdoor air quality, necessitating careful monitoring of its overall impact. The building
width (W) shows a sensitivity of £0.63, exerting a greater influence on the physical environment
than the length (L). Additionally, while the rotation angle (A) of the buildings has the greatest
effect in the RSM, its impact within the Pareto front solution set is minimal (£0.18) due to the

narrow range of angle values, which limits its influence on the physical environment.
E|AQIPM2.5 mUTCI

1 -
0.8 -
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Fig. 11 Sensitivity indicators of physical environment to morphology parameters
When optimizing the physical environment of urban residential block, it is crucial to balance
the positive and negative impacts of various parameters. The sensitivity ranking of morphology
parameters with respect to UTCI and AQIppy2 s is as follows: building longitudinal spacing (S'),

height (H), length (L), width (W), building rotation angle (A), and transverse spacing (S). During
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optimization, parameters with low sensitivity can be adjusted more flexibly based on design
requirements and the specific conditions of the site, while parameters with high sensitivity should

be kept within their optimal range as much as possible.

4.4. Optimization Strategy
4.4.1 Building Orientation Guidelines

Based on the optimization results and sensitivity analysis, practical design strategies are
developed to guide morphological decisions for different urban development contexts in this
study. Building orientation emerged as a critical factor influencing both thermal and air quality
performance, though its optimal configuration depends on local pollution sources and prevailing
wind patterns. In the RSM, the variation of the building rotation angle has the greatest impact on
UTCI, AQIppp 5, and wind speed. The worst thermal environment quality occurs when the angle is
53.64°, while the best outdoor air quality is at an angle of 46.18°. This phenomenon is attributed
to the consideration of PM, s at the inlet of the catchment area as the main pollution source in the
multi-objective optimization calculation. When the wind direction is almost parallel to the
building longitudinal passage, the ventilation effect is optimal, effectively carrying away the
building's residual heat, but at the same time, it may also introduce more fine particulate matter.
Therefore, when determining the orientation of a group of buildings, it is also necessary to clearly
understand the pollution source situation in the study area.

The "Shenzhen City Planning Standards and Guidelines" (2021) [73] require consideration of
the prevailing wind direction's impact on buildings layout. In the "Standard for Energy-efficient
Design of Residential Buildings in Hot Summer and Warm Winter Regions" (JGJ75-2012), it is
also emphasized that when designing a group of buildings, natural ventilation should be
considered, and the layout of buildings should preferably be north-south or close to the north-
south direction. In the Pareto front solution, the angle between the building orientation and the
wind direction is -2° to 9°, where the incoming wind direction is basically parallel to the axis of
the building width direction. However, in actual research, due to the influence of the surrounding
area on the wind environment of the block, it may not be possible to simultaneously meet the
requirements of the prevailing wind direction and sunlight, or the direction of the plot and streets

may not meet the requirements for the north-south arrangement of buildings. In this case, try to
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control the angle between the building width and the prevailing wind within 15° to promote
ventilation within the block.
4.4.2 Spacing and Height Optimization

The interplay between building spacing and height represents the most influential

morphological relationship, requiring careful balance to achieve environmental objectives while
meeting density requirements. The RSM results show that a larger building height corresponds to
lower UTCI and AQIpyp 5 values. At the same time, the larger the building spacing, the smaller the
corresponding UTCI value. For example, in the non-dominated solution C, the transverse spacing
and perpendicular building spacing are 56 m and 67 m, respectively. Due to the restrictions of the
FAR, they did not reach the upper limit of the optimization range of 80 m. Building design and
urban planning design codes often only stipulate the minimum spacing of buildings.
The sensitivity ranking of morphology parameters indicates that the impact of building transverse
spacing and height on UTCI and AQIpy; 5 is the greatest. Therefore, when optimizing the
morphology design of residential block, these two parameters should be reasonably designed. In
the Pareto front solution set, when the FAR is close to 3, the transverse spacing is 55 m to 64 m,
and the building height is 39 m to 57 m; when the FAR is close to 6, the transverse spacing is 53
m to 59 m, and the building height is 75 m to 84 m.

However, in actual building design and urban planning design, not only the building spacing
and height need to be considered, but also the optimization of the plot's form, FAR, building
density, and other restrictions. It is not possible to optimize the design according to the interval
values of the Pareto solution set in all study areas in Shenzhen. The specific parameters of
building transverse spacing (S) and building height (H) can be transformed into interval control of
H/S to describe the openness of the residential block. Therefore, when designing block ventilation
corridors, it is necessary to avoid using a high H/W ratio. The following are recommended
optimization parameters: for areas with a lower FAR (approximately 3.0), the H/W ratio should be
controlled between 0.7 and 1.0; for areas with a higher FAR (approximately 6.0), the H/W ratio is
recommended to be set between 1.3 and 1.6.

