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A B S T R A C T

The global push for carbon neutrality has intensified the need for rapid and accurate energy prediction methods 
for BIPV-integrated modular buildings. Traditional physics-based simulation approaches suffer from excessive 
computational burden. This study presents a novel machine learning-based rapid energy prediction methodology 
specifically designed for modular buildings with building-integrated photovoltaics. A comprehensive feature 
engineering framework captures the unique thermal and geometric characteristics of modular construction 
through six-surface property encoding, geometric parameters, and solar irradiance calculations. The method-
ology employs a modular building decomposition strategy that enables individual module analysis while 
maintaining system-level accuracy. An XGBoost-based prediction model achieves superior performance across 
four representative climate zones. The model achieves R 2 values exceeding 0.93 for heating loads, cooling loads, 
and total energy consumption. Experimental validation using a real-world BIPV-integrated modular building 
demonstrates prediction accuracy within industry-acceptable limits, with mean absolute errors below 1.5 ◦ C. The 
computational efficiency assessment shows prediction speeds over 2,000 × faster than traditional simulation 
approaches, enabling real-time design iteration. Successful integration with Grasshopper parametric design 
platforms facilitates immediate energy feedback during conceptual design phases. This advancement removes 
computational barriers to energy performance optimization and supports the broader adoption of sustainable 
modular construction practices by providing practical tools for energy-informed design decision-making.

1. Introduction

The escalating global climate crisis has intensified the urgent need 
for carbon neutrality. The building sector has emerged as a critical 
battleground for achieving these ambitious goals [1]. Buildings 
currently account for approximately 40% of global energy consumption 
and 27% of carbon emissions. This contribution continues to grow at an 
annual rate of 1% [2]. This substantial environmental footprint has 
catalyzed the development and adoption of innovative building

technologies. These include active and passive measures that can 
simultaneously reduce energy consumption and integrate renewable 
energy generation under the challenge of global climate change [1,3,4]. 

Modular buildings present unprecedented opportunities for sustain-
able construction. They are characterized by standardized production, 
rapid assembly, and high structural consistency [5,6]. These pre-
fabricated systems offer significant advantages including enhanced 
quality control, reduced construction waste, and accelerated project 
delivery [7,8]. When integrated with building-integrated photovoltaics 
(BIPV) [9], modular construction systems can achieve synergistic
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benefits, enabling both energy generation and consumption optimiza-
tion at the factory production stage [10]. The standardized nature of 
modular components facilitates systematic BIPV integration, allowing 
for scalable deployment of renewable energy technologies across mul-
tiple building projects.

However, optimizing BIPV-integrated modular buildings presents 
significant computational challenges [11]. Traditional physics-based 
energy simulation methods, while accurate, require substantial 
computational resources that render them impractical for large-scale 
design optimization. Single building energy simulations using tools 
like EnergyPlus [12] typically require demanding computational cost. 
This makes iterative design evaluation extremely time-consuming when 
thousands of potential design configurations must be assessed, unless 
lightweight simulation methods are adopted [13]. This computational 
bottleneck is particularly problematic in modular construction, where

rapid design iteration and optimization are essential for maintaining 
competitive project timelines and costs. The limitations of conventional 
simulation approaches have also created a research gap in modular 
building energy prediction. Moreover, existing machine learning ap-
proaches, while computationally efficient, fail to adequately address the 
unique characteristics of modular construction systems. Most data-
driven models are trained on conventional building datasets and 
cannot leverage the structural uniformity inherent in modular buildings, 
where energy behavior can be potentially derived from individual 
module performance. Hence, current models inadequately capture 
BIPV-specific thermal effects and the complex interactions between 
photovoltaic systems and building envelope performance.

This research addresses these critical limitations by developing a 
machine learning-based rapid energy prediction method specifically 
designed for BIPV-integrated modular buildings. The primary research

Nomenclature

Abbreviations
ANN Artificial Neural Network
BIPV Building-Integrated Photovoltaics
BIPV/T Building-Integrated Photovoltaic/Thermal
IoT Internet of Things
LHS Latin Hypercube Sampling
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ML Machine Learning
PV Photovoltaic
R 2 Coefficient of Determination
RF Random Forest
RMSE Root Mean Square Error
TMY Typical Meteorological Year
WWR Window-Wall Ratio
XGBoost Extreme Gradient Boosting

Symbols 
AR Aspect ratio (− ) 
AR length Length-to-width aspect ratio(− ) 
AR width Width-to-height aspect ratio(− )
B condition Boundary condition encoding vector (− )
d Day of the year (− )
E total Total building energy consumption (kWh/m 2 )
E module,i Energy consumption of individual module i (kWh/m 2 ) 
f k k-th tree in ensemble (− )
f t (x i ) Prediction from the t-th tree (− )
H module Module height (m)
k Number of trees in ensemble (− )
L module Module length (m)
l 
( 
y i , ̂  yi

