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A comprehensive framework for building flexibility assessment:
RC-Mapping modeling, flexibility quantification, and uncertainty
analysis
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Abstract
The increasing integration of renewable energy sources highlights the urgent need for grid
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flexibility, with buildings serving as key controllable loads. In this context, accurately quantifying ~ RC-Mapping model
demand response

HVAC system

building flexibility is essential for enabling effective demand-side management and ensuring
reliable grid operations. However, several challenges hinder this quantification. To address

these issues, this study proposes a comprehensive flexibility quantification framework. First, a A .
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novel RC-Mapping model incorporating an Enumerate-Comparison Method is proposed. The
RC-Mapping model can capture the thermal behavior of both the building and the air conditioning
system, while the Enumerate-Comparison Method can initialize state parameters in the RC-Mapping
model. Compared with the conventional approach, as validated by the experiment, the proposed
method can substantially improve RMSE for indoor temperature prediction from 0.542 °C to 0.266 °C,
and the MAPE for flexibility quantification from 27.58% to 10.98%. Second, the study introduces
the power reduction-duration curve and temperature variation curves to characterize flexibility
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from both grid and building perspectives. Specifically, based on the analysis of the power
reduction-duration curve, this study provides a systematic analysis of four sources of flexibility and
their underlying mechanisms, including the thermal storage of the building, the thermal storage
of the HVAC system, the increase of coefficient of performance (COP), and the reduction in cooling
load. Finally, the study investigates the impact of uncertainties in COP and internal heat gains on
flexibility quantification. According to the result, it is recommended to slightly underestimate
the COP and overestimate the internal heat gain schedule to improve the accuracy of flexibility
quantification.

1 Introduction growing frequency of extreme weather events increases

Q)
o
3
©
o
=)
o)
S
~
(%]

peak load pressures on power systems, necessitating greater

In response to the global energy crisis and the pursuit
of carbon neutrality goals, countries are accelerating the
development and utilization of renewable energy sources
(Ding et al. 2022). However, as the penetration of renewable
energy into power systems continues to increase (Luo et al.
2023b), the intermittent and uncertain nature of these
energy sources is posing significant challenges to the stability
of power systems (Arteconi et al. 2019). In addition, the

system flexibility (Li et al. 2022). Traditionally, peak
power demand has been addressed by constructing new
power plants (Klein et al. 2017). However, this approach
results in increased energy costs and significantly reduced
annual utilization of generators, reducing its viability in
smart grid applications (Rao et al. 2023; Wang et al. 2023).
In this context, the rapid development of grid interaction
technologies has created new opportunities for the utilization
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List of symbols

ass assumption

C thermal capacitance (J/K)

cal calculation

COP coefficient of performance

DR demand response

F flexibility

GA genetic algorithm

h the number of hour

HVAC  heating, ventilation, and air conditioning
J objective function

MAPE mean absolute percentage error
MPE mean percentage error

P power (W)

AP power reduction (W)

R thermal resistance (K/W)
RMSE root mean squared error
schedule internal heat gains

SYS air conditioning system

T temperature (°C)

AT temperature difference (°C)
T average temperature (°C)
TCR temperature change rate (°C/min)
t time (s)

Vi actual value

¥, predicted value

y, average of the actual value
o adjustment factor

T time constant

Subscripts

bui building

i step

in indoor

j step

out outdoor

Sys air conditioning system

of demand-side flexibility resources (Liu et al. 2022; Zhang
et al. 2024b). Public buildings, as essential components
for grid flexibility, possess considerable potential in smart
grid systems due to their significant energy consumption
and passive thermal storage potential (Luo and Shi 2024;
Zhu et al. 2025). Specifically, heating, ventilation, and air
conditioning (HVAC) systems, which account for 40% to
60% of total energy consumption in buildings (Dai et al.
2023c, 2024), are key components in this regard. HVAC
systems are well-suited for flexible control, with advantages
such as ease of integration into existing energy management
systems, low-cost implementation of flexible control (Sun
et al. 2024), and the ability to maintain occupant comfort
by leveraging thermal inertia. These characteristics make
HVAC systems ideal resources for alleviating grid stress
(Zhang and Kummert 2021).

In the context of modern demand response markets,
particularly in day-ahead markets, there is a critical need to
forecast/quantify flexibility in advance (Huang et al. 2025).
Accurate quantification of demand-side flexibility allows the
grid to plan ahead, enabling more effective unit commitment
and economic dispatch, and ultimately ensuring system
stability (Yu et al. 2023).

The flexibility quantification of building air conditioning
systems is inherently tied to the control strategies employed.
Broadly, these strategies can be categorized into end-side
and source-side control. The former adjusts indoor
temperature setpoints to reduce power demand (Hu et al.

2017), while the latter modifies the cooling capacity by
directly shutting down the chiller or adjusting the chilled
water supply temperature setpoint (Su and Norford 2015a,
2015b). Compared to the end-side control, the source-side
control allows for more rapid adjustments in electricity
consumption, thus meeting the requirements of the strict
power market, such as the ancillary services market (Dai
et al. 2023a, 2023b).