4.4.3 Building Geometry Adaptation
To enhance the thermal comfort and air quality of the block, the design of building length and

width should balance the needs for shading and ventilation. Sensitivity analysis indicates that the
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size ratio of buildings can impact the thermal environment and air circulation. Therefore, in the
early stages of block planning, the length-to-width ratio of buildings should be reasonably set in
conjunction with the FAR and density. The Pareto front solution set shows that in scenarios with a
lower FAR (approximately 3.0), the building length should be between 42 m and 52 m, the width
between 26 m and 36 m, the length-to-width ratio between 1.4 and 1.8, and the height between 39
m and 57 m. Such buildings tend to have a combination of slab and tower forms, maintaining the
characteristics of slab buildings while being more compact.

In contrast, under the requirement of a higher FAR (approximately 6), the building length is
recommended to be between 48 m and 53 m, the width between 42 m and 53 m, the length-to-
width ratio between 1.0 and 1.3, and the height range from 75 m to 84 m. This kind of tower-style
building, with its larger building volume and height, not only meets the FAR requirements but also
ensures an appropriate distance between buildings, promoting ventilation. In summary, for areas
pursuing a low FAR, it is recommended to use slab building designs with a length-to-width ratio

of about 1.8; for areas with a higher FAR, it is suitable to plan for taller tower-style residences.

4.5. Case Study Application
4.5.1 Improved thermal environment

Field simulations of the optimized morphology demonstrate improvements in outdoor
thermal conditions compared to the original design. To validate the practical applicability of the
optimization framework and demonstrate real-world performance improvements, the derived
morphological strategies were applied to an actual urban renewal project in Shenzhen. The
optimization results have been further applied to the case study area. The air temperature
distribution at the height of 1.5 m of the case study area is shown in Fig. 12, with ranges between
32 [1 and 40 [1. Due to the absorption and reflection of solar radiation by building facades, air
temperatures near building exteriors were higher, particularly in areas with high building density.
In Zones B, C2, and C3, the original building scheme exhibited high density, which hindered heat
dissipation from building fagades, resulting in the formation of high-temperature zones. In the
optimized scheme, increased building spacing enhanced both convective heat transfer and
radiative heat exchange on building surfaces. For optimized block, outdoor air temperatures were

significantly reduced. In Fig. 12, the red-highlighted regions in Zones B, C2, and C3, where
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maximum air temperatures in the original scheme reached up to 38.67 [, experienced air
temperature reductions of 4.15 [1, 2.92 1, and 4.71 [ under the optimized scheme.

Moreover, in the original scheme, the area near newly constructed high-rise residential
complexes exhibited the lowest outdoor air temperatures, likely due to stronger ventilation
through narrow gaps and effective shading. In the optimized scheme, the same areas maintained
relatively lower outdoor air temperatures, ranging between 31 [J and 34 [J. For Zones A, C2, and
the public building zone, the average air temperature in the research area under the original

scheme was 36.60 [1, while the optimized scheme reduced the average temperature by 2.09 [1.

a) Original block (b) Optimized block
Fig. 12 Simulated air temperature contours of the research area

(

The wind speed within the research area is substantially influenced by morphology. The wind
speed distribution at the 1.5 m height cross-section is shown in Fig. 13, where the maximum wind
speed reached 5.06 m/s-and 4.56 m/s for original and optimized block, respectively. Due to the
high building density of the original residential block, continuous street-facing fagades were
formed on both sides of the streets, resulting in relatively low wind speeds within the research
area. Additionally, wind speeds exceeding 5 m/s were observed around the new residential
buildings in the original scheme, causing strong slit winds that created discomfort for pedestrians.

Although the optimized design moderately increased the overall wind speed in the area, it
strategically redirected airflow through newly added roads, reducing the maximum wind speed in
the region to below 5 m/s. In Zones C1, C2, and C3, the original scheme adopted a grid layout
with high building density, and the street-facing buildings can obstruct ventilation. This led to
large stagnant wind zones (wind speeds of 0-0.2 m/s) in the area. For optimizied block, the
increased building spacing widened airflow corridors, allowing more air to flow into the interior

of the study area, with most regions achieving wind speeds above 1 m/s.

36



Journal Pre-proof

In particular, in Zone C1, the street-facing buildings channeled wind into the interior of the
building clusters, forming wind corridors between buildings. In this plot, the maximum wind
speed in the optimized scheme reached 3.28 m/s, representing a significant improvement
compared to the original scheme’s inter-building wind speed of 0.45 m/s. Additionally, the slit

winds around newly constructed high-rise buildings extended to the street, markedly improving

(a) Original block (b) Optimized block
Fig. 13 Simulated wind speed contours of the research area

4.5.2 Improved PM, 5 concentration

Beyond thermal improvements, the optimized configuration achieved notable enhancements
in air quality through strategic manipulation of wind flow patterns. As shown in Fig. 14, since
PM, 5 is discrete phase, there are some areas where PM, s concentrations remain relatively high or
near zero. The primary source of pollution in the research area originates from the diffusion of
PM, 5 from surrounding regions. In the original scheme, the relatively low wind speeds caused
PM, s to accumulate predominantly within the block. The continuous fagades of street-facing
buildings restricted airflow into the residential block, resulting in lower PM, s concentrations in
the inner arcas. Higher wind speeds around the newly constructed residential areas led to
relatively elevated PM, s concentrations. Moreover, in the interior of the building clusters, the
optimization increased wind speeds, allowing more outdoor airflow to enter block, which slightly
raised PM, s concentrations. For instance, in Zone B, where wind speeds were low in the original
scheme, the optimized scheme increased PM,; 5 concentration by 5.5 ug/m? at the same area.