) 
Loss function (− )

n Number of samples/modules (− )
S incident Direct normal irradiance (W/m 2 )
S surface Incident radiation on tilted surface (W/m 2 )
S type Surface type encoding vector (− )
T Number of leaves in tree (− )
W module Module width (m)
w j Leaf weight (− )
x ij Normalized parameter value for sample i and parameter j 

(− )
x Original value (− )
y i Actual value (− )
ˆ yi Predicted value (− )
y Mean of actual values (− )
z Standardized value (z-score) (− )

Greek Letters
α Solar altitude angle
β Surface tilt angle
γ Minimum loss reduction parameter (− )
δ Solar declination angle
ΔE interaction Inter-module thermal interaction energy (kWh/m 2 )
η Learning rate (− )
θ Angle of incidence
λ L2 regularization parameter (− )
μ Feature mean (− )
π j (i) Random permutation of integers (− )
σ Feature standard deviation (− )
ψ Surface azimuth angle
Ω(f) Regularization term for tree (− ) 
Subscripts and Superscripts
i Sample index
j Parameter/feature index
k Tree index in ensemble
t Iteration number
module Related to individual module
total Related to total building
Feature Encoding Categories
Surface Type (T)
T0 Wall
T1 Roof/Ceiling
T2 Floor
T3 Air Boundary

Boundary Condition (B)
B0 Outdoor
B1 Ground
B2 Adiabatic

Construction Setting (C)
C0 Standard Wall 
C1 Photovoltaic-integrated 
C2 Roof
C3 Floor
Window-Wall Ratio (WWR) 
WWR 0.0 to 0.7 (step: 0.1)

Solar Irradiance (D)
D0-9 0–1000 W/m 2 (discretized)

Aspect Ratio (A)
A0 Horizontal
A1 Vertical
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objectives include: developing a modularity-aware decomposition 
strategy that exploits the repetitive characteristics of modular con-
struction; creating a comprehensive feature engineering framework that 
captures BIPV thermal effects and modular building geometry; and 
constructing a high-precision XGBoost prediction model capable of real-
time performance assessment.

The key contributions of this work encompass three significant ad-
vances. First, we present a novel modular building decomposition 
strategy that enables accurate energy prediction through individual 
module analysis while maintaining system-level precision across diverse 
climate zones. Second, we develop an innovative feature engineering 
approach that systematically captures the thermal and geometric char-
acteristics unique to BIPV-integrated modular buildings. Third, we 
demonstrate the practical integration of machine learning prediction 
capabilities within parametric design workflows, enabling real-time 
energy feedback for design optimization and manufacturing guidance.

2. Literature review

Modular buildings possess distinctive structural and thermal char-
acteristics that fundamentally differentiate them from conventional 
construction methods, creating both unique opportunities and chal-
lenges for energy modeling applications [14,15]. The standardized 
production process and high degree of structural consistency enable 
systematic energy performance prediction through individual module 
analysis [7,8,16,17]. Each modular unit exhibits identical thermal 
properties and construction details, allowing energy models to leverage 
this uniformity for improved accuracy and computational efficiency 
through decomposition strategies, where total building energy con-
sumption can be derived from individual module performance charac-
teristics [18]. The high degree of standardization creates opportunities 
for factory-stage optimization not available in conventional construc-
tion, where energy efficiency measures including enhanced insulation 
systems and renewable energy integration can be systematically 
implemented during manufacturing [19]. Research by Lau et al. 
demonstrated the potential for integrating photovoltaic systems with 
modular construction to achieve significant energy savings and carbon 
emission reductions [18].

Modular buildings also present unique modeling challenges related 
to inter-module thermal interactions and boundary conditions. The as-
sembly process creates complex thermal bridge effects at module in-
terfaces, which can significantly impact overall building thermal 
performance [20]. Traditional energy modeling approaches often 
struggle to accurately represent these inter-modular thermal dynamics, 
as the modular assembly process introduces discontinuities in the 
building envelope that create preferential heat transfer pathways. 
Building-integrated photovoltaics introduce additional complexity to 
modular building energy modeling through fundamental alterations to 
building envelope thermal properties. BIPV systems create intricate in-
teractions between photovoltaic generation efficiency and building 
thermal loads through multiple mechanisms, including modified surface 
thermal resistance, altered solar heat gain characteristics, and dynamic 
thermal mass effects [19,21]. These modifications require sophisticated 
modeling approaches that can capture the bidirectional thermal re-
lationships between photovoltaic systems and building energy con-
sumption patterns. Research by Li et al. demonstrated that air gap 
thickness between photovoltaic modules and building envelope surfaces 
critically affects both PV efficiency and building thermal loads, with 
proper ventilation design capable of improving electrical efficiency 
while simultaneously reducing cooling loads through enhanced heat 
dissipation [22].