For end-side control, one method for quantifying flexibility
involves calculating energy consumption differences when
buildings operate at different indoor temperature setpoints
(Ala et al. 2020; Yuan et al. 2021). Specifically, energy
simulation software is used to determine the cooling load
differential between these setpoints (e.g., 24 °C vs. 26 °C).
This cooling load difference is subsequently converted into
the energy consumption difference using the coefficient
of performance (COP), which is typically interpreted as
building flexibility. However, the calculated flexibility actually
does not account for the thermal storage of the building.
This method is more suited for power markets that require
continuous energy consumption reductions throughout the
day. However, in most existing power markets, buildings
normally only need to reduce load during peak hours,
which can be achieved by raising the indoor temperature
setpoint only during these hours. This strategy can leverage
the building’s thermal storage, theoretically leading to higher
flexibility. Existing research has also proposed relevant
flexibility quantification methods for such circumstances.
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For example, Yin et al. (2016) used EnergyPlus software to
assess building flexibility by increasing the indoor temperature
setpoint only during peak hours and calculating the
difference between peak load and baseline load. Ding et al.
(2024) introduced two indicators (power flexibility and
energy consumption flexibility) to analyze building flexibility
by adjusting the indoor temperature setpoint. Similarly,
Ruan et al. (2023) examined the impact of preheating
strategies on building flexibility in heating scenarios, focusing
on the effects of indoor preheating temperatures (24 °C
and 25 °C), preheating durations (20-180 minutes, with
20-minute intervals), and building structural parameters.

For source-side control (such as shutting down chillers
or adjusting the chilled water supply temperature setpoint),
the corresponding quantification method is different from
that of end-side control, which is explained as follows. For
end-side control, the power use can only be reduced to a
certain value that maintains the upper limit of indoor
temperature (e.g., 26 °C). However, for source-side control,
the power use can technically be decreased to zero, unless
the indoor temperature exceeds the upper limit (e.g., 26 °C)
for a specified period (e.g., one hour) (Huang et al. 2021).
Therefore, with a limited demand response period, source-
side control theoretically can provide greater flexibility. Based
on this fact, a different quantification method is needed for
source-side control. Currently, the quantification method
related to source-side control is limited. Zhu et al. (2022)
simulated a demand response event by shutting down all
chiller plant equipment and quantified flexibility using
several key metrics: maximum DR duration (s), maximum
power reduction (kW), average power reduction (kW), and
maximum power rebound (kW). Han et al. (2024) proposed
an analytical method for flexibility quantification based
on a 2R2C model. This approach eliminates the need for
time-consuming numerical simulations, making it particularly
suitable for building cluster applications.

However, existing studies still face several limitations.
First, conventional flexibility quantification methods often
provide only a single value to represent the flexibility of
building HVAC systems (Li et al. 2019). In practice, users
can choose different levels of power reduction (such as
turning off varying numbers of chillers or adjusting the
chilled water setpoint to different degrees), which results in
different flexibility outcomes. Therefore, this study proposes
a power reduction-duration curve rather than a specific
value to quantify the flexibility. In addition, existing
flexibility quantification methods predominantly focus on
grid requirements. In practice, the corresponding thermal
comfort cost (indoor temperature fluctuations) for consumers
is also needed (Chen et al. 2018). This allows building
managers to select the level of flexibility they can offer based
on the cost they are willing to bear. To address this, this

study proposes temperature variation curves during the
demand response process from the building’s perspective.

Second, most existing flexibility quantification methods
overlook the impact of uncertainties (Luo et al. 2023a).
In fact, such uncertainties can lead to significant biases
(Amadeh et al. 2022; Shen and Wang 2024). To address this
limitation, this study systematically evaluates the influence
of uncertainty on flexibility quantification. Specifically, it
analyzes the effects of COP uncertainty and internal heat
gain uncertainty. COP uncertainty arises from variations
during adjustments of indoor temperature or chilled water
supply temperature setpoints. Internal heat gain uncertainty
mainly results from the random occupant schedules.

In the field of flexibility quantification, grey-box models,
especially resistance-capacitance (RC) models, are widely
used in building thermal dynamics modeling due to their
simplicity and clear physical interpretation (De Rosa et al.
2014). A first-order RC model simplifies the building’s
thermal behavior by representing the entire thermal mass
as a single capacitance. While computationally efficient,
this simplification limits its effectiveness for flexibility
quantification because it overlooks the distinction between
the fast dynamics of indoor air and the slower responses of
the building envelope (Chen et al. 2019). Second-order RC
models address this by independently modeling indoor air
and structural mass dynamics, thereby improving accuracy.
To further enhance fidelity, higher-order models have been
developed. For instance, 3R2C models are employed for
wall segments and zone-level characterization (Braun and
Chaturvedi 2002). Hybrid models, such as 3R2C-2R2C (Lin
et al. 2024) configuration, capture whole-building dynamics.
Even more detailed configurations, such as 6R4C (Gao et al.
2019) and 7R3C (Fux et al. 2014), offer a finer resolution
of heat storage and release. However, these increasingly
complex structures primarily focus on refining the thermal
processes of the building itself and still fall short in
capturing the inertia of HVAC systems, leading to potential
inaccuracies in flexibility quantification. To address this
gap, this study introduces an RC-Mapping model, which
can precisely describe the dynamic interplay among the
building, HVAC systems, and the indoor environment.