Nevertheless, enhancing ventilation remains crucial for preventing the accumulation of PM, s
within the block. For optimized residential block, the increased wind speeds within the streets

facilitated the dispersion of pollutants. This effect was particularly evident on roads adjacent to
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Zone C, where areas with reduced PM, s concentrations corresponded to regions with increased
wind speeds. In Zone Cl1, the original scheme exhibited low wind speeds. However, due to high
PM, 5 concentrations in nearby streets, pollutant concentrations around buildings in this area were
also elevated. For optimized block, PM, s accumulation in the streets was reduced, and despite
higher wind speeds, concentrations in this area decreased distinctly. At the same area, PM; s
concentrations were reduced by 19.66 ug/m’ under the optimized scheme.

Similarly, near the outer fagades of street-facing buildings in Zone C3, PM, 5 concentrations

decreased by 24.31 ug/m’ in the optimized scheme. Overall, morphology optimization effectively

o =SS 3
(a) Original block (b) Optimized block
Fig. 14 Simulated PM,; s concentration contours of the research area
4.5.3. Case Study Insights

The comparative analysis between original and optimized designs reveals both the potential
benefits and practical considerations for implementing morphological optimization strategies.
After in-depth comparative analysis of the optimized schemes, it is evident that optimized scheme
demonstrates significant improvements in reducing air temperature, enhancing wind speeds, and
lowering PM, s concentrations. Tshis study employs a combination of numerical simulations,
parametric modeling, and multi-objective optimization to propose a computational design
approach for the morphology of residential block. This approach effectively integrates
considerations of thermal environment and air quality, showcasing high feasibility and
effectiveness.

However, the results obtained from the numerical simulations also highlight potential issues
within the physical environment of the block. To further improve block optimization design, the

following aspects should be prioritized:
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(1) Mitigating high-speed wind tunnels between tall and super-tall buildings

For densely built clusters of tall and super-tall buildings, rational planning of surrounding
building layouts is essential to create smooth airflow channels. This would help direct ventilation
while reducing localized high wind speeds. In areas awaiting redevelopment, efforts should focus
on widening ventilation corridors as much as possible, while ensuring compliance with building
density and floor area ratio requirements, to effectively prevent the formation of high-speed wind.

(2) Avoiding outdoor activity areas in highly polluted zones

While morphology optimization can significantly enhances ventilation, it can also lead to
increased diffusion of air pollutants from surrounding areas into the block interior. Particularly in
vortex zones behind buildings, turbulence and eddies often result in elevated concentrations of air
pollutants. Wind field analyses should guide adjustments to building layouts to minimize vortex
zones. During detailed block design, it is essential to accurately identify areas with high PM, 5

concentrations and avoid overlapping outdoor activity spaces with polluted areas.

S Discussions
5.1 Key Findings and Comparison with Previous Research

This study's integrated optimization framework reveals several important findings that both
confirm and extend previous research on urban morphology optimization. The two-way coupled
model demonstrates that thermal environment and air quality exhibit complex interdependencies
that single-objective studies cannot capture effectively.

The optimal building orientation results align with established ventilation principles, with
angles less than 15° to prevailing winds proving most effective for both thermal comfort and air
quality. This finding corroborates Garcia et al. [42] who demonstrated the positive role of parallel
wind directions in facilitating PM dispersion, while extending their work by quantifying the
thermal comfort benefits simultaneously. However, our results contradict studies suggesting 45°
angles are optimal for PM dispersion [21], likely due to our consideration of thermal environment
interactions and local emission sources.

Building height effects show more complex relationships than previously reported. While
deep urban canyons (H/W > 2) effectively reduce thermal stress through shading [19], our results

demonstrate they simultaneously elevate PM,; s concentrations, consistent with Miao et al. [17]
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who found PM concentrations are higher in deep versus balanced canyons. The optimal H/W
ratios identified in this study (0.7-1.0 for low FAR, 1.3-1.6 for high FAR) represent a compromise
between these competing effects, providing new quantitative guidance for practitioners.

The sensitivity analysis reveals that longitudinal spacing (aligned with wind direction) has
the greatest impact on both objectives, with correlation coefficients of £0.81. This finding extends
Kurppa et al. [76] who recommended lower H/W values for PM reduction, by demonstrating that
spacing orientation matters more than absolute dimensions. The minimal impact of transverse
spacing contradicts conventional wisdom about cross-ventilation but aligns with computational

studies showing that wind-aligned corridors dominate pollutant dispersion patterns.