The thermal performance of BIPV systems is strongly influenced by 
installation configuration and environmental conditions [23]. Studies 
by Wang et al. showed that wind speed and ambient temperature vari-
ations significantly influence solar cell operating temperatures, thereby 
affecting both generation efficiency and heat transfer to the building

interior [24]. When photovoltaic modules replace conventional glazing 
or wall systems, the resulting changes in thermal transmittance and solar 
heat gain can significantly impact building energy consumption pat-
terns, particularly in climate zones with substantial heating or cooling 
requirements [25–29]. Research by Chen et al. demonstrated that BIPV/ 
T systems can effectively control solar heat gain while simultaneously 
generating electricity, though the coupling effects between thermal and 
electrical performance require careful consideration in modeling ap-
proaches [20]. The dynamic nature of these thermal effects requires 
time-varying modeling approaches that can account for hourly and 
seasonal variations in BIPV performance and thermal impacts, as 
traditional static thermal models are inadequate for representing these 
complex relationships.

Prevalent building energy prediction methodologies have evolved 
around two primary approaches: physics-based modeling and data-
driven methods [30]. Physics-based models, founded on fundamental 
thermodynamic principles and heat transfer equations, have served as 
the cornerstone of building energy analysis for decades [31,32]. Estab-
lished simulation software such as EnergyPlus, TRNSYS, and Dymola 
have demonstrated remarkable maturity in representing complex 
building systems across multiple domains including structural thermal 
performance, lighting, ventilation, and renewable energy integration 
[33–35]. Despite their theoretical rigor and widespread adoption, 
physics-based methods suffer from significant practical limitations that 
constrain their application in iterative design optimization [36]. Single 
building energy simulations typically require approximately 20 s using 
established tools [34], making iterative design evaluation extremely 
time-consuming when thousands of potential design configurations 
must be assessed. Research by Zhan et al. demonstrated that even with 
advanced calibration techniques, physics-based models remain 
resource-demanding and require substantial expertise [37].

In response to these limitations, data-driven approaches have 
emerged as a compelling alternative, leveraging historical operational 
data to identify patterns and relationships that govern building energy 
consumption. Comprehensive reviews by Amasyali and El-Gohary 
identified over 100 studies employing data-driven methods for build-
ing energy prediction [31]. These methods typically follow a systematic 
process encompassing data collection, preprocessing, model training, 
and evaluation using standard performance metrics [38,39]. Data-
driven models demonstrate superior capability in reflecting actual 
building energy system operational states compared to theoretical 
physics-based approaches, particularly when accounting for unpredict-
able occupant behaviors and system inefficiencies.

The application of machine learning (ML) techniques in building 
energy prediction has experienced remarkable growth, driven by ad-
vances in algorithmic sophistication and computational power. 
Comprehensive reviews have identified various ML algorithms suc-
cessfully applied to energy prediction tasks, including linear regression, 
support vector machines, random forests, neural networks, and gradient 
boosting methods [16,31,35,39]. Decision trees provide intuitive 
interpretability but are susceptible to overfitting when confronted with 
noisy datasets [40]. Machine learning algorithms like random forests 
address these limitations through ensemble learning, combining multi-
ple decision trees to reduce overfitting risk while maintaining robust 
performance [40]. Neural networks excel in processing high-
dimensional and complex datasets but require substantial training 
datasets and computational resources [35,41,42].

XGBoost (Extreme Gradient Boosting) has emerged as a particularly 
effective algorithm for building energy prediction applications, consis-
tently demonstrating superior performance in data science competitions 
and practical implementations [43]. Lei et al. developed an evolutionary 
deep learning model incorporating XGBoost that achieved high accuracy 
in building energy consumption prediction [16]. XGBoost employs an 
additive model approach combined with regularization techniques to 
optimize objective functions while minimizing overfitting, achieving 
computational efficiency through parallel processing and memory
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optimization that enables handling of large-scale datasets while main-
taining prediction accuracy. Recent studies have demonstrated the 
effectiveness of hybrid approaches that combine multiple ML tech-
niques, with ensemble methods integrating various algorithms showing 
improved robustness and accuracy compared to individual models. 

