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Abstract 
The increasing integration of renewable energy sources highlights the urgent need for grid 

flexibility, with buildings serving as key controllable loads. In this context, accurately quantifying 
building flexibility is essential for enabling effective demand-side management and ensuring 
reliable grid operations. However, several challenges hinder this quantification. To address 

these issues, this study proposes a comprehensive flexibility quantification framework. First, a 
novel RC-Mapping model incorporating an Enumerate-Comparison Method is proposed. The 
RC-Mapping model can capture the thermal behavior of both the building and the air conditioning 

system, while the Enumerate-Comparison Method can initialize state parameters in the RC-Mapping 
model. Compared with the conventional approach, as validated by the experiment, the proposed 
method can substantially improve RMSE for indoor temperature prediction from 0.542 °C to 0.266 °C, 

and the MAPE for flexibility quantification from 27.58% to 10.98%. Second, the study introduces 
the power reduction-duration curve and temperature variation curves to characterize flexibility 
from both grid and building perspectives. Specifically, based on the analysis of the power 

reduction-duration curve, this study provides a systematic analysis of four sources of flexibility and 
their underlying mechanisms, including the thermal storage of the building, the thermal storage 
of the HVAC system, the increase of coefficient of performance (COP), and the reduction in cooling 

load. Finally, the study investigates the impact of uncertainties in COP and internal heat gains on 
flexibility quantification. According to the result, it is recommended to slightly underestimate 
the COP and overestimate the internal heat gain schedule to improve the accuracy of flexibility 

quantification. 
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1 Introduction 

In response to the global energy crisis and the pursuit   
of carbon neutrality goals, countries are accelerating the 
development and utilization of renewable energy sources 
(Ding et al. 2022). However, as the penetration of renewable 
energy into power systems continues to increase (Luo et al. 
2023b), the intermittent and uncertain nature of these 
energy sources is posing significant challenges to the stability 
of power systems (Arteconi et al. 2019). In addition, the 

growing frequency of extreme weather events increases 
peak load pressures on power systems, necessitating greater 
system flexibility (Li et al. 2022). Traditionally, peak 
power demand has been addressed by constructing new 
power plants (Klein et al. 2017). However, this approach 
results in increased energy costs and significantly reduced 
annual utilization of generators, reducing its viability in 
smart grid applications (Rao et al. 2023; Wang et al. 2023). 

In this context, the rapid development of grid interaction 
technologies has created new opportunities for the utilization  
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List of symbols 

ass  assumption 
C  thermal capacitance (J/K) 
cal  calculation 
COP  coefficient of performance 
DR  demand response 
F  flexibility 
GA  genetic algorithm 
h  the number of hour 
HVAC  heating, ventilation, and air conditioning 
J  objective function 
MAPE  mean absolute percentage error 
MPE  mean percentage error 
P  power (W) 
ΔP  power reduction (W) 
R  thermal resistance (K/W) 
RMSE  root mean squared error 
schedule  internal heat gains 
SYS  air conditioning system 

T temperature (°C) 
ΔT temperature difference (°C) 
T  average temperature (°C) 
TCR temperature change rate (°C/min) 
t time (s) 
yi actual value 
ˆiy  predicted value 

iy  average of the actual value 
α adjustment factor 
τ time constant 

Subscripts  

bui building 
i step 
in indoor 
j step 
out outdoor 
sys air conditioning system 

   

of demand-side flexibility resources (Liu et al. 2022; Zhang 
et al. 2024b). Public buildings, as essential components  
for grid flexibility, possess considerable potential in smart 
grid systems due to their significant energy consumption 
and passive thermal storage potential (Luo and Shi 2024; 
Zhu et al. 2025). Specifically, heating, ventilation, and air 
conditioning (HVAC) systems, which account for 40% to 
60% of total energy consumption in buildings (Dai et al. 
2023c, 2024), are key components in this regard. HVAC 
systems are well-suited for flexible control, with advantages 
such as ease of integration into existing energy management 
systems, low-cost implementation of flexible control (Sun 
et al. 2024), and the ability to maintain occupant comfort 
by leveraging thermal inertia. These characteristics make 
HVAC systems ideal resources for alleviating grid stress 
(Zhang and Kummert 2021). 

In the context of modern demand response markets, 
particularly in day-ahead markets, there is a critical need to 
forecast/quantify flexibility in advance (Huang et al. 2025). 
Accurate quantification of demand-side flexibility allows the 
grid to plan ahead, enabling more effective unit commitment 
and economic dispatch, and ultimately ensuring system 
stability (Yu et al. 2023). 

The flexibility quantification of building air conditioning 
systems is inherently tied to the control strategies employed. 
Broadly, these strategies can be categorized into end-side 
and source-side control. The former adjusts indoor 
temperature setpoints to reduce power demand (Hu et al. 

2017), while the latter modifies the cooling capacity by 
directly shutting down the chiller or adjusting the chilled 
water supply temperature setpoint (Su and Norford 2015a, 
2015b). Compared to the end-side control, the source-side 
control allows for more rapid adjustments in electricity 
consumption, thus meeting the requirements of the strict 
power market, such as the ancillary services market (Dai  
et al. 2023a, 2023b). 