5.2 Methodological Contributions and Validation

Beyond the specific morphological findings, this research advances urban environmental
modeling methodology through its coupled simulation-optimization framework. The RSM-based
optimization approach successfully bridges the gap between computationally intensive CFD
modeling and practical design applications. With R? values of 0.98-0.99 and maximum errors
below 8.13%, the surrogate model demonstrates superior accuracy compared to typical urban
design approximations while reducing computational time by orders of magnitude. This addresses
a critical limitation identified by Li et al. [45], who noted the lack of systematic optimization
frameworks for residential block planning.

The two-way coupling mechanism represents a significant advance over conventional one-
way models. By incorporating PM, s effects on radiative transfer and momentum exchange, the
model captures thermal-pollutant interactions that previous studies overlooked. Case study
conducted for Shenzhen demonstrates the model's predictive capability. The reduction of air
temperature by 2.09°C and improved air circulation were achieved while maintaining
development density requirements.

The results of the Pareto optimization indicate trade-offs inherent between thermal comfort
and air quality that sheds light on conflicting recommendations found in earlier literature sources.
The prioritization of UTCI settings usually comes at the expense of air quality and vice versa,
showing why one-objective techniques supply conflicting advice. The determination of two

different ranges of parameter intervals that represent various ranges of FAR has practical
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flexibility to the designers without compromising environmental performance.

5.3 Practical Implications for Urban Design

The quantitative relationships and optimization strategies identified in this study should be
translated into specific design recommendations that can inform planning practice and regulatory
frameworks. The optimization strategies developed provide evidence-based alternatives to
conventional planning approaches. The recommendation for building orientations within 15° of
prevailing winds directly challenges traditional north-south orientation mandates in many planning
codes, particularly where site conditions or street layouts make such orientations impractical. The
flexible H/W ratio guidelines (0.7-1.6 depending on FAR) offer more nuanced design guidance
than existing binary recommendations for "compact" versus "open" urban forms.

For regulatory framework updates, planners should implement graduated H/W ratios based
on development density: 0.7-1.0 for low-density zones (FAR 3.0-4.0), 1.0-1.3 for medium-density
(FAR 4.0-5.0), and 1.3-1.6 for high-density zones (FAR 5.0-6.0). Longitudinal spacing parallel to
prevailing winds should be prioritized with minimum requirements 1.5 times transverse spacing,
acknowledging its dominant influence (correlation +0.81) on both thermal comfort and air quality.

Building typology selection should adapt to density constraints: slab buildings with length-to-
width ratios ~1.8 for low FAR areas (<4.0) and tower configurations with ratios 1.0-1.3 for high
FAR areas (>5.0). This differentiation optimizes environmental performance while maintaining
development viability. Performance verification through CFD modeling should be required at key
design stages, with environmental performance bonuses (FAR increases of 0.2-0.5) offered for

developments achieving UTCI reductions >2°C and maintaining AQIpyp5 < 50.

Nonetheless, policy innovation is necessary because of implementation challenges. The
existing setback operations and orientation limitations tend to contradict the most appropriate
designs. Economic barriers to the adoption of larger spacing requirements can be removed through
environmental performance-based incentives, such as fast-track approvals of pre-validated

morphologies and access to green financing.

5.4 Open Questions and Future Research Directions

While this study advances integrated environmental optimization, several fundamental
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questions remain unresolved, highlighting both the contributions and boundaries of current
knowledge. Even with the progress in urban environmental modeling in this study, there are
several basic questions that lack answers, and this aspect evidences the contributions and
limitations of this study.

The paradox of the coupling: How does one city design optimize both thermal comfort by
compact forms and air quality by open ventilation of the design? The coupled model used in our
study shows that there is no single-point solution to this paradox, but trade-offs must be accepted.
The Pareto front analysis shows that there is a trade-off relationship between the two objectives, in
the sense that to increase one, the other has to be degraded, even though the best trade-offs are
context-dependent.

Climate and transferability: Are the morphological optimization principles that have been
determined on the block scale suitable to the district or city scale, and to what extent are
morphological optimization results transferable between climates? Though our framework will
offer blockwise optimization in hot-humid climates, larger-scale aggregation issues and
adjustment to alternative climatic scenarios will necessitate a recalibration of the model. The
approach is portable, though the best morphologies will probably vary widely among climates.

Temporal robustness: Can static optimization adequately address dynamic environmental
conditions? Our steady-state model only contains average circumstances, and which cannot be
sure of the performance in a severe event and in diurnal and seasonal changes. Follow-up studies
ought to come up with computationally feasible dynamic optimization methods that take into
consideration variability over time.

Geometric complexity: What is the difference between optimized results assuming realistic
urban heterogeneity and idealized geometries? Our simplified grid typology can do systematic
analysis, but may not be able to represent all the complexities of mixed-use schemes, odd building
layout and different topographic situations. Generalisation to more sophisticated geometries is an
urgent issue.