In addition, in the model parameter identification
process, many existing studies omit to mention the initialization
process of model state parameters (e.g., wall temperature)
(Bacher and Madsen 2011; Bagheri et al. 2017), or they
apply simplified rules that yield only rough estimates
(Vivian et al. 2017). However, accurate initialization of
model state parameters is critical for model parameter
identification (Zhuang et al. 2018). Moreover, during
flexibility quantification (especially in short-term demand
response events lasting only a few hours), the impact of
initialization becomes more significant, which has been
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demonstrated in our experimental results. To address this,

an Enumerate-Comparison Method is proposed to initialize

the model state parameters.
In summary, this study has three contributions, as
follows:

(1) This study proposes a power reduction-duration curve
rather than a single value to quantify the flexibility,
which can reflect scenario-dependent flexibility outcomes.
Simultaneously, this study provides temperature variation
curves in demand response events, which help building
managers estimate the thermal cost of demand response.

(2) This study systematically investigates how uncertainties
in key parameters, including the COP and internal heat
gains, affect flexibility quantification. The findings can
provide practical guidance for buildings to account for
such uncertainties to improve the accuracy of flexibility
quantification.

RC-Mapping

Model

(3) This study proposes a new model (i.e., RC-Mapping
model) for flexibility quantification, which captures not
only the thermal characteristics of the building but also
the thermal characteristics of air conditioning systems.
Moreover, this study proposes an Enumerate-Comparison
Method to initialize the model state parameters, which
can enhance model identification accuracy, thus
improving the accuracy of the flexibility quantification.
The structure of this study is organized as follows:

Section 2 outlines the methodology. Section 3 describes the

test platform and the test arrangement. Section 4 presents

the result and discussion. Section 5 concludes the study.

2 Methodology

The research framework is illustrated in Figure 1, including
three research steps: RC-Mapping model development,

Development ‘
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«——| Model structure
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flexibility quantification, and uncertainty analysis. The yellow-
highlighted boxes represent the study’s key contributions,
namely: the Enumerate-Comparison Method, the RC-Mapping
model, the flexibility quantification curves, and the
uncertainty analysis.

The three research steps are detailed as follows:

(1) RC-Mapping model development

The RC-Mapping model serves two key purposes: to predict
the baseline power use and to predict the indoor temperature
during demand response for flexibility quantification.
Specifically, the Enumerate-Comparison Method is proposed
to initialize state parameters. This research step is elaborated
in Section 2.1.

(2) Flexibility quantification

Two curves are introduced for building flexibility
quantification, as shown in Figure 2. The left curve is the
reduction-duration curve. It shows how long different
power reduction levels can be maintained before the indoor
temperature rises from the baseline (e.g., 24 °C) to the
upper comfort limit (e.g., 26 °C). The right curves are the
indoor temperature variation curves, which describe the
full indoor temperature response process during and after
the demand response under various power reduction levels.
This research step is elaborated in Section 2.2.

(3) Uncertainty analysis

2.1 RC-Mapping model

2.1.1 Model structure

The proposed RC-Mapping model is illustrated in Figure 3.
This model structure differs from conventional RC models
in two primary ways: (1) the introduction of a novel RC
model structure, and (2) a mapping model.

For the novel RC model structure, it can be observed
that the cooling/heating supply of the air conditioning
system (Qyys) is connected to the temperature of the system
(T4s), which subsequently influences the indoor temperature
(Tin) through a thermal resistance (Ry). In contrast,
conventional RC models connect Qs directly to Ti, without
accounting for the thermal dynamics of the air conditioning
system itself. For the mapping model, the hour of the day (h)
serves as an input to generate the corresponding internal
heat gains, which are directly linked to Ti,. The method for
identifying internal heat gain schedules has been detailed in
a separate publication by the author (Wang et al. 2025) and
is therefore not elaborated here. To specifically assess the
impact of schedule uncertainty on flexibility quantification,
this study adopts schedule values from the national
standard (MOHURD 2015), thereby ensuring a uniform
and controlled basis for uncertainty analysis.

The mathematical description of the RC-Mapping model
is shown as follows:

An uncertainty analysis is conducted focusing on two  HT, :M (1)
primary sources that affect the flexibility quantification Ry
of building air conditioning systems, including COP and T _T
internal heat gain. The mean percentage error (MPE) is HT, = % )
used to quantitatively evaluate the impact of parameter .
uncertainties on the flexibility quantification. This research HT, = Tow —Toan 3)
step is elaborated in Section 2.3. Risiout
~
Report AP and duration J-LI-LI-L

Max T, i [—AP, —AP,
5 AP, — AP,
5 TN =2k
— o \
> 1
Min Ty

Duration (min)
Power reduction-duration curve

Time (min)
Temperature variation curves

Fig. 2 Flexibility quantification
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Subscripts
in: indoor