For end-side control, one method for quantifying flexibility 
involves calculating energy consumption differences when 
buildings operate at different indoor temperature setpoints 
(Ala et al. 2020; Yuan et al. 2021). Specifically, energy 
simulation software is used to determine the cooling load 
differential between these setpoints (e.g., 24 °C vs. 26 °C). 
This cooling load difference is subsequently converted into 
the energy consumption difference using the coefficient  
of performance (COP), which is typically interpreted as 
building flexibility. However, the calculated flexibility actually 
does not account for the thermal storage of the building. 
This method is more suited for power markets that require 
continuous energy consumption reductions throughout the 
day. However, in most existing power markets, buildings 
normally only need to reduce load during peak hours, 
which can be achieved by raising the indoor temperature 
setpoint only during these hours. This strategy can leverage 
the building’s thermal storage, theoretically leading to higher 
flexibility. Existing research has also proposed relevant 
flexibility quantification methods for such circumstances. 
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For example, Yin et al. (2016) used EnergyPlus software to  
assess building flexibility by increasing the indoor temperature 
setpoint only during peak hours and calculating the 
difference between peak load and baseline load. Ding et al. 
(2024) introduced two indicators (power flexibility and 
energy consumption flexibility) to analyze building flexibility 
by adjusting the indoor temperature setpoint. Similarly, 
Ruan et al. (2023) examined the impact of preheating 
strategies on building flexibility in heating scenarios, focusing 
on the effects of indoor preheating temperatures (24 °C 
and 25 °C), preheating durations (20–180 minutes, with 
20-minute intervals), and building structural parameters.  

For source-side control (such as shutting down chillers 
or adjusting the chilled water supply temperature setpoint), 
the corresponding quantification method is different from 
that of end-side control, which is explained as follows. For 
end-side control, the power use can only be reduced to a 
certain value that maintains the upper limit of indoor 
temperature (e.g., 26 °C). However, for source-side control, 
the power use can technically be decreased to zero, unless 
the indoor temperature exceeds the upper limit (e.g., 26 °C) 
for a specified period (e.g., one hour) (Huang et al. 2021). 
Therefore, with a limited demand response period, source- 
side control theoretically can provide greater flexibility. Based 
on this fact, a different quantification method is needed for 
source-side control. Currently, the quantification method 
related to source-side control is limited. Zhu et al. (2022) 
simulated a demand response event by shutting down all 
chiller plant equipment and quantified flexibility using 
several key metrics: maximum DR duration (s), maximum 
power reduction (kW), average power reduction (kW), and 
maximum power rebound (kW). Han et al. (2024) proposed 
an analytical method for flexibility quantification based 
on a 2R2C model. This approach eliminates the need for 
time-consuming numerical simulations, making it particularly 
suitable for building cluster applications. 

However, existing studies still face several limitations. 
First, conventional flexibility quantification methods often 
provide only a single value to represent the flexibility of 
building HVAC systems (Li et al. 2019). In practice, users 
can choose different levels of power reduction (such as 
turning off varying numbers of chillers or adjusting the 
chilled water setpoint to different degrees), which results in 
different flexibility outcomes. Therefore, this study proposes 
a power reduction-duration curve rather than a specific 
value to quantify the flexibility. In addition, existing 
flexibility quantification methods predominantly focus on 
grid requirements. In practice, the corresponding thermal 
comfort cost (indoor temperature fluctuations) for consumers 
is also needed (Chen et al. 2018). This allows building 
managers to select the level of flexibility they can offer based 
on the cost they are willing to bear. To address this, this 

study proposes temperature variation curves during the 
demand response process from the building’s perspective. 

Second, most existing flexibility quantification methods 
overlook the impact of uncertainties (Luo et al. 2023a).  
In fact, such uncertainties can lead to significant biases 
(Amadeh et al. 2022; Shen and Wang 2024). To address this 
limitation, this study systematically evaluates the influence 
of uncertainty on flexibility quantification. Specifically, it 
analyzes the effects of COP uncertainty and internal heat 
gain uncertainty. COP uncertainty arises from variations 
during adjustments of indoor temperature or chilled water 
supply temperature setpoints. Internal heat gain uncertainty 
mainly results from the random occupant schedules. 

In the field of flexibility quantification, grey-box models, 
especially resistance-capacitance (RC) models, are widely 
used in building thermal dynamics modeling due to their 
simplicity and clear physical interpretation (De Rosa et al. 
2014). A first-order RC model simplifies the building’s 
thermal behavior by representing the entire thermal mass 
as a single capacitance. While computationally efficient, 
this simplification limits its effectiveness for flexibility 
quantification because it overlooks the distinction between 
the fast dynamics of indoor air and the slower responses of 
the building envelope (Chen et al. 2019). Second-order RC 
models address this by independently modeling indoor air 
and structural mass dynamics, thereby improving accuracy. 
To further enhance fidelity, higher-order models have been 
developed. For instance, 3R2C models are employed for 
wall segments and zone-level characterization (Braun and 
Chaturvedi 2002). Hybrid models, such as 3R2C-2R2C (Lin 
et al. 2024) configuration, capture whole-building dynamics. 
Even more detailed configurations, such as 6R4C (Gao et al. 
2019) and 7R3C (Fux et al. 2014), offer a finer resolution  
of heat storage and release. However, these increasingly 
complex structures primarily focus on refining the thermal 
processes of the building itself and still fall short in 
capturing the inertia of HVAC systems, leading to potential 
inaccuracies in flexibility quantification. To address this 
gap, this study introduces an RC-Mapping model, which 
can precisely describe the dynamic interplay among the 
building, HVAC systems, and the indoor environment. 