Multi-pollutant and multi-objective expansion: How does one extend strategies to take into
account other pollutants and other objectives beyond PM, 5, and thermal comfort and air quality?
Alignment with building energy use, gains of green infrastructure, and multiple pollutant species

may also change optimal configurations in a fundamental way. Such extensions can be based on
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the framework, but the computational demands and trade-off complexity will grow substantially.
Validation at long run: What is the performance of optimized designs under real-world
implementation over long durations? Although the short-term advantages are evident in our case
study, the long-term observation of the projects constructed in accordance with these guidelines
would enhance the trust in the methodology and the possibility to continuously improving it.
These unresolved questions outline the course of subsequent research by recognizing that a
full understanding might still depend upon some breakthroughs in methods of computational
modelling, changes in monitoring technologies, and even our knowledge of urban environmental
systems. The methodological framework and quantitative implications of this study contribute to
the area by conceptualizing a level of knowledge that contributes to a solution to these broader

issues.

5.5 Policy Recommendations

Drawing from the technical findings and practical insights, the following policy
recommendations target different stakeholders in the urban development process. On the basis of
our results, we would like to make the following tangible policy recommendations to various
stakeholders:

For Urban Planning Departments: Eliminate prescriptive building orientation and replace
with performance standards that offer density differentiated spacing requirements, H/'W of 0.7-1.0
on FAR 3.0-4.0, 1.0-1.3 on FAR 4.0-5.0 and 1.3-1.6 on FAR 5.0-6.0. Require residential projects
with floorspace greater than 10,000 m2 to undergo environmental impact assessments via
validated CFD models to guarantee both UTCI and AQIpyy, 5 targets, prior to authorization.

For Environmental Protection Agencies: Include air quality issues in building regulations
by mandating a minimum longitudinal spacing 1.5 times the transverse separation along the
prevailing wind directions. Put in place monitoring guidelines that monitor the thermal comfort
and the PM, s concentration at pedestrian level in the developments, one year after construction
has been completed. Design publicly available databases of tested morphological arrangements
that attain two environmental goals to inform future developments.

For Engineering consultants: Integrate two-way coupled CFD-RSM framework to use in

environmental assessment and no longer on single-objective studies. Apply the given ranges of
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parameters and sensitivity coefficients to make quick preliminary evaluations when performing
conceptual design. Apply iterative optimization in the design development stage, aiming to
become Pareto-optimal solutions, trade-offs between client density conditions and environmental
performance.

For Municipal Governments: Implement new tiered incentive rates of 0.2-0.5 FAR bonuses
on developments that have shown UTCI reduction > 2 [] and AQIpyp s < 50 achieved through
validated modeling. Provide fast-track permitting with up to 30 percent reduction in permitting
time when the morphological configurations are pre-validated. Couple the environmental
optimization compliance with green bonds eligibility and preferential loan rates to counter higher
construction costs incurred due to provision of larger spacing.

For Professional Associations: Revise design guidelines to make integrated thermal-air
quality optimization a regular practice. Come up with professional certification programs in multi-
objective optimization and coupled environmental modeling. Peer review systems can be created
over CFD validations studies in order to impose consistency and reliability of projects.

The above policy suggestions that can be implemented as practical courses of action that
ensure the preservation of the viability of development through systematic enhancement of urban
environmental quality. The process of implementation can start by pilot projects in new
development zones and be gradually integrated into the comprehensive planning frameworks

which will be based on monitored performance results.

6 Conclusion

This study develops an integrated optimization framework for residential block morphology
that simultaneously addresses thermal comfort and air quality through a novel two-way coupled
numerical model. The methodology successfully bridges physics-driven CFD simulation with
data-driven optimization techniques, providing practical design guidance for hot-humid climates.
The key findings from this research include:

* Building orientation within 15° of prevailing winds provides optimal environmental
performance for both thermal comfort and air quality

* Longitudinal spacing (wind-aligned corridors) exhibits the strongest influence on both

UTCI and AQIpp 5 (correlation coefficient +0.81)
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» Optimal height-to-width ratios depend on development density: 0.7-1.0 for low FAR (~3)
and 1.3-1.6 for high FAR (~6)

* Slab-type buildings (length-to-width ratio ~1.8) suit low-density areas while tower-type
configurations (ratio 1.0-1.3) optimize high-density developments

* Response surface modeling achieves 95% accuracy (R? = 0.98-0.99) while reducing
computational requirements by orders of magnitude

* Case study demonstrates air temperature reductions up to 2.09°C with improved wind
circulation while maintaining regulatory compliance

The optimization framework reveals fundamental trade-offs between thermal comfort and air
quality that explain contradictory recommendations in previous literature. The methodology
provides quantitative tools for evidence-based design decisions while accommodating practical
constraints including regulatory requirements and economic considerations. This integrated
approach offers urban planners and designers practical tools for creating healthier residential
environments while maintaining development viability. The computational accessibility through
response surface modeling enables adoption without specialized CFD expertise. Future research
should extend the methodology to  different climatic conditions and integrate with green
infrastructure systems, while policy development should focus on performance-based regulations

that reward environmental outcomes alongside traditional density criteria.
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Appendix:
A.1 Computational Domain and Mesh Configuration
A.1.1 Geometric Model Setup

The computational fluid dynamics simulations were performed using ANSYS Fluent 19.2.
The computational domain was constructed based on electronic map data and field survey
information, with building geometries simplified to enhance computational efficiency while
preserving essential morphological characteristics. All building openings (doors and windows)
were modeled as closed surfaces to represent typical daytime operating conditions. The simplified
geometric model of the target area including the distribution of measurement points is illustrated

in Figure A.1.