Despite significant advances in both machine learning applications 
and building energy modeling, several critical research gaps persist in 
the domain of modular building energy prediction with BIPV systems. 
Most existing ML models are trained on conventional building datasets

that do not reflect the unique characteristics of modular construction, 
particularly failing to leverage the structural uniformity that could 
improve prediction accuracy [33]. Current BIPV modeling approaches 
typically focus on either electrical generation efficiency or building 
thermal impacts in isolation, failing to capture the complex bidirectional 
interactions between photovoltaic systems and building energy con-
sumption [10,20,24]. The integration of ML-based prediction models 
into parametric design workflows remains underdeveloped, despite the 
clear potential for enabling real-time energy feedback during conceptual

Fig. 1. Machine learning modeling process.
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design phases. Furthermore, the validation of ML models across diverse 
climate zones and building types remains limited, with most studies 
focusing on specific geographic regions or building configurations, 
restricting the generalizability and applicability to broader modular 
construction applications.

The identified research gaps reveal a critical need for specialized 
energy prediction methodologies that explicitly address modular 
building characteristics while integrating BIPV-specific thermal effects. 
The lack of decomposition strategies that leverage structural uniformity, 
combined with insufficient feature engineering approaches for BIPV 
systems, necessitates a fundamentally different modeling paradigm. 
Moreover, the absence of validated models across multiple climate zones 
and the limited integration with parametric design workflows highlight 
the practical barriers to widespread adoption. To address these limita-
tions, this research develops a novel machine learning-based approach 
that: (1) exploits the repetitive nature of modular construction through a 
decomposition strategy, (2) systematically captures BIPV thermal in-
teractions through comprehensive feature engineering, (3) validates 
performance across diverse climate conditions, and (4) enables seamless 
integration with design platforms for real-time feedback. The following 
methodology section details how each of these objectives is achieved 
through systematic innovation in data-driven modeling for modular 
buildings.

3. Methodology

To address the identified research gaps, we develop a comprehensive 
machine learning-based prediction framework consisting of four key 
components: modular building decomposition strategy, feature engi-
neering for BIPV integration, data-driven model development, and sys-
tematic dataset generation. Each component is designed to overcome 
specific limitations in existing approaches while maintaining computa-
tional efficiency and prediction accuracy.

3.1. Modular building decomposition strategy

3.1.1. Individual vs. Integrated modeling approaches
The fundamental challenge in modular building energy prediction 

lies in balancing computational efficiency with modeling accuracy while 
leveraging the inherent structural uniformity of modular construction 
systems. To address this challenge systematically, we develop a 
comprehensive four-stage framework as illustrated in Fig. 1. The 
workflow begins with modular building decomposition to convert 
whole-building analysis into individual module predictions, followed by 
feature engineering that captures thermal and geometric characteristics, 
machine learning model development using XGBoost, and experimental 
validation against real-world data. Fig. 1 presents this overview work-
flow, showing how these components integrate to form a complete 
prediction methodology. This research proposes a novel decomposition 
strategy that treats modular buildings as assemblies of thermally inter-
acting individual units, enabling energy prediction through module-
level analysis rather than whole-building simulation.

The decomposition approach is based on the premise that the total 
building energy consumption can be expressed as a function of indi-
vidual module performance characteristics, accounting for inter-module 
thermal interactions through boundary condition modifications. The 
mathematical foundation of the decomposition strategy can be 
expressed as:

E total = 
∑n

i=1 
E module,i ± ΔE interaction

where E total represents the total building energy consumption, E module,i 
denotes the energy consumption of individual module i, n is the total 
number of modules, and ΔE interaction accounts for inter-module thermal 
interaction effects.

The interaction term ΔE interaction quantifies the difference between

simple summation of individual module energy consumption and the 
actual whole-building energy performance. This term captures three 
primary phenomena: thermal bridge effects at module connection in-
terfaces where structural elements create preferential heat transfer 
paths, modified convective heat transfer at inter-module boundaries due 
to restricted airflow patterns, and radiative exchange between adjacent 
module surfaces that differs from isolated module conditions. In con-
ventional approaches, ΔE interaction would need to be calculated as a 
separate correction factor. However, our methodology implicitly in-
corporates these interaction effects through systematic boundary con-
dition modifications applied to individual modules during simulation. 
Specifically, surfaces between adjacent modules are assigned adiabatic 
boundary conditions (B2) when modules are at similar temperatures, or 
air boundary conditions (B3) when thermal stratification exists. This 
boundary condition encoding, combined with the machine learning 
model's ability to learn patterns from integrated whole-building simu-
lations during training, effectively captures ΔE interaction without 
requiring explicit calculation.