In addition, in the model parameter identification 
process, many existing studies omit to mention the initialization 
process of model state parameters (e.g., wall temperature) 
(Bacher and Madsen 2011; Bagheri et al. 2017), or they 
apply simplified rules that yield only rough estimates 
(Vivian et al. 2017). However, accurate initialization of 
model state parameters is critical for model parameter 
identification (Zhuang et al. 2018). Moreover, during 
flexibility quantification (especially in short-term demand 
response events lasting only a few hours), the impact of 
initialization becomes more significant, which has been 
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demonstrated in our experimental results. To address this, 
an Enumerate-Comparison Method is proposed to initialize 
the model state parameters. 

In summary, this study has three contributions, as 
follows: 
(1) This study proposes a power reduction-duration curve 

rather than a single value to quantify the flexibility, 
which can reflect scenario-dependent flexibility outcomes. 
Simultaneously, this study provides temperature variation 
curves in demand response events, which help building 
managers estimate the thermal cost of demand response. 

(2) This study systematically investigates how uncertainties 
in key parameters, including the COP and internal heat 
gains, affect flexibility quantification. The findings can 
provide practical guidance for buildings to account for 
such uncertainties to improve the accuracy of flexibility 
quantification. 

(3) This study proposes a new model (i.e., RC-Mapping 
model) for flexibility quantification, which captures not 
only the thermal characteristics of the building but also 
the thermal characteristics of air conditioning systems. 
Moreover, this study proposes an Enumerate-Comparison 
Method to initialize the model state parameters, which 
can enhance model identification accuracy, thus 
improving the accuracy of the flexibility quantification. 
The structure of this study is organized as follows: 

Section 2 outlines the methodology. Section 3 describes the 
test platform and the test arrangement. Section 4 presents 
the result and discussion. Section 5 concludes the study. 

2 Methodology 

The research framework is illustrated in Figure 1, including 
three research steps: RC-Mapping model development,  

 

Fig. 1 Research framework 
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flexibility quantification, and uncertainty analysis. The yellow- 
highlighted boxes represent the study’s key contributions, 
namely: the Enumerate-Comparison Method, the RC-Mapping 
model, the flexibility quantification curves, and the 
uncertainty analysis. 
The three research steps are detailed as follows: 

(1) RC-Mapping model development 

The RC-Mapping model serves two key purposes: to predict 
the baseline power use and to predict the indoor temperature 
during demand response for flexibility quantification. 
Specifically, the Enumerate-Comparison Method is proposed 
to initialize state parameters. This research step is elaborated 
in Section 2.1. 

(2) Flexibility quantification 

Two curves are introduced for building flexibility 
quantification, as shown in Figure 2. The left curve is the 
reduction-duration curve. It shows how long different 
power reduction levels can be maintained before the indoor 
temperature rises from the baseline (e.g., 24 °C) to the 
upper comfort limit (e.g., 26 °C). The right curves are the 
indoor temperature variation curves, which describe the 
full indoor temperature response process during and after 
the demand response under various power reduction levels. 
This research step is elaborated in Section 2.2. 

(3) Uncertainty analysis 

An uncertainty analysis is conducted focusing on two 
primary sources that affect the flexibility quantification  
of building air conditioning systems, including COP and 
internal heat gain. The mean percentage error (MPE) is 
used to quantitatively evaluate the impact of parameter 
uncertainties on the flexibility quantification. This research 
step is elaborated in Section 2.3. 

2.1 RC-Mapping model 

2.1.1 Model structure 

The proposed RC-Mapping model is illustrated in Figure 3. 
This model structure differs from conventional RC models 
in two primary ways: (1) the introduction of a novel RC 
model structure, and (2) a mapping model.  

For the novel RC model structure, it can be observed 
that the cooling/heating supply of the air conditioning 
system (Qsys) is connected to the temperature of the system 
(Tsys), which subsequently influences the indoor temperature 
(Tin) through a thermal resistance (Rsys). In contrast, 
conventional RC models connect Qsys directly to Tin without 
accounting for the thermal dynamics of the air conditioning 
system itself. For the mapping model, the hour of the day (h) 
serves as an input to generate the corresponding internal 
heat gains, which are directly linked to Tin. The method for 
identifying internal heat gain schedules has been detailed in 
a separate publication by the author (Wang et al. 2025) and 
is therefore not elaborated here. To specifically assess the 
impact of schedule uncertainty on flexibility quantification, 
this study adopts schedule values from the national 
standard (MOHURD 2015), thereby ensuring a uniform 
and controlled basis for uncertainty analysis. 

The mathematical description of the RC-Mapping model 
is shown as follows: 

in sys
1

sys
HT

T T
R
-

=                                  (1) 

wall in
2

bui,in
HT T T

R
-

=                                 (2) 

out wall
3

bui,out
HT T T

R
-

=                                (3) 

 
Fig. 2 Flexibility quantification 
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Fig. 3 RC-Mapping model 

( )sys, 1 1 sys sys,
sys

HT ONOFFi i
tT Q T

C+ = - ´ ´ +           (4) 

( )in, 1 2 1 in in,
in

HT HTi i
tT Q T

C+ = - + ´ +               (5) 

( )wall , 1 3 2 wall,
bui

HT HTi i
tT T

C+ = - ´ +                 (6) 

( )in,hQ f h=                                     (7) 

where HT1 indicates the heat transfer between indoor air 
and the air conditioning system; HT2 indicates the heat 
transfer between the exterior envelope and indoor air; HT3 
indicates the heat transfer between outdoor air and the 
exterior envelope; T denotes the temperature; R is the thermal 
resistance; C is the thermal capacitance. The subscripts,  
in, out, bui, sys, and i indicate indoor, outdoor, building,  
air conditioning system and step. In this study, one step 
corresponds to one minute. Qsys represents the cooling 
capacity supplied by air conditioning system; ONOFF 
denotes the operational status of the compressor, where an 
“on” state is indicated by 1 and “off” state by 0; t is the time, 
measured in seconds; h represents the hour of the day. Qin is 
the internal heat gain. The equation Qin = f(h) represents the 
Mapping model, which indicates the relationship between 
internal heat gains and the hour of the day. This relationship 
signifies that each specific hour uniquely corresponds to an 
internal heat gain value Qin,h. 