Q:cooling/heating supply i
out: outdoor i

SYS: air conditioning system
h:the number of hour
M:mapping model

bui: building

_________________________

R bui,out

chui

Rpuiin

iE

7Csys

Fig. 3 RC-Mapping model

t
’Tsys,H—l = (H’E - sts X ONOFF ) X C_ + ’Tsys,i (4)
sys
t
Tin,i+1 = (HTZ —HT, +Q, ) X C_ + Tin,i (5)
t
Twall,i+1 = (HT3 - HTZ ) X—= + ’Twall,i (6)
bui
Qin,h = f(h) (7)

where HT, indicates the heat transfer between indoor air
and the air conditioning system; HT, indicates the heat
transfer between the exterior envelope and indoor air; HT;
indicates the heat transfer between outdoor air and the
exterior envelope; T denotes the temperature; R is the thermal
resistance; C is the thermal capacitance. The subscripts,
in, out, bui, sys, and i indicate indoor, outdoor, building,
air conditioning system and step. In this study, one step
corresponds to one minute. Qs represents the cooling
capacity supplied by air conditioning system; ONOFF
denotes the operational status of the compressor, where an
“on” state is indicated by 1 and “oft” state by 0; ¢ is the time,
measured in seconds; h represents the hour of the day. Q. is
the internal heat gain. The equation Q;, = f(h) represents the
Mapping model, which indicates the relationship between
internal heat gains and the hour of the day. This relationship
signifies that each specific hour uniquely corresponds to an
internal heat gain value Qi

2.1.2  Model identification

The initialization of model state parameters directly affects
the accuracy of parameter identification, thereby influencing
the reliability of flexibility quantification. In the RC-Mapping
model, the initial temperatures that need to be determined
include the system temperature (Ts,), the indoor temperature
(Tin1), and the wall temperature (Tya1). Among these, Tin;

can be directly assigned based on the measured indoor
temperature. Given the air conditioning system is located
indoors being off overnight, T, is reasonably assumed to
equal the indoor temperature.

However, accurately determining Ty poses significant
challenges for two main reasons: (1) it would require
sensors to be embedded within the wall, which is often
impractical in real applications; and (2) in cases where the
wall is represented using a multi-RC structure, there is no
direct measurable physical temperature corresponding to the
model state parameters in this structure. To address this
limitation, this study proposes an Enumerate-Comparison
Method for estimating the initial wall temperature. The
overall process is illustrated in Figure 4, and the main steps
are described as follows.

1) Define the assumed initial wall temperature T,

Under normal conditions, the initial wall temperature Tyan,
at a steady state typically lies between the indoor (Tin,;) and
outdoor (Teu1) temperatures. To explore this possibility
range, a series of assumed initial wall temperatures T/, is
enumerated using the equation Ty, = Tin1 +j X &, where j
starts from 1, and « is a fixed adjustment factor. In this
study, « is set to 0.1 °C. If there is a larger difference between
the indoor and outdoor temperatures, a larger adjustment
factor a can be chosen to accelerate the search process.
In theory, the initial wall temperature may fall outside the
indoor-outdoor range under rapid outdoor temperature
fluctuations. However, such scenarios are not considered
in this study. If needed, they can be accommodated by
appropriately expanding the search range.

2) Identify the RC parameters corresponding to T

wall, 1
Each assumed value of the initial wall temperature is used
to train the RC model based on data without internal heat
gain using the genetic algorithm (GA). The objective function
Ji is defined as the root mean squared error (RMSE) between
the predicted ( ,) and actual (y;) indoor temperatures:

. I .
min ]1 (Rsys ’Csys ’Rbui,in ’Cin ’Rbui,out ’Chui ) = ;Zi:l( yi - yi )2
)

3) Choose the optimal RC parameters

Due to the inherent randomness of the GA, for each
assumed initial wall temperature, the RC parameters are
trained W times. For each time, a group of RC parameters
can be obtained. Then, it can calculate the total deviation (o)
of each group of RC parameters compared to the average
RC parameters in W groups, as defined in Equation (9).
The group with the minimum deviation is chosen as the
optimal RC parameters set.
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The model follows an mRnC structure, where m and n
represent the number of thermal resistances and thermal
capacitances, respectively. In this study, a 3R3C model is
adopted, so m = 3 and n = 3. And R, = Ry, R2 = Ryuiin, Rs =
Ruouious Ci = Cyyor Cs = Ciny C3 = Gouss R, C, are the average
values of R; and C; in W groups of training.

4) Obtain the calculated initial wall temperature T

wall 1
After choosing the optimal RC parameters, the calculated
initial wall temperature can be obtained using historical
varijables (Tin, Tou) based on Equation (10).

dT, T —T T.,—T
C . wall __ Zin wall out wall 10
o dt Rbui,i + Rbui,o ( )

Here, an important question needs to be answered: how
far back do indoor and outdoor temperatures continue
to influence the current wall temperature? According to

Equation (10), the time constant 7 is can be derived as:

T=<R1 JrRl )71 “Chus

(11)

bui, i bui,o

Based on the exponential decay behavior of first-order
systems, the wall temperature reaches approximately 98%
of its steady-state value after a period of 47. Therefore, the
historical variables (Ti,, Tow) within the 47 time window
should be used to obtain the calculated initial wall temperature
(TSY)) based on Equation (10).

5) Select the optimal initial wall temperature by comparing
the assumed and calculated initial wall temperature

The calculated and assumed initial wall temperatures are
compared (T, vs T), and the one (T&/) with the
smallest absolute difference is chosen as the optimal initial
wall temperature, Tyan,.

Following Steps (1) to (5), the optimal initial wall
temperature (Tya1) is identified. The RC parameters
corresponding to this optimal temperature are selected as

the optimal RC parameters.
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2.2 Flexibility quantification

2.2.1 Reduction-duration curve

As mentioned above, the reduction-duration curve shows
how long different power reduction levels can be maintained
before the indoor temperature rises from the baseline (e.g.,
24 °C) to the upper comfort limit (e.g., 26 °C).