The selection of the decomposition strategy over alternative 
modeling approaches can be a valid alternative when people want to 
conduct fast simulation for MiC construction which is of certain pat-
terns. Whole-building simulation, while comprehensive, suffers from 

computational complexity that scales exponentially with building size 
and configuration variations, making it impractical for parametric 
design exploration requiring thousands of design iterations. Alternative 
decomposition methods, such as floor-by-floor or zone-based ap-
proaches, fail to capture the specific thermal characteristics of modular 
construction where prefabricated units maintain distinct thermal 
boundaries even after assembly. The module-based decomposition 
strategy proposed in this study offers three distinct advantages that align 
with the physical characteristics of modular construction. First, it pre-
serves the inherent modularity of prefabricated building systems, 
enabling analysis at the manufacturing and assembly level where design 
decisions are actually made. Second, it reduces computational re-
quirements from O(n 2 ) for whole-building parametric studies to O(n) for 
module-level analysis, where n represents the number of design pa-
rameters. Third, it facilitates parallel computation of module perfor-
mance characteristics, enabling simultaneous evaluation of multiple 
module types that can be combined into various building configurations. 
This approach transforms the building energy prediction problem from a 
computationally intensive whole-building simulation task into a 
manageable module-level prediction task, making real-time design 
iteration practically achievable.

Validation results in the Results and Discussions demonstrate that 
this approach maintains prediction accuracy within ± 10% across 
diverse module configurations, indicating that the boundary condition 
modifications successfully account for inter-module thermal in-
teractions. The individual modeling approach treats each module as an 
independent thermal zone with modified boundary conditions that 
reflect its position within the larger building assembly. This approach 
enables parallel computation of module performance characteristics 
while maintaining the ability to aggregate results for whole-building 
analysis. The boundary condition modifications are implemented 
through a systematic classification of module surfaces based on their 
thermal interface characteristics: external surfaces exposed to ambient 
conditions, internal surfaces interfacing with adjacent modules, and 
ground-contact surfaces with specialized thermal boundary conditions. 

As illustrated in Fig. 2, the feasibility analysis across different mod-
ule configurations demonstrates the effectiveness of the decomposition 
strategy. The figure shows various module assembly patterns including 
inter-module horizontal and vertical combinations, three-module con-
figurations, and four-module arrangements. Each configuration exhibits 
different thermal interface characteristics that must be accurately 
captured in the decomposition modeling approach.
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3.1.2. Module boundary condition analysis
The accurate representation of module boundary conditions is crit-

ical for the success of the decomposition strategy. Each module surface is 
classified according to its thermal interface characteristics, with 
boundary conditions systematically modified to reflect the specific 
thermal environment encountered in the assembled building configu-
ration. Understanding how module position affects thermal boundaries 
is essential for accurate energy prediction. Fig. 2 demonstrates different 
module configurations, illustrating how modules A and B exhibit 
different thermal interface characteristics based on their position within 
the building assembly. As shown in the figure, module A-E represents a 
building external wall interface exposed to outdoor conditions, while B-
E represents a thermally adiabatic wall or air wall connection between 
adjacent modules, highlighting the importance of position-dependent 
boundary condition specification.

The systematic encoding of surface types and boundary conditions 
requires a clear classification scheme that can be consistently applied 
across all module configurations. Fig. 3 presents the building surface 
encoding system that employs four primary categories: outdoor surfaces 
exposed to ambient environmental conditions, ground surfaces in direct 
contact with soil or foundation systems, adiabatic surfaces representing 
interfaces with adjacent modules at identical temperatures, and air 
boundary surfaces representing open connections between modules. 
This color-coded encoding scheme (shown in Fig. 3) enables surface 
classification for machine learning input.

For outdoor surfaces, the boundary condition implementation fol-
lows standard external surface thermal modeling approaches, incorpo-
rating convective and radiative heat transfer with ambient air and sky 
conditions. Ground surfaces employ specialized boundary conditions 
that account for soil thermal properties and seasonal ground tempera-
ture variations. Table 1 presents the comprehensive machine learning 
variables used in the decomposition strategy, systematically

categorizing surface types (T0-T3), boundary conditions (B0-B2), con-
struction settings (C0-C3), window-wall ratios (WWR), irradiance values 
(D0-9), and overall form parameters including aspect ratios and top 
floor indicators. This systematic encoding enables accurate representa-
tion of module thermal characteristics while maintaining compatibility 
with machine learning algorithms.

3.1.3. Feasibility validation across climate zones
The feasibility of the modular building decomposition strategy is 

validated through comprehensive analysis across four representative 
climate zones: severe cold (Harbin), cold (Beijing), hot summer and cold 
winter (Shanghai), and hot summer and warm winter (Shenzhen). The 
validation process employs systematic comparison between decom-
posed modeling results and integrated whole-building simulation results 
across different module configurations as illustrated in Table 2 presents

Fig. 2. Thermal interface of different modules in building energy modeling.