2.1.2 Model identification 

The initialization of model state parameters directly affects 
the accuracy of parameter identification, thereby influencing 
the reliability of flexibility quantification. In the RC-Mapping 
model, the initial temperatures that need to be determined 
include the system temperature (Tsys,1), the indoor temperature 
(Tin,1), and the wall temperature (Twall,1). Among these, Tin,1 

can be directly assigned based on the measured indoor 
temperature. Given the air conditioning system is located 
indoors being off overnight, Tsys,1 is reasonably assumed to 
equal the indoor temperature. 

However, accurately determining Twall,1 poses significant 
challenges for two main reasons: (1) it would require 
sensors to be embedded within the wall, which is often 
impractical in real applications; and (2) in cases where the 
wall is represented using a multi-RC structure, there is no 
direct measurable physical temperature corresponding to the 
model state parameters in this structure. To address this 
limitation, this study proposes an Enumerate-Comparison 
Method for estimating the initial wall temperature. The 
overall process is illustrated in Figure 4, and the main steps 
are described as follows. 

1) Define the assumed initial wall temperature jT ass,
wall,1  

Under normal conditions, the initial wall temperature Twall,1 
at a steady state typically lies between the indoor (Tin,1) and 
outdoor (Tout,1) temperatures. To explore this possibility 
range, a series of assumed initial wall temperatures ass,

wall ,1
jT  is 

enumerated using the equation ass,
wall ,1

jT  = Tin,1 + j × α, where j 
starts from 1, and α is a fixed adjustment factor. In this 
study, α is set to 0.1 °C. If there is a larger difference between 
the indoor and outdoor temperatures, a larger adjustment 
factor α can be chosen to accelerate the search process.   
In theory, the initial wall temperature may fall outside the 
indoor-outdoor range under rapid outdoor temperature 
fluctuations. However, such scenarios are not considered 
in this study. If needed, they can be accommodated by 
appropriately expanding the search range. 

2) Identify the RC parameters corresponding to jT ass,
wall,1  

Each assumed value of the initial wall temperature is used 
to train the RC model based on data without internal heat 
gain using the genetic algorithm (GA). The objective function 
J1 is defined as the root mean squared error (RMSE) between 
the predicted ( ˆiy ) and actual (yi) indoor temperatures: 

( ) ( )2
1 sys sys bui,in in bui,out bui 1

1min , , , , ˆ,   n
i ii

J R C R C R C y y
n =

= -å  

(8) 

3) Choose the optimal RC parameters 

Due to the inherent randomness of the GA, for each 
assumed initial wall temperature, the RC parameters are 
trained W times. For each time, a group of RC parameters 
can be obtained. Then, it can calculate the total deviation (σ) 
of each group of RC parameters compared to the average 
RC parameters in W groups, as defined in Equation (9). 
The group with the minimum deviation is chosen as the 
optimal RC parameters set.  
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i m i n
i i i i

i ii i

R R C Cσ
R C

= =

= =

- -
= +å å              (9) 

The model follows an mRnC structure, where m and n 
represent the number of thermal resistances and thermal 
capacitances, respectively. In this study, a 3R3C model is 
adopted, so m = 3 and n = 3. And R1 = Rsys, R2 = Rbui,in, R3 = 
Rbui,out, C1 = Csys, C2 = Cin, C3 = Cbui, iR , iC  are the average 
values of Ri and Ci in W groups of training.  

4) Obtain the calculated initial wall temperature jT cal,
wall,1  

After choosing the optimal RC parameters, the calculated 
initial wall temperature can be obtained using historical 
variables (Tin, Tout) based on Equation (10). 

wall in wall out wall
bui

bui, bui,o

d
d i

T T T T TC
t R R

- -
= +⋅            (10) 

Here, an important question needs to be answered: how 
far back do indoor and outdoor temperatures continue  
to influence the current wall temperature? According to 

Equation (10), the time constant τ  is can be derived as: 

1

bui
bui, bui,o

1 1
i

τ C
R R

-
= + ⋅( )                        (11) 

Based on the exponential decay behavior of first-order 
systems, the wall temperature reaches approximately 98% 
of its steady-state value after a period of 4τ. Therefore, the 
historical variables (Tin, Tout) within the 4τ time window 
should be used to obtain the calculated initial wall temperature 
( cal,

wall ,1
jT ) based on Equation (10).  

5) Select the optimal initial wall temperature by comparing 
the assumed and calculated initial wall temperature 

The calculated and assumed initial wall temperatures are 
compared ( cal,

wall ,1
jT  vs ass,

wall ,1
jT ), and the one ( ass,

wall ,1
jT ) with the 

smallest absolute difference is chosen as the optimal initial 
wall temperature, Twall,1. 

Following Steps (1) to (5), the optimal initial wall 
temperature (Twall,1) is identified. The RC parameters 
corresponding to this optimal temperature are selected as 
the optimal RC parameters. 

 
Fig. 4 Enumerate-Comparison Method 
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2.2 Flexibility quantification 

2.2.1 Reduction-duration curve 

As mentioned above, the reduction-duration curve shows 
how long different power reduction levels can be maintained 
before the indoor temperature rises from the baseline (e.g., 
24 °C) to the upper comfort limit (e.g., 26 °C). 