The process begins with estimating the baseline power
use, which represents the power required to maintain the
baseline indoor temperature setpoint. This baseline is
calculated using the RC-Mapping model and converted
into power use based on the COP. Once the baseline is
established, a series of power reduction scenarios are
simulated by incrementally lowering the cooling supply.
For each scenario, the RC-Mapping model is employed to
predict the indoor temperature variation. The DR event is
considered to end when the temperature reaches the upper
comfort limit, and the time used is recorded as the duration
corresponding to that power reduction level. Repeating this
process across all candidate reduction levels yields a set of
(power reduction, duration) pairs, which then generate the
reduction-duration curve.

2.2.2 Indoor temperature variation curves

Indoor temperature variation curves show the indoor
temperature changes during and after a demand response
(DR) event across various power reduction levels. Generated
by the RC-Mapping model, these curves have two phases:
the temperature rise from the baseline (e.g., 24 °C) to the
upper comfort limit (e.g., 26 °C) during DR, and the recovery
phase where the temperature returns to baseline after cooling
resumes.

To effectively capture the comfort cost that users may
bear when adopting different levels of power reduction during
a demand response event, two metrics are introduced: the
average temperature during the demand response period
(T, ), and the temperature change rate (°C/min) which is
defined in Equation (12).

_L-T

2 1

TCR (12)

where T and T represent the indoor temperatures at the
start and end of the demand response (DR) event, respectively;
t, — t; denotes the duration of the DR event, measured in
minutes.

2.3 Uncertainty analysis

In practical applications, even when the baseline cooling
load is accurately estimated, uncertainties in key input
parameters may still influence the results of flexibility

quantification. Among these, two critical factors are the COP
of the cooling system and the internal heat gains (Schedule).
To evaluate the impact of parameter uncertainties, each
parameter is independently perturbed within a specified
range, while all other variables (e.g., baseline load) are held
constant. The resulting effect on flexibility quantification is
then assessed.

3 Test platform and test arrangement

This section provides details about the test platform, including
the room and air conditioning system, the control system,
and the specifications of devices. Following this, the test
arrangement is introduced.

3.1 Test platform

The test platform, as shown in Figure 5, is established in a
conference room. The room is north-facing, with a floor area
of 30 square meters. It features a ducted air conditioning
unit (fixed-frequency) with two air outlets and connecting
air ducts.

The air conditioning system is controlled via Python
scripts, which allow for setting the system’s on/off status,
temperature setpoints, and airflow rate (high, medium, low).
Commands are sent using the Minimal Modbus library to
an RS485 controller, which subsequently sends an infrared
signal to the air conditioning control panel, as illustrated in
Figure 6(a).

Floor slab
[
| |
= | n@ l] Jl Air duct ﬂ
Ceiling EAENECI Ceiling
Return air Supply air Supply air

l

Fig. 5 Room and air conditioning system overview
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Outdoor weather
station

Room temperature
setpoint control device

Fig. 6 Air conditioning system test setup

To construct the RC-Mapping model (as described in
Section 2.1), three types of variables are required: outdoor
temperature Toy, indoor temperature Ty, and cooling supply
Qs from the air conditioning system. Outdoor temperature
is measured using a weather station placed on the rooftop,
as shown in Figure 6(b). Indoor temperature is obtained as
the average from two sensors placed in different parts of the
room, one of which is shown in Figure 6(c). The cooling
supply is calculated by dividing the power consumption by
the COP of the system. Power is measured by an energy
meter, as shown in Figure 6(d). The COP, derived from
the rated cooling capacity and power as provided by the
manufacturer, is assumed constant throughout this study.
Further details about the devices used are provided in
Table 1. Data collection occurs every minute.

3.2 Testarrangement

In this study, four days are involved. Among them, the
first three days are implemented through experiments,
which are used for model development. Day 4 represents

a standardized day, which is employed for flexibility

quantification. The indoor and outdoor temperatures during

these four days are shown in Figure 7. The details of each
day are as follows.

o Day 1: The indoor temperature was maintained between
24 °C and 26 °C. To achieve this, the air conditioning
was activated when the indoor temperature reached
or exceeded 26 °C, and the compressor was turned off
when the temperature dropped to 24 °C. It should
be noted that the fan remained operational to fully
leverage the system’s thermal storage.

e Day 2 and Day 3: Similar to Day 1, the indoor
temperature was maintained between 24 °C and 26 °C.
However, the outdoor temperature on these days was
higher, with a maximum outdoor temperature nearing
36 °C. These two days are selected to validate the
model’s performance during demand response events,
which typically occur during periods of high outdoor
temperatures.

o Day 4: Based on historical weather data, hourly outdoor
temperature data from 15 consecutive days in July
2024 is selected. The average of these hourly values is
used to construct a standardized outdoor temperature
profile. To match the study’s minute-level resolution,
linear interpolation is applied to each hour, generating
59 intermediate values and yielding a smooth minute-
by-minute temperature curve. The indoor temperature
is set consistently at 24 °C.

According to the proposed methodology, the study
procedure consists of three Setups, as detailed below.