Fig. 3. Modularized construction surface coding.

Table 1
Machine learning model features.

Variable
Category

Variable Name Data Type Range Coding

Surface
Properties

Surface Type Categorical Wall T0
Roof Ceiling T1
Floor T2
Air Boundary T3

Boundary
Condition

Categorical Outdoor B0
Ground B1
Adiabatic B2

Construction
Setting

Categorical Wall C0
PV C1
Roof C2
Floor C3

Window-Wall
Ratio

Numerical 0–0.7 (Step: 0.1) WWR

Irradiance
(Annual
Average)

Numerical 0–1000
(Spatial Shading 
Equivalent 
Radiation Control) 

D0-9

Overall Form 

Parameters
Aspect Ratio Categorical Horizontal A0

Vertical A1

Table 2
Design variable value ranges.

Variable Type Surface Properties Aspect Ratio Top Floor

Symbol E N W S T B AR L
Value Range 0–17 0–1 2 2
Step Size 1 1 1
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the variable value ranges that define the scope of the validation study. 
Based on this parameter space, the study generates 17 × 17 × 17 × 

17 × 2 × 2 × 2 × 2 = 1,336,336 potential building samples. However, 
due to physical constraints, certain combinations are eliminated to 
ensure realistic building configurations. The validation methodology 
evaluates prediction accuracy through multiple performance metrics 
including mean absolute error (MAE), root mean square error (RMSE), 
and coefficient of determination (R 2 ). The mean absolute error is 
calculated as:

MAE =
1 
n
∑ n

i=1 
|y i − ̂ yi |

where y i represents the actual energy consumption, ̂ yi denotes the pre-
dicted energy consumption, and n is the number of validation cases. 

The root mean square error is computed using:

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑ n 

i=1 
(y i − ̂ yi) 2

√ 

Validation results demonstrate that the decomposed modeling approach 
achieves prediction accuracy within ± 10% compared to integrated 
modeling across all tested climate zones, with the largest deviations 
occurring in cold climate regions where inter-module thermal bridge 
effects are most pronounced. The coefficient of determination values 
exceeds 0.90 for all climate zones, indicating strong correlation between 
decomposed and integrated modeling results.

3.2. Feature engineering for modular buildings

3.2.1. Six-surface property encoding
The feature engineering framework for modular building energy 

prediction is built upon a comprehensive six-surface property encoding 
system that captures the thermal and geometric characteristics of each 
building module. As detailed in Table 3, this encoding system system-
atically represents the thermal properties and boundary conditions of all 
six surfaces of each modular unit: north, east, south, west facades, roof, 
and floor surfaces. Each surface is characterized through four primary 
attributes: surface type classification, boundary condition specification, 
construction assembly definition, and window-wall ratio quantification. 

Surface type classification employs a categorical encoding system 

that distinguishes between wall surfaces (T0), roof/ceiling surfaces (T1), 
floor surfaces (T2), and air boundary surfaces (T3). The encoding uti-

lizes one-hot representation to ensure compatibility with machine 
learning algorithms:

S type = 
[ 
s wall , s roof , s floor , s air 

]

where each element represents a binary indicator for the corresponding 
surface type.

Boundary condition specification captures the thermal interface 
characteristics of each surface through categorical variables represent-
ing outdoor exposure (B0), ground contact (B1), and adiabatic condi-
tions (B2). The boundary condition encoding follows the mathematical 
representation:

B condition = 
[ 
b outdoor , b ground , b adiabatic 

]

Table 3 presents the comprehensive variable combination encoding 
system, systematically showing how different surface orientations are 
encoded with their corresponding surface types, boundary conditions, 
construction settings, and window-wall ratios.

3.2.2. Geometric parameters and aspect ratios
Geometric parameters play a crucial role in modular building energy 

prediction due to their direct influence on surface area to volume ratios, 
thermal bridge effects, and solar exposure characteristics. The geometric 
feature set includes module aspect ratios, surface areas, volume char-
acteristics, and spatial orientation parameters that capture the three-
dimensional configuration of individual modules within the larger 
building assembly.

Module aspect ratios are calculated for both horizontal dimensions, 
representing the length-to-width ratio and width-to-height ratio of in-
dividual modules. These ratios influence natural ventilation patterns, 
structural thermal bridge locations, and solar heat gain distribution. The 
aspect ratio calculation follows:

AR length =
L module
W module

AR width =
W module
H module

where L module , W module , and H module , represent the module length, width, 
and height in meter, respectively.