% *Wind direction: 315.2°

Figure A.1 Geometric model of the target area

The computational domain dimensions were established following established best practices
for urban CFD studies. Specifically, boundaries were positioned at minimum distances of SH from
the study area, where H represents the maximum building height. The inlet boundary was located
5H upstream, the outlet boundary 15H downstream, and the top boundary 6H above the tallest
building to minimize blockage effects and ensure proper flow development.
A.1.2 Boundary Condition Classification

Boundary conditions were configured separately for the continuous phase (air) and discrete
phase (PM[1.[1) according to established urban CFD protocols. The detailed boundary condition

specifications are presented in Table A.1.
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Table A.1 Boundary conditions for numerical model

Boundary Continuous Phase Discrete Phase
Inlet Velocity inlet Escape

Road surfaces Interior Escape

Outlet Pressure outlet Escape
Building walls/Ground Wall (no-slip) Reflect
Domain top/sides Symmetry Symmetry

The continuous phase boundary conditions follow standard practices for urban atmospheric
flow modeling, with velocity inlet conditions applied to prescribe logarithmic wind profiles and
pressure outlet conditions to allow natural flow development. For the discrete phase, escape
boundaries were specified at inlet, road surfaces, and outlet to allow particle injection and
removal, while reflect boundaries at solid surfaces simulate particle-wall interactions.

A.1.3 Mesh Generation and Quality Control

A tetrahedral mesh was employed to accommodate the complex building geometries within
the urban environment. The mesh configuration parameters were established based on grid
independence studies and computational resource constraints:

e Building and road surfaces: 5 m characteristic length

e Ground surface mesh: 5 m characteristic length

e Domain boundaries: 10 m characteristic length

e  Maximum cell size within domain: 15 m

e Growth rate: 1.1

e Boundary layer mesh: first layer height 0.1 m, growth rate 1.1, 10 layers total

The final computational mesh contained 31.12 million cells with a minimum orthogonal
quality of 0.10, maximum aspect ratio of 336, and y[] values maintained below 800 at all wall

surfaces to ensure adequate near-wall resolution for the selected turbulence model.

A.2 Model Setup and Physical Parameters
A.2.1 Meteorological Input Parameters

Field measurements were collected for September 28, 2021, utilizing data from the Shenzhen
government open data platform (https://opendata.sz.gov.cn) and local environmental monitoring
stations. The comprehensive hourly meteorological parameters including wind velocity and

direction, air temperature and humidity, solar radiation components, and PM[].[] concentrations
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are presented in Figure A.2.
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Figure A.2 Inlet parameters of target area: (a) Wind velocity and direction (The north is 0°), (b)

Air temperature and humidity, (c) Solar radiation, (d) PM[1.[] concentrations

The wind velocity profile was prescribed as a logarithmic function typical of atmospheric

boundary layer flows over urban terrain. The meteorological data represents typical summer

pollution conditions in the subtropical climate of Shenzhen, with elevated temperatures and

moderate PM[].[] concentrations suitable for model validation purposes.

A.2.2 Material Properties and Heat Transfer

Surface material properties were specified according to typical urban construction materials
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and established literature values. The thermal and radiative properties are summarized in Table
A.2. The convective heat transfer coefficient at building surfaces was calculated as a function of
local wind speed using the empirical correlation:

h, =5.7+3.8u
(A1)

where h_c is the convective heat transfer coefticient (W/m?-K) and u is the local wind speed
(m/s).

Table A.2 Material properties for model surfaces

Specific Thermal

Surface Absorptivity Emissivity Heat ?k?gl/llsrllgl Conductivity '(I‘nlll)lckness
(J/kg-K) (W/m-K)

Ground/Road 0.6 0.95 880 2600 2.0 0.15

Building ¢ 0.7 750 2400 15 0.24

walls

A.2.3 Anthropogenic Heat Sources

Building heat rejection from air conditioning systems was modeled as distributed internal
heat sources on exterior wall surfaces, representing the thermal impact of building mechanical
systems on the outdoor environment. Heat load calculations were performed according to Chinese
residential building energy efficiency standards (JGJ75-2012) with the following specifications:

e  Window-to-wall ratios: North facade 0.45, East/West facades 0.3, South facade 0.5

e Overall building envelope heat transfer coefficient: 1.5 W/(m?*-K)

e Indoor design temperature: 26°C

¢  Window overall heat transfer coefficient: 2.0 W/(m?-K)

e Solar heat gain coefficient: 0.6

The calculated hourly anthropogenic heat emissions exhibit significant diurnal variation,
ranging from less than 50 W/m? during nighttime hours to exceeding 140 W/m? during peak

afternoon conditions, as illustrated in Figure A.3.