¢ Setup 1: RC-Mapping model development

The model is trained using data from Day 1 and validated
using data from Day 2 and Day 3. The model performance
is evaluated from two perspectives: (1) the accuracy of
indoor temperature prediction, and (2) the accuracy of
flexibility quantification. Here, the flexibility is defined as
the duration for the indoor temperature to rise from the
baseline level (e.g., 24 °C) to the upper comfort limit
(e.g., 26 °C) after the compressor shutdown. In addition,
to evaluate the effectiveness of the proposed Enumerate-

Table 1 Detailed information on devices in the test platform

Name/type Measured parameters Measured accuracy Measured range Communication method
Room temperature setpoint control device / / / RS485
Weather station Temperature +0.1°C 40°C+80°C 4G
Indoor temperature sensor Temperature +0.1°C 40°Cx60°C Wi-Fi
Voltage 0.1% 0-480V
Energy meter Current 0.1% 0-20 A 4G
Power 0.5% 0-9.6 kW
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Fig. 7 The outdoor and indoor temperature of (a) Day 1, (b) Day 2, (c) Day 3, (d) Day 4

Comparison Method, which is used to determine the initial
wall temperature Tya1. The model is also compared with a
conventional approach where the initial wall temperature
is set as the average of the initial indoor and outdoor
temperatures. The results of this analysis are presented in
Section 4.1.

o Setup 2: flexibility quantification

The hourly power reduction-duration curve is developed
using data from Day 4. The baseline power is first calculated
using the RC-Mapping model. Then, it is assumed that
demand response strategies are applied at the beginning
of each hour from 8:00 AM to 4:00 PM, covering a total
duration of nine hours. For each hour, different levels of
power reduction are implemented into the RC-Mapping
model to obtain the duration for indoor temperature
rise from 24 °C to 26 °C. According to the levels of power
reduction and the corresponding duration, the power
reduction-duration curve can be obtained. It should be
noted that the power reduction levels started at 600 kJ/h
(i.e., 166.67 W) and incrementally increased up to the
baseline power level (i.e., the compressor turned off). Based
on the power reduction-duration curves for each hour, a

fundamental analysis is conducted on the sources of building
flexibility. Additionally, the corresponding hourly indoor
temperature variation curves are plotted and analyzed. The
results of this analysis are presented in Section 4.2.

o Setup 3: uncertainty analysis

For this part, the COP and schedule are individually varied
by +10% and +20%, respectively, under fixed conditions.
Here, the uncertainty range is determined according to the
chiller part-load performance curve and the prediction error
of the internal heat gain schedule (Lin et al. 2024). Then,
their impacts on flexibility quantification are analyzed.
It should be noted that only 10:00 and 14:00 (peak hours)
on Day 4 are selected as representative hours. The results of
this uncertainty analysis are presented in Section 4.3.

4 Result and discussion

4.1 RC-Mapping model performance

4.1.1 Indoor temperature prediction performance

As mentioned in Section 3.2, the indoor temperature
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prediction performance of the RC-Mapping model using
the conventional method (i.e., Tyan1 = 1/2(Tin1 + Toutn))
is compared with that using the proposed Enumerate-
Comparison Method. Figure 8(a) and Figure 8(b) show the
validation results of the conventional method on Day 2 and
Day 3, respectively, while Figure 8(c) and Figure 8(d)
present the results of the Enumerate-Comparison Method
on Day 2 and Day 3, respectively. In Figure 8, the green line
represents the predicted indoor temperature, and the orange
line represents the actual indoor temperature.

It can be observed that the RMSE decreased significantly
when using the proposed method: from 0.616 °C to 0.283 °C
on Day 2, and from 0.467 °C to 0.249 °C on Day 3, with an
average decrease from 0.542 °C to 0.266 °C. These results
demonstrate that the Enumerate-Comparison Method enables
more accurate identification of the initial wall temperature,
which significantly contributes to the enhanced predictive
performance of the model.

4.1.2  Flexibility quantification performance

As mentioned in Section 3.2, the flexibility quantification
performance of the RC-Mapping model using the
conventional method is compared with that using the
proposed Enumerate-Comparison Method. The duration
for the indoor temperature to rise from 24 °C to 26 °C each
time (on Day 2 and Day 3) is used to measure flexibility.
Figure 9(a) and Figure 9(b) show the validation results of
the conventional method on Day 2 and Day 3, respectively,
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while Figure 9(c) and Figure 9(d) present the results of
the Enumerate-Comparison Method on Day 2 and Day 3,
respectively.

As shown in Figure 9, the duration for the indoor
temperature to rise from 24 °C to 26 °C exhibits an increasing
trend. The main reason is that the air conditioning system
was turned off the night before, resulting in a relatively high
initial wall temperature (Tyau:). During the subsequent
operation phase, the indoor temperature was maintained
between 24 °C and 26 °C, which progressively reduced Tyau,.
Although each stage started from the indoor temperature
of 24 °C, the initial T\. became lower in the later stages,
leading to longer durations required for the indoor
temperature to reach 26 °C.

According to the results, the mean absolute percentage
error (MAPE) of the duration can be calculated. It can be
found that the MAPE decreased from 32.72% to 11.48% on
Day 2, and from 22.43% to 10.47% on Day 3, with an average
decrease from 27.58% to 10.98%. These results further
demonstrate that the Enumerate-Comparison Method allows
for more accurate identification of the initial wall temperature,
which in turn significantly enhances the model’s performance
in flexibility quantification.