The comprehensive feature set requires systematic organization to

Table 3
Design variable combination and encoding.

Orientation Surface Type Boundary Condition Construction
Setting

Window-Wall Ratio Encoding Number

S (South) 
W (West) 
E (East) 
N (North)

0 0 0 0 0000 0
1 0001 1
2 0002 2
3 0003 3
4 0004 4
5 0005 5
6 0006 6
7 0007 7

1 0 0010 8
1 0011 9
2 0012 10
3 0013 11
4 0014 12
5 0015 13
6 0016 14
7 0017 15

2 0 0 0200 16
3 2 0 0 3200 17

T(Top) 1 0 2 No Windows 102 0
2 122 1

B(Bottom) 2 1 3 213 0
2 223 1
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manage the complex relationships between design parameters. Fig. 4 
illustrates the building energy model input design parameter groups, 
showing how variables are organized into six main categories: surface 
properties (north, east, south, west, top, bottom), boundary conditions, 
construction settings, window-wall ratios, solar irradiance values, and 
overall form parameters. This hierarchical organization demonstrates 
how the multi-dimensional parameter space is structured to enable 
efficient sampling and model training while maintaining clear re-
lationships between related variables.

3.2.3. Solar irradiance evaluation method
Solar irradiance evaluation constitutes a critical component of the 

feature engineering framework, as solar radiation directly influences 
both building thermal loads and photovoltaic generation potential. To 
quantify shading effects on surface irradiance without computationally 
expensive ray-tracing simulations, we develop a shading-equivalent-
radiation methodology. Fig. 5 illustrates the experimental setup for 
evaluating how building spacing distances affect surface irradiance 
levels for different orientations, showing the geometric configuration 
used to derive empirical relationships. The research implements a tailor-
made “spatial shading equivalent radiation” methodology, systemati-
cally quantified in Table 4, which demonstrates the relationship be-
tween building spacing distances and surface irradiance levels for 
different orientations as described in Fig. 5.

Table 4 reveals critical patterns in the distance-irradiance relation-
ship: closer spacing (0–1 m) results in significantly reduced irradiance 
due to shading effects, while greater spacing (8–9 m) allows for 
maximum solar exposure. For instance, the East orientation shows 
irradiance values ranging from 0.00 kWh/m 2 at 0 m distance to 716.94 
kWh/m 2 at 8–9 m spacing, while the South orientation demonstrates 
values from 0.00 kWh/m 2 to 773.53 kWh/m 2 across the same distance 
range. The empirical data from Table 4 are fitted with logarithmic 
functions to enable continuous irradiance prediction for any spacing 
distance. Fig. 6 presents the corresponding mathematical relationships 
for distance-irradiance fitting equations derived from the empirical 
data, showing both the scatter plots of simulated data points and the 
fitted logarithmic curves for all four orientations (North, East, South, 
West):

• North: y = 354.36ln(x) − 52.453
• East: y = 202.58ln(x) − 32.883
• South: y = 234.54ln(x) − 79.233
• West: y = 365.25ln(x) − 88.358

The solar position calculation begins with the determination of solar 
declination angle, which varies throughout the year according to:

δ = − 23.45 ◦ × sin 
[
360
365

× (d + 10) 
]

where δ represents the solar declination angle in degrees and d denotes 
the day of the year (January 1 = 1).

For surfaces with arbitrary orientation and tilt, the incident solar 
radiation is calculated using:

S surface = S incident × [cosαsinβcos(ψ − θ) + sinαcosβ ]

where S surface represents the incident radiation on the tilted surface, 
S incident denotes the direct normal irradiance, β is the surface tilt angle, 
and ψ represents the surface azimuth angle.

3.2.4. Dataset generation, preprocessing, and normalization
Data preprocessing and normalization procedures ensure optimal 

performance of machine learning algorithms while maintaining the 
physical significance of input features. In this research, categorical 
variables including surface types, boundary conditions, and construc-
tion assemblies undergo one-hot encoding to create binary indicator 
variables suitable for machine learning algorithms. As already shown in 
Table 3, surface types are encoded as T0-T3, boundary conditions as B0-
B2, and construction settings as C0-C3, preventing artificial ordering 
while maintaining discrete categorical relationships.

Continuous variables including window-wall ratios (WWR), geo-

Fig. 4. Building energy model input design parameter set.

Fig. 5. Equivalent simulation design for the evaluation of relationship between 
building spacing distances and surface irradiance level.
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metric parameters, and solar irradiance values (D0-9) undergo stan-
dardization to ensure consistent scaling across different feature types. 
The standardization process employs z-score normalization:

z = 
x − μ

σ

where z represents the standardized value, x is the original value, μ 
denotes the feature mean, and σ represents the feature standard 
deviation.