54



Journal Pre-proof

W/m?2
(o]
o

0:00
1:00
2:00
3:00
4:00
5:00
6:00
7:00
8:00
9:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
18:00
19:00
20:00
21:00
22:00
23:00

Figure A.3 Hourly anthropogenic heat emission from buildings
A.2.4 PM[].[] Emission Sources

Vehicle-generated PM[.[] emissions were calculated using methodologies prescribed in the
Chinese technical guidelines for mobile source emission inventories. The emission rate calculation
employed the following formulation:

E; =Y;B; XEF; x VKT; x 107

(A.2)

where El] represents the annual PM[].[] emission rate (kg), Bi is the number of vehicles of
type i, EF; is the emission factor (g/km), and VKT; is the vehicle kilometers traveled per year
(km/vehicle).

The emission factor was calculated as:

EF;; = BEF; X @;

(A.3)

where BEF; is the base emission factor (0.003 g/km for gasoline vehicles) and @[] is the
meteorological correction factor (0.8372). Vehicle operating conditions assumed an average speed

of 30 km/h and annual mileage of 18,000 km per vehicle.

A.3 Numerical Solution Methodology
A.3.1 Governing Equations and Turbulence Modeling

The numerical model employs the steady-state three-dimensional Reynolds-Averaged
Navier-Stokes (RANS) equations for incompressible turbulent flow. The continuity equation for

incompressible flow is expressed as:
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% _ o

6xi

(A4)
The momentum conservation equation incorporating the Boussinesq approximation for

buoyancy effects is written as:

o(wu;)) _ 10p | 9 ou; %) B
axj  pox + 0x; [(V i) (ax,- )|t 9iB(T = To)
(A.5)

where u; are the velocity components, p is pressure, p is density, v is molecular viscosity, v[]
is turbulent viscosity, g; are gravitational acceleration components, 3 is the thermal expansion
coefficient, T is temperature, and T is the reference temperature.

The RNG k-¢ turbulence model was selected for closure of the Reynolds stress terms due to
its superior performance in urban flow simulations with adverse pressure gradients and flow

separation. The transport equations for turbulent kinetic energy (k) and dissipation rate (€) are:

Apku) _ 0 [ (4 ) Ok _
Oxi - ax]' I:(IJ' + O'k) ax,] + Gk + Gb p
(A.6)

d(peu;) a 0 2
2000 — [ (1 +2) 22| + e B+ Cac6) = Caed s — Re

0x; Ox;j og/ 0xj

(A.7)

where G[ represents the generation of turbulent kinetic energy due to mean velocity
gradients, Gg is the generation due to buoyancy, and Re is an additional strain rate term in the
RNG model.

A.3.2 Radiation and Discrete Phase Modeling

Solar radiation transfer was simulated using the Solar Ray Tracing algorithm in conjunction
with the Discrete Ordinates (DO) method. The radiative transfer equation is expressed as:

VU8 + (@ + o)l = an? T+ 2 [N (3 - 7)o

(A.8)

where 1 is the radiation intensity, s~ is the direction vector, a is the absorption coefficient, 6[
is the scattering coefficient, n is the refractive index, ¢ is the Stefan-Boltzmann constant, T is
temperature, and @ is the phase function.

PMU.00 dispersion was modeled using the Discrete Phase Model (DPM) with Lagrangian
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particle tracking. The equation of motion for individual particles is:

du, — — —»(P _p) 3
d—t”=FD(u—up)+gZ—p+F
(A.9)

where u”[] is the particle velocity, u” is the fluid velocity, Fp is the drag force per unit
particle mass, pl] is the particle density, and F~ represents additional forces including Saffman lift,
pressure gradient, and thermophoretic forces.

The atmospheric absorption and scattering coefficients in the DO model vary dynamically
with PM[].[] concentrations through user-defined functions (UDF), enabling two-way coupling
between the thermal environment and particulate matter dispersion.

A.3.3 Solution Algorithm and Convergence Criteria

The pressure-based coupled algorithm was employed to achieve complete pressure-velocity
coupling with enhanced convergence -characteristics ~for complex urban flows. Spatial
discretization employed second-order upwind schemes for all transport equations to minimize
numerical diffusion while maintaining solution stability.

Convergence criteria required simultancous satisfaction of multiple conditions:

e Scaled residuals below 10007 ] for all governing equations

e Stability of monitored variables (temperature, velocity components, mean radiant

temperature, turbulent Kinetic energy, and dissipation rate) over a minimum of 500
iterations

e  Mass flux balance across domain boundaries within 1% tolerance
A.3.4 Adaptive Mesh Refinement
Grid adaptation was performed every 300 iterations based on gradient-based refinement criteria
for temperature, velocity magnitude, and PM[.[J concentration fields. The refinement thresholds
are specified in Table A.3. This adaptive approach increased the total cell count from 31.12 to
32.12 million while improving the minimum orthogonal quality to 0.12.