The reasons why accurate identification of the initial
wall temperature significantly enhances the precision of
flexibility quantification are analyzed as follows. In practical
applications, due to the substantial thermal capacity of
buildings, the response time of wall temperature typically
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Fig. 8 Indoor temperature prediction performance of the conventional method on (a) Day 2 and (b) Day 3, and of the Enumerate-Comparison

Method on (c) Day 2 and (d) Day 3
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Method on (c) Day 2 and (d) Day 3

exceeds 10 hours. However, demand response events are
relatively short, usually lasting only 1 to 2 hours. Therefore,
if the initial wall temperature is not accurately estimated,
it can remain inaccurate throughout the entire demand
response period, introducing a persistent bias in indoor
temperature prediction.

The proposed method effectively addresses the challenge
of accurately determining the initial wall temperature,
thereby enhancing flexibility quantification in both model
development and application stages. In the model
development stage, it facilitates the identification of more
accurate model parameters. In the model application stage,
a more accurate estimation of the initial wall temperature
can contribute to improved quantification accuracy.

4.2  Hourly flexibility quantification

4.2.1 Power reduction-duration curve

Figure 10 shows the hourly power reduction-duration

curves. The following observations can be drawn:

(1) Baseline power use determines the maximum power
reduction (unit: W). The maximum reduction power
for each hour is defined by the baseline power use,
corresponding to the case when the air conditioning
compressor is completely shut off.

(2) Under the same power reduction conditions, the duration
remains consistent across different hours, even with
changes in outdoor temperature. This result indicates

that outdoor temperature does not impact the power
reduction-duration relationship, although intuitively,
higher outdoor temperatures would lead to shorter
durations. The reason is that higher outdoor temperatures
also correspond to higher baseline power use. As a
result, when the same amount of power is reduced, the
remaining power use is still higher than that under
lower outdoor temperatures. Consequently, the rate of
temperature increase remains the same, and thus, it
does not affect the duration.

The flexibility quantification is calculated using

Equation (13).

flexibility quantification = AP x Duration (13)
As shown in Figure 10(a), there is a clear difference
between Area X and Area Y (Y > X), indicating that the
building exhibits different levels of flexibility under varying
power reduction levels. To better explain this phenomenon,
this study first provides a systematic analysis of the sources
of flexibility and their underlying mechanisms. From the
authors’ perspective, building flexibility during demand
response mainly originates from the following four sources.
(1) Thermal storage of the building: the building has a
large thermal storage. When the air conditioning system
is turned off or operates at reduced power, this stored
energy helps slow down the rise in indoor temperature.
Therefore, the thermal storage of the building is one of
the core sources of flexibility.
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Fig. 10 Hourly power reduction-duration curve

(2) Thermal storage of the HVAC system: the HVAC
system itself also has thermal storage capacity, including
water systems, air systems, and air handling units. The
cooling energy stored in the HVAC system can provide
a non-negligible amount of flexibility during short-term
demand response events.

(3) Increase in coefficient of performance (COP): during
demand response, the evaporating temperature of the
air conditioning system typically increases (e.g., increasing
the chilled water supply temperature), leading to an
increase in COP. A higher COP allows the system to
deliver more cooling with the same power use, thereby
extending the response duration. Thus, the increase in
COP can be considered an indirect source of flexibility.

(4) Reduction in cooling load: as indoor temperature
increases, the temperature difference between the indoor
and outdoor environment decreases, which decreases the
cooling load. This helps extend the duration for which
the indoor temperature remains within the comfort
range. Therefore, a reduction in cooling load is also
considered an indirect source of flexibility.

Following the systematic analysis of the sources of

flexibility, the reason for Area Y being larger than Area X

can be explained as follows. First, the scenario corresponding

to Area Y involves a smaller power reduction level, which
naturally results in a longer duration. This extended
duration allows the building and HVAC system to release
more stored cooling energy. In turn, the additional released
cooling further prolongs the duration, creating a positive
feedback loop. Second, because the duration corresponding
to Area Y is larger, the accumulated reduced cooling load is
also larger, which can prolong the duration. To illustrate
this mechanism, consider a hypothetical case: let A be the
cooling load required to maintain 24 °C, and B the cooling
load to maintain 26 °C. As long as the reduced cooling
power remains less than or equal to the difference (A-B),
the system can theoretically maintain the indoor temperature
below 26 °C indefinitely, implying an infinite duration and,
consequently, infinite flexibility. It is worth noting that the
coefficient of performance (COP) is assumed constant in
our case study and thus does not influence the comparative
analysis.

4.2.2 Indoor temperature variation curve

Since the indoor temperature variation curves are similar
across different hours, this study selects 10:00 and 14:00 as
representative peak periods for detailed analysis. Figure 11
shows indoor temperature variation curves during and after
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Fig. 11 Indoor temperature variation curves during and after the demand response at (a) 10:00 and (b) 14:00

the demand response at 10:00 and 14:00 under different
power reduction levels.