The process begins with estimating the baseline power 
use, which represents the power required to maintain the 
baseline indoor temperature setpoint. This baseline is 
calculated using the RC-Mapping model and converted 
into power use based on the COP. Once the baseline is 
established, a series of power reduction scenarios are 
simulated by incrementally lowering the cooling supply. 
For each scenario, the RC-Mapping model is employed to 
predict the indoor temperature variation. The DR event is 
considered to end when the temperature reaches the upper 
comfort limit, and the time used is recorded as the duration 
corresponding to that power reduction level. Repeating this 
process across all candidate reduction levels yields a set of 
(power reduction, duration) pairs, which then generate the 
reduction-duration curve. 

2.2.2 Indoor temperature variation curves 

Indoor temperature variation curves show the indoor 
temperature changes during and after a demand response 
(DR) event across various power reduction levels. Generated 
by the RC-Mapping model, these curves have two phases: 
the temperature rise from the baseline (e.g., 24 °C) to the 
upper comfort limit (e.g., 26 °C) during DR, and the recovery 
phase where the temperature returns to baseline after cooling 
resumes. 

To effectively capture the comfort cost that users may 
bear when adopting different levels of power reduction during 
a demand response event, two metrics are introduced: the 
average temperature during the demand response period 
( inT ), and the temperature change rate (°C/min) which is 
defined in Equation (12). 

1 2

2 1
TCR T T

t t
-

=
-

                    (12) 

where T1 and T2 represent the indoor temperatures at the 
start and end of the demand response (DR) event, respectively; 
t2 − t1 denotes the duration of the DR event, measured in 
minutes. 

2.3 Uncertainty analysis 

In practical applications, even when the baseline cooling 
load is accurately estimated, uncertainties in key input 
parameters may still influence the results of flexibility 

quantification. Among these, two critical factors are the COP 
of the cooling system and the internal heat gains (Schedule). 
To evaluate the impact of parameter uncertainties, each 
parameter is independently perturbed within a specified 
range, while all other variables (e.g., baseline load) are held 
constant. The resulting effect on flexibility quantification is 
then assessed. 

3 Test platform and test arrangement 

This section provides details about the test platform, including 
the room and air conditioning system, the control system, 
and the specifications of devices. Following this, the test 
arrangement is introduced. 

3.1 Test platform 

The test platform, as shown in Figure 5, is established in a 
conference room. The room is north-facing, with a floor area 
of 30 square meters. It features a ducted air conditioning 
unit (fixed-frequency) with two air outlets and connecting 
air ducts. 

The air conditioning system is controlled via Python 
scripts, which allow for setting the system’s on/off status, 
temperature setpoints, and airflow rate (high, medium, low). 
Commands are sent using the Minimal Modbus library to 
an RS485 controller, which subsequently sends an infrared 
signal to the air conditioning control panel, as illustrated in 
Figure 6(a). 

 
Fig. 5 Room and air conditioning system overview 
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Fig. 6 Air conditioning system test setup 

To construct the RC-Mapping model (as described in 
Section 2.1), three types of variables are required: outdoor 
temperature Tout, indoor temperature Tin, and cooling supply 
Qsys from the air conditioning system. Outdoor temperature 
is measured using a weather station placed on the rooftop, 
as shown in Figure 6(b). Indoor temperature is obtained as 
the average from two sensors placed in different parts of the 
room, one of which is shown in Figure 6(c). The cooling 
supply is calculated by dividing the power consumption by 
the COP of the system. Power is measured by an energy 
meter, as shown in Figure 6(d). The COP, derived from  
the rated cooling capacity and power as provided by the 
manufacturer, is assumed constant throughout this study. 
Further details about the devices used are provided in 
Table 1. Data collection occurs every minute. 

3.2 Test arrangement 

In this study, four days are involved. Among them, the 
first three days are implemented through experiments, 
which are used for model development. Day 4 represents 

a standardized day, which is employed for flexibility 
quantification. The indoor and outdoor temperatures during 
these four days are shown in Figure 7. The details of each 
day are as follows. 
 Day 1: The indoor temperature was maintained between 

24 °C and 26 °C. To achieve this, the air conditioning 
was activated when the indoor temperature reached 
or exceeded 26 °C, and the compressor was turned off 
when the temperature dropped to 24 °C. It should  
be noted that the fan remained operational to fully 
leverage the system’s thermal storage. 

 Day 2 and Day 3: Similar to Day 1, the indoor 
temperature was maintained between 24 °C and 26 °C. 
However, the outdoor temperature on these days was 
higher, with a maximum outdoor temperature nearing 
36 °C. These two days are selected to validate the 
model’s performance during demand response events, 
which typically occur during periods of high outdoor 
temperatures. 

 Day 4: Based on historical weather data, hourly outdoor 
temperature data from 15 consecutive days in July 
2024 is selected. The average of these hourly values is 
used to construct a standardized outdoor temperature 
profile. To match the study’s minute-level resolution, 
linear interpolation is applied to each hour, generating 
59 intermediate values and yielding a smooth minute- 
by-minute temperature curve. The indoor temperature 
is set consistently at 24 °C. 
According to the proposed methodology, the study 

procedure consists of three Setups, as detailed below. 