Table A.3 Adaptive mesh refinement criteria

Field Variable Gradient Range Coarsening Threshold Refinement Threshold
Velocity 5.09x100010) ~ 35.59 0.01 10

Temperature 1.42x1000'1 ~44.23  0.001 10

PM[I.0] 1.42x100' ~ .

concentration 3.41x10000 1000 3x10070
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The convergence behavior of field variables under grid adaptivity is illustrated in Figure A .4,
demonstrating progressive reduction in relative errors between successive adaptive iterations. Air
temperature relative errors decreased from 0.53% to 0.27%, wind velocity errors reduced from
22.98% to 6.28%, while PMJ.[J concentration errors, though larger due to the inherently discrete

nature of particulate matter transport, decreased from 52.25% to 24.8%.
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Figure A.4 Field variables under grid adaptivity: (a) Air temperature, (b) Wind velocity, (c)

PML1.[] concentration

A.4 Model Validation Results
A.4.1 Temperature Validation

The thermal environment model was validated against field measurements collected at three
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strategically positioned monitoring sites within the study domain. The temporal comparison
between simulated and observed air temperatures is presented in Figure A.5. The model
demonstrates robust predictive capability with coefficient of determination (R?) values of 0.83,
0.78, and 0.82 for Sites A, B, and C respectively, overall mean absolute error (MAE) of 1.03°C,

and root mean square error (RMSE) of 1.14°C.
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Figure A.5 Comparison between simulated air temiperature and measured values: (a) Site A, (b)
Site B, (c¢) Site C

These accuracy metrics fall well within the acceptable range for urban thermal environment
simulations, where published studies typically report MAE values between 1-4.36°C. The model
exhibits systematic deviations with nighttime temperatures consistently underestimated (maximum
deviation 1.89°C) and morning temperatures slightly overestimated (average error 0.76°C). These
discrepancies are attributed to the steady-state modeling approach which does not capture thermal
inertia effects in building materials and urban surfaces.

A.4.2 Wind Flow Validation

Wind speed validation results are presented in Figure A.6, demonstrating good agreement between
simulated and measured values. The model achieves R? values of 0.81, 0.56, and 0.82 for Sites A,
B, and C respectively, with an overall MAE of 0.08 m/s and site-specific MAE values of 0.10 m/s
(Site A), 0.03 m/s (Site B), and 0.12 m/s (Site C).

59



Journal Pre-proof

---®--- Measurement data
------ 4~ Simulated results

---®--- Measurement data
------ A Simulated results

---@--- Measurement data
------ 4 Simulated results

1 04 1.8 4
16 - 2 N
©0.8 @ .4 1 AN
E és P . ‘1 \\1 °
; S
. i THNE (R LIV  T
2 g AR 26{ ‘ale e
g 81 A 4] Vi A
202 A i .4 ey
o) St ihe, 2] 40X
0 0 ) 0+
888888 8 8 888888888888 888888888888
O M © O N O © SNTOOSANST OB N SANTOOSANTOOSAN
— — — N .
Time (h) imeTthy Time (h)
(a) Site A (b) Site B (c) Site C

Figure A.6 Comparison between simulated wind speed and measured values: (a) Site A, (b) Site
B, (¢) Site C

The model exhibits slight overprediction of wind speeds under low-wind conditions,
particularly evident at Site B where the area experiences calm wind conditions throughout the
diurnal cycle with average measured wind speeds of only 0.04 m/s. This discrepancy is attributed
to simplified representation of building facade details and vegetation, which reduces wind
resistance in the numerical model compared to actual conditions.
A.4.3 PM[1.[] Concentration Validation

PMU.00 dispersion validation demonstrates the model's capability to accurately predict
pollutant transport patterns within the urban environment, as illustrated in Figure A.7. The
validation achieves R? values of 0.81, 0.71, and 0.83 for Sites A, B, and C respectively, with MAE

values of 3.18, 7.20, and 5.11 pg/m* for the respective sites, overall RMSE of 4.79 pg/m?, and
relative errors of 15.71%, 19.55%, and 16.81%.
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Figure A.7 Comparison between simulated PM[].[] concentration and measured values: (a) Site
A, (b) Site B, (c) Site C

These validation metrics compare favorably with published CFD-based PM[1.[] studies,
where relative errors frequently exceed 35% and absolute deviations can exceed a factor of two.
The larger uncertainty in particulate matter predictions compared to continuous phase variables is
inherent to the discrete nature of particle tracking methodologies and the complex interactions
between turbulent dispersion and particle inertia.
A.5 Grid Independency

A systematic grid independence study was conducted employing three mesh densities: coarse
(15 million cells), medium (31 million cells), and fine (47 million cells). Key output variables
including area-averaged temperature, velocity magnitude, and PM[].[] concentration showed
convergence with less than 3% variation between medium and fine mesh configurations,

confirming adequate spatial resolution for the selected medium mesh.

A.6 Statistical Performance Metrics
Model performance was evaluated using standard statistical metrics commonly employed in

urban environmental modeling:

Mean Absolute Error (MAE): MAE = =37, |P; — 0] (A.10)
Root Mean Square Error (RMSE): RMSE = \/% (P —0;)? (A.11)
Coefficient of Determination (R?): RZ = 1 — % (A.12)
Index of Agreement (d): d = 1 — 2iy(0i=P)” (A.13)

L, (IPi—0l+|0;=0[)?

where P; and O; represent predicted and observed values respectively, O is the mean of

observed values, and n is the total number of data points.
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