As mentioned in Section 2.2.2, two metrics are used to
quantify the thermal comfort cost: the average temperature
during the demand response period (T_in ), and the

temperature change rate (°C/min), which are calculated
and presented in Figure 12 and Figure13, respectively.
Figure 12 shows the average temperature (T, ) under
different power reduction levels at 10:00 and 14:00. Through
a combined analysis with Figure 10, it can be observed that
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the case with the highest average temperature (power
reduction: 667 W) corresponds to the maximum flexibility.
This indicates that the gain in flexibility is directly linked to
the extent of comfort sacrifice. Occupants can determine
their acceptable level of power reduction based on their
acceptable comfort threshold.

Figure 13 shows the temperature change rate for
different power reduction levels at 10:00 and 14:00. Even in
the case of direct system shutdown, the observed temperature
change rate (TCR) remained around 0.12 °C/min. This
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Fig. 13 The temperature change rate for different power reduction levels at (a) 10:00 and (b) 14:00
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value is below the 0.15 °C/min threshold identified in
Zhang et al. (2024a) as the upper limit for maintaining
thermal comfort.

4.3 Uncertainty analysis

4.3.1 COP uncertainty analysis

Figure 14 shows the power reduction-duration curves under
different COP values at (a) 10:00 and (b) 14:00.

It can be observed that with the same level of power
reduction, the systems with higher COP can maintain a
longer duration. To further quantitatively evaluate the
impact of COP variation on flexibility quantification,
this study employs the mean percentage error (MPE) as a
performance indicator, as defined in Equation (14).

_ISN(E =B 1000
MPE_n;< 3 )xlOOA (14)
where F; represents the flexibility under different power
reduction levels, and F, refers to the flexibility for the
baseline case.

Table 2 provides the MPE results for different COP
deviations. It is important to note that overestimating
the COP leads to greater estimation errors compared to
underestimating it. The underlying reason is that a higher

assumed COP implies a larger amount of cooling provided,
which increases the estimated duration. Due to the positive
feedback loop mentioned in Section 4.2.1 (explaining why
Areas Y > X), the duration estimation error exhibits a
power-like relationship with the final flexibility quantification
result. For instance, with the same 10% deviation, 1.1 cubed
equals 1.331 (a 33.1% error), while 0.9 cubed equals 0.729
(a 27.1% error). Therefore, overestimating the duration (ie.,
overestimating the COP) tends to result in a larger
flexibility quantification error.

In practical applications, although reducing power
consumption (such as by increasing the chilled water supply
temperature) can improve the COP, it is recommended to
conservatively estimate the increase in the COP. On the one
hand, this ensures more accurate flexibility quantification.
On the other hand, it preserves a buffer to accommodate
potential uncertainties during actual demand response,
such as baseline load prediction errors and variations in
occupancy.

4.3.2 Indoor heat gains (schedule) uncertainty analysis

Figure 15 shows the power reduction-duration curves under
different schedule values at (a) 10:00 and (b) 14:00. Table 3
presents the corresponding MPE results. The results indicate
that underestimating the indoor heat gain leads to greater
estimation errors compared to overestimating it. The reason
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1000 1000 N
& 750 — s0%Cop & 70— s0%cop
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Fig. 14 Power reduction-duration curves under different COP deviations at (a) 10:00 and (b) 14:00
Table 2 MPE for different COP deviations
Hour 80% COP 90% COP 100% COP 110% COP 120% COP
10:00 -23.33% -13.33% 0% 16.67% 46.67%
14:00 -14.29% -7.14% 0% 10.71% 21.43%
Table 3 MPE for different schedule deviations
Hour 80% schedule 90% schedule 100% schedule 110% schedule 120% schedule
10:00 57.80% 19.40% 0% —13.80% —25.00%
14:00 48.50% 18.18% 0% —-15.15% —24.24%
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is that underestimating the indoor heat gain can lead to
overestimation of the duration. Because duration estimation
error exhibits a power-like relationship with the final
quantification result, as mentioned above. Overestimating
the duration (i.e., underestimating the indoor heat gain)
tends to result in a larger flexibility quantification error.

5 Conclusion

This study presents a systematic framework for the
quantification of demand-side flexibility in building air
conditioning systems, including RC-Mapping model
development, flexibility quantification, and uncertainty
analysis. The main conclusions are as follows:

e This study proposed a novel RC-Mapping model that
integrates the Enumerate-Comparison Method, and
exhibited excellent performance validated by experimental
data. Compared with the conventional approach, it
achieved substantial improvements in temperature
prediction RMSE from 0.542 °C to 0.266 °C, and the
MAPE for flexibility quantification from 27.58% to
10.98%.

e This study proposes two representative curves: the
power reduction-duration curve and the temperature
variation curves, which provide a comprehensive
characterization of building flexibility from both the
grid’s and the end user’s perspectives. Notably, the
analysis reveals that outdoor temperature does not
affect the reduction-duration curve.

o This study identifies four principal sources contributing
to the flexibility of building air-conditioning systems:
(1) the thermal storage of the building, (2) the thermal
storage of the HVAC system, (3) the increase in COP,
and (4) the reduction in cooling load.

o This study demonstrates that the COP and internal heat
gains (Schedule) have a significant impact on flexibility
quantification. For COP, overestimation tends to
cause larger flexibility quantification deviations. For

internal heat gains, underestimation tends to cause
larger flexibility quantification deviations.
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