 Setup 1: RC-Mapping model development 

The model is trained using data from Day 1 and validated 
using data from Day 2 and Day 3. The model performance 
is evaluated from two perspectives: (1) the accuracy of 
indoor temperature prediction, and (2) the accuracy of 
flexibility quantification. Here, the flexibility is defined as 
the duration for the indoor temperature to rise from the 
baseline level (e.g., 24 °C) to the upper comfort limit 
(e.g., 26 °C) after the compressor shutdown. In addition, 
to evaluate the effectiveness of the proposed Enumerate- 

Table 1 Detailed information on devices in the test platform 

Name/type Measured parameters Measured accuracy Measured range Communication method

Room temperature setpoint control device / / / RS485 

Weather station Temperature ±0.1 °C 40 °C ± 80 °C 4G 

Indoor temperature sensor Temperature ±0.1 °C 40 °C ± 60 °C Wi-Fi 

Voltage 0.1% 0–480 V 

Current 0.1% 0–20 A Energy meter 

Power 0.5% 0–9.6 kW 

4G 
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Comparison Method, which is used to determine the initial 
wall temperature Twall,1. The model is also compared with a 
conventional approach where the initial wall temperature  
is set as the average of the initial indoor and outdoor 
temperatures. The results of this analysis are presented in 
Section 4.1. 

 Setup 2: flexibility quantification 

The hourly power reduction-duration curve is developed 
using data from Day 4. The baseline power is first calculated 
using the RC-Mapping model. Then, it is assumed that 
demand response strategies are applied at the beginning  
of each hour from 8:00 AM to 4:00 PM, covering a total 
duration of nine hours. For each hour, different levels of 
power reduction are implemented into the RC-Mapping 
model to obtain the duration for indoor temperature  
rise from 24 °C to 26 °C. According to the levels of power 
reduction and the corresponding duration, the power 
reduction-duration curve can be obtained. It should be 
noted that the power reduction levels started at 600 kJ/h 
(i.e., 166.67 W) and incrementally increased up to the 
baseline power level (i.e., the compressor turned off). Based 
on the power reduction-duration curves for each hour, a 

fundamental analysis is conducted on the sources of building 
flexibility. Additionally, the corresponding hourly indoor 
temperature variation curves are plotted and analyzed. The 
results of this analysis are presented in Section 4.2. 

 Setup 3: uncertainty analysis 

For this part, the COP and schedule are individually varied 
by ±10% and ±20%, respectively, under fixed conditions. 
Here, the uncertainty range is determined according to the 
chiller part-load performance curve and the prediction error 
of the internal heat gain schedule (Lin et al. 2024). Then, 
their impacts on flexibility quantification are analyzed.  
It should be noted that only 10:00 and 14:00 (peak hours) 
on Day 4 are selected as representative hours. The results of 
this uncertainty analysis are presented in Section 4.3. 

4 Result and discussion 

4.1 RC-Mapping model performance 

4.1.1 Indoor temperature prediction performance 

As mentioned in Section 3.2, the indoor temperature 

 
Fig. 7 The outdoor and indoor temperature of (a) Day 1, (b) Day 2, (c) Day 3, (d) Day 4 
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prediction performance of the RC-Mapping model using 
the conventional method (i.e., Twall,1 = 1/2(Tin,1 + Tout,1)) 
is compared with that using the proposed Enumerate- 
Comparison Method. Figure 8(a) and Figure 8(b) show the 
validation results of the conventional method on Day 2 and 
Day 3, respectively, while Figure 8(c) and Figure 8(d) 
present the results of the Enumerate-Comparison Method 
on Day 2 and Day 3, respectively. In Figure 8, the green line 
represents the predicted indoor temperature, and the orange 
line represents the actual indoor temperature. 

It can be observed that the RMSE decreased significantly 
when using the proposed method: from 0.616 °C to 0.283 °C 
on Day 2, and from 0.467 °C to 0.249 °C on Day 3, with an 
average decrease from 0.542 °C to 0.266 °C. These results 
demonstrate that the Enumerate-Comparison Method enables 
more accurate identification of the initial wall temperature, 
which significantly contributes to the enhanced predictive 
performance of the model. 

4.1.2 Flexibility quantification performance 

As mentioned in Section 3.2, the flexibility quantification 
performance of the RC-Mapping model using the 
conventional method is compared with that using the 
proposed Enumerate-Comparison Method. The duration 
for the indoor temperature to rise from 24 °C to 26 °C each 
time (on Day 2 and Day 3) is used to measure flexibility. 
Figure 9(a) and Figure 9(b) show the validation results of 
the conventional method on Day 2 and Day 3, respectively, 

while Figure 9(c) and Figure 9(d) present the results of  
the Enumerate-Comparison Method on Day 2 and Day 3, 
respectively. 

As shown in Figure 9, the duration for the indoor 
temperature to rise from 24 °C to 26 °C exhibits an increasing 
trend. The main reason is that the air conditioning system 
was turned off the night before, resulting in a relatively high 
initial wall temperature (Twall,1). During the subsequent 
operation phase, the indoor temperature was maintained 
between 24 °C and 26 °C, which progressively reduced Twall,1. 
Although each stage started from the indoor temperature 
of 24 °C, the initial Twall became lower in the later stages, 
leading to longer durations required for the indoor 
temperature to reach 26 °C. 

According to the results, the mean absolute percentage 
error (MAPE) of the duration can be calculated. It can be 
found that the MAPE decreased from 32.72% to 11.48% on 
Day 2, and from 22.43% to 10.47% on Day 3, with an average 
decrease from 27.58% to 10.98%. These results further 
demonstrate that the Enumerate-Comparison Method allows 
for more accurate identification of the initial wall temperature, 
which in turn significantly enhances the model’s performance 
in flexibility quantification. 

The reasons why accurate identification of the initial 
wall temperature significantly enhances the precision of 
flexibility quantification are analyzed as follows. In practical 
applications, due to the substantial thermal capacity of 
buildings, the response time of wall temperature typically  

 
Fig. 8 Indoor temperature prediction performance of the conventional method on (a) Day 2 and (b) Day 3, and of the Enumerate-Comparison
Method on (c) Day 2 and (d) Day 3 
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exceeds 10 hours. However, demand response events are 
relatively short, usually lasting only 1 to 2 hours. Therefore, 
if the initial wall temperature is not accurately estimated,  
it can remain inaccurate throughout the entire demand 
response period, introducing a persistent bias in indoor 
temperature prediction. 

The proposed method effectively addresses the challenge 
of accurately determining the initial wall temperature, 
thereby enhancing flexibility quantification in both model 
development and application stages. In the model 
development stage, it facilitates the identification of more 
accurate model parameters. In the model application stage, 
a more accurate estimation of the initial wall temperature 
can contribute to improved quantification accuracy. 

4.2 Hourly flexibility quantification 

4.2.1 Power reduction-duration curve 

Figure 10 shows the hourly power reduction-duration 
curves. The following observations can be drawn: 
(1) Baseline power use determines the maximum power 

reduction (unit: W). The maximum reduction power 
for each hour is defined by the baseline power use, 
corresponding to the case when the air conditioning 
compressor is completely shut off. 

(2) Under the same power reduction conditions, the duration 
remains consistent across different hours, even with 
changes in outdoor temperature. This result indicates 

that outdoor temperature does not impact the power 
reduction-duration relationship, although intuitively, 
higher outdoor temperatures would lead to shorter 
durations. The reason is that higher outdoor temperatures 
also correspond to higher baseline power use. As a 
result, when the same amount of power is reduced, the 
remaining power use is still higher than that under 
lower outdoor temperatures. Consequently, the rate of 
temperature increase remains the same, and thus, it 
does not affect the duration.  
The flexibility quantification is calculated using 

Equation (13). 

flexibility quantification Δ DurationP= ´            (13) 

As shown in Figure 10(a), there is a clear difference 
between Area X and Area Y (Y > X), indicating that the 
building exhibits different levels of flexibility under varying 
power reduction levels. To better explain this phenomenon, 
this study first provides a systematic analysis of the sources   
of flexibility and their underlying mechanisms. From the 
authors’ perspective, building flexibility during demand 
response mainly originates from the following four sources. 
(1) Thermal storage of the building: the building has a  

large thermal storage. When the air conditioning system 
is turned off or operates at reduced power, this stored 
energy helps slow down the rise in indoor temperature. 
Therefore, the thermal storage of the building is one of 
the core sources of flexibility. 

 
Fig. 9 Flexibility quantification performance of the conventional method on (a) Day 2 and (b) Day 3, and of the Enumerate-Comparison
Method on (c) Day 2 and (d) Day 3 
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(2) Thermal storage of the HVAC system: the HVAC 
system itself also has thermal storage capacity, including 
water systems, air systems, and air handling units. The 
cooling energy stored in the HVAC system can provide 
a non-negligible amount of flexibility during short-term 
demand response events. 

(3) Increase in coefficient of performance (COP): during 
demand response, the evaporating temperature of the 
air conditioning system typically increases (e.g., increasing 
the chilled water supply temperature), leading to an 
increase in COP. A higher COP allows the system to 
deliver more cooling with the same power use, thereby 
extending the response duration. Thus, the increase in 
COP can be considered an indirect source of flexibility. 

(4) Reduction in cooling load: as indoor temperature 
increases, the temperature difference between the indoor 
and outdoor environment decreases, which decreases the 
cooling load. This helps extend the duration for which 
the indoor temperature remains within the comfort 
range. Therefore, a reduction in cooling load is also 
considered an indirect source of flexibility. 
Following the systematic analysis of the sources of 

flexibility, the reason for Area Y being larger than Area X 
can be explained as follows. First, the scenario corresponding 

to Area Y involves a smaller power reduction level, which 
naturally results in a longer duration. This extended 
duration allows the building and HVAC system to release 
more stored cooling energy. In turn, the additional released 
cooling further prolongs the duration, creating a positive 
feedback loop. Second, because the duration corresponding 
to Area Y is larger, the accumulated reduced cooling load is 
also larger, which can prolong the duration. To illustrate 
this mechanism, consider a hypothetical case: let A be the 
cooling load required to maintain 24 °C, and B the cooling 
load to maintain 26 °C. As long as the reduced cooling 
power remains less than or equal to the difference (A−B), 
the system can theoretically maintain the indoor temperature 
below 26 °C indefinitely, implying an infinite duration and, 
consequently, infinite flexibility. It is worth noting that the 
coefficient of performance (COP) is assumed constant in 
our case study and thus does not influence the comparative 
analysis.  

4.2.2 Indoor temperature variation curve 

Since the indoor temperature variation curves are similar 
across different hours, this study selects 10:00 and 14:00 as 
representative peak periods for detailed analysis. Figure 11 
shows indoor temperature variation curves during and after  

 
Fig. 10 Hourly power reduction-duration curve 
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the demand response at 10:00 and 14:00 under different 
power reduction levels.  

As mentioned in Section 2.2.2, two metrics are used to 
quantify the thermal comfort cost: the average temperature  
during the demand response period ( inT ), and the  
temperature change rate (°C/min), which are calculated 
and presented in Figure 12 and Figure13, respectively. 

Figure 12 shows the average temperature ( inT ) under 
different power reduction levels at 10:00 and 14:00. Through 
a combined analysis with Figure 10, it can be observed that  

the case with the highest average temperature (power 
reduction: 667 W) corresponds to the maximum flexibility. 
This indicates that the gain in flexibility is directly linked to 
the extent of comfort sacrifice. Occupants can determine 
their acceptable level of power reduction based on their 
acceptable comfort threshold.  

Figure 13 shows the temperature change rate for 
different power reduction levels at 10:00 and 14:00. Even in 
the case of direct system shutdown, the observed temperature 
change rate (TCR) remained around 0.12 °C/min. This  

 
Fig. 11 Indoor temperature variation curves during and after the demand response at (a) 10:00 and (b) 14:00 

 
Fig. 12 The average indoor temperature under different power reduction levels at (a) 10:00 and (b) 14:00 

 
Fig. 13 The temperature change rate for different power reduction levels at (a) 10:00 and (b) 14:00 
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value is below the 0.15 °C/min threshold identified in 
Zhang et al. (2024a) as the upper limit for maintaining 
thermal comfort.  

4.3 Uncertainty analysis 

4.3.1 COP uncertainty analysis 

Figure 14 shows the power reduction-duration curves under 
different COP values at (a) 10:00 and (b) 14:00. 

It can be observed that with the same level of power 
reduction, the systems with higher COP can maintain a 
longer duration. To further quantitatively evaluate the 
impact of COP variation on flexibility quantification, 
this study employs the mean percentage error (MPE) as a 
performance indicator, as defined in Equation (14).  

b

b1

1MPE 100%
n

i

i

F F
n F=

-
= ´å( )                     (14) 

where Fi represents the flexibility under different power 
reduction levels, and Fb refers to the flexibility for the 
baseline case. 

Table 2 provides the MPE results for different COP 
deviations. It is important to note that overestimating  
the COP leads to greater estimation errors compared to 
underestimating it. The underlying reason is that a higher 

assumed COP implies a larger amount of cooling provided, 
which increases the estimated duration. Due to the positive 
feedback loop mentioned in Section 4.2.1 (explaining why 
Areas Y > X), the duration estimation error exhibits a 
power-like relationship with the final flexibility quantification 
result. For instance, with the same 10% deviation, 1.1 cubed 
equals 1.331 (a 33.1% error), while 0.9 cubed equals 0.729 
(a 27.1% error). Therefore, overestimating the duration (i.e., 
overestimating the COP) tends to result in a larger 
flexibility quantification error. 

In practical applications, although reducing power 
consumption (such as by increasing the chilled water supply 
temperature) can improve the COP, it is recommended to 
conservatively estimate the increase in the COP. On the one 
hand, this ensures more accurate flexibility quantification. 
On the other hand, it preserves a buffer to accommodate 
potential uncertainties during actual demand response, 
such as baseline load prediction errors and variations in 
occupancy. 

4.3.2 Indoor heat gains (schedule) uncertainty analysis 

Figure 15 shows the power reduction-duration curves under 
different schedule values at (a) 10:00 and (b) 14:00. Table 3 
presents the corresponding MPE results. The results indicate 
that underestimating the indoor heat gain leads to greater 
estimation errors compared to overestimating it. The reason  

 
Fig. 14 Power reduction-duration curves under different COP deviations at (a) 10:00 and (b) 14:00 

Table 2 MPE for different COP deviations 

Hour 80% COP 90% COP 100% COP 110% COP 120% COP 

10:00 −23.33% −13.33% 0% 16.67% 46.67% 

14:00 −14.29% −7.14% 0% 10.71% 21.43% 

Table 3 MPE for different schedule deviations 

Hour 80% schedule 90% schedule 100% schedule 110% schedule 120% schedule 

10:00 57.80% 19.40% 0% −13.80% −25.00% 

14:00 48.50% 18.18% 0% −15.15% −24.24% 
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is that underestimating the indoor heat gain can lead to 
overestimation of the duration. Because duration estimation 
error exhibits a power-like relationship with the final 
quantification result, as mentioned above. Overestimating 
the duration (i.e., underestimating the indoor heat gain) 
tends to result in a larger flexibility quantification error. 

5 Conclusion 

This study presents a systematic framework for the 
quantification of demand-side flexibility in building air 
conditioning systems, including RC-Mapping model 
development, flexibility quantification, and uncertainty 
analysis. The main conclusions are as follows: 
 This study proposed a novel RC-Mapping model that 

integrates the Enumerate-Comparison Method, and 
exhibited excellent performance validated by experimental 
data. Compared with the conventional approach, it 
achieved substantial improvements in temperature 
prediction RMSE from 0.542 °C to 0.266 °C, and the 
MAPE for flexibility quantification from 27.58% to 
10.98%. 

 This study proposes two representative curves: the 
power reduction-duration curve and the temperature 
variation curves, which provide a comprehensive 
characterization of building flexibility from both the 
grid’s and the end user’s perspectives. Notably, the 
analysis reveals that outdoor temperature does not 
affect the reduction-duration curve.  

 This study identifies four principal sources contributing 
to the flexibility of building air-conditioning systems: 
(1) the thermal storage of the building, (2) the thermal 
storage of the HVAC system, (3) the increase in COP, 
and (4) the reduction in cooling load. 

 This study demonstrates that the COP and internal heat 
gains (Schedule) have a significant impact on flexibility 
quantification. For COP, overestimation tends to 
cause larger flexibility quantification deviations. For 

internal heat gains, underestimation tends to cause 
larger flexibility quantification deviations. 
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