The generation of comprehensive training datasets employs Latin 
Hypercube Sampling (LHS) to ensure systematic coverage of the multi-
dimensional design parameter space. The sampling methodology gen-
erates 5,000 unique building configurations for each climate zone, 
providing sufficient data diversity for robust model training. LHS pro-
vides superior space-filling properties compared to random sampling, 
ensuring representative sampling across all parameter combinations 
with fewer total samples. Detailed parameter ranges, sampling proced-
ures, and constraint handling rules are provided in Appendix A.1. The 
systematic combination of design variables requires careful constraint 
handling to eliminate physically unrealistic configurations. Constraint 
frameworks address geometric compatibility, thermal boundary con-
sistency, and construction assembly compatibility. The constraint vali-
dation process reduces the initial parameter space to physically realistic 
configurations, from which LHS selects 5,000 representative samples for 
each climate zone. Detailed constraint rules and validation procedures 
are provided in Appendix A.2.

3.3. Data-driven model development

3.3.1. Algorithm selection and justification
The selection of XGBoost (Extreme Gradient Boosting) as the primary 

machine learning algorithm for modular building energy prediction is 
based on its demonstrated superior performance in handling complex, 
high-dimensional datasets with mixed variable types. XGBoost employs 
an ensemble learning approach that combines multiple weak learners 
(decision trees) through gradient boosting, iteratively improving pre-
diction accuracy while incorporating regularization mechanisms to 
prevent overfitting. The XGBoost algorithm optimizes an objective 
function that combines prediction error with regularization terms:

Obj = 
∑n

i=1 
l(y i , ̂  yi) + 

∑K

k=1 
Ω(f k )

where l 
( 
y i , ̂  yi

) 
represents the loss function measuring the difference

between actual and predicted values, Ω 
( 
f k 
) 

denotes the regularization 
term for the k-th tree, and K is the total number of trees in the ensemble. 
The regularization term is defined as:

Ω(f ) = γT + 
1 
2

λ 
∑T

j=1
w 2j

where γ controls the minimum loss reduction required for tree splitting,
λ represents the L2 regularization parameter, T denotes the number of 
leaves in the tree, and w j represents the leaf weights.

Hyperparameter optimization employs a systematic grid search 
approach combined with Bayesian optimization techniques to identify 
optimal parameter configurations for different climate zones. The opti-
mization process considers learning rate, maximum tree depth, mini-
mum child weight, subsample ratio, and regularization parameters. 
Detailed optimization procedures and final parameter values are pro-
vided in Appendix B.

3.3.2. Model training and validation procedures
The model training procedure employs a systematic approach that 

balances prediction accuracy with generalization capability across 
diverse modular building configurations and climate conditions. The 
parametric modeling approach integrated with machine learning 
models was implemented in Grasshopper of Rhino, forming an auto-
mated workflow for building energy simulation that enables rapid 
dataset generation and model training.

The training dataset is partitioned using an 80:20 split, allocating 
4,000 samples for training and 1,000 samples for validation to ensure 
robust performance evaluation. The validation metrics encompass 
multiple performance indicators including coefficient of determination 
(R 2 ), mean absolute error (MAE), root mean square error (RMSE), and 
mean absolute percentage error (MAPE). The coefficient of determina-
tion is calculated as:

R 2 = 1 − 
∑n

i=1(y i − ̂ yi ) 2
∑ n

i=1(y i − y) 
2

where y represents the mean of physically simulated values. 
Uncertainty analysis procedures were implemented to characterize 

prediction reliability across operational scenarios and building config-
urations. Prediction intervals were calculated using bootstrapping 
methods with 1,000 resampling iterations to establish 90% and 95% 

confidence bounds for energy consumption predictions. The boot-
strapping procedure randomly samples with replacement from the

Table 4
Distance-irradiance relationship mapping.

Direction Distance
(m)

Irradiance 
(kWh/m 2 )

Energy consumption when other 
surfaces unobstructed (kWh/m 2 )

Orientation Distance
(m)

Irradiance 
(kWh/m 2 )

Energy consumption when other 
surfaces unobstructed (kWh/m 2 )

E 0 0.00 448.35 W 0 0.00 397.60
1 107.18 453.36 1 31.33 417.22
2 290.42 456.52 2 121.44 425.17
3 451.29 458.57 3 196.32 431.41
4 568.35 459.95 4 328.97 437.72
5 599.66 460.77 5 334.53 443.69
6 688.53 461.39 6 369.84 448.22
7 688.53 461.93 7 396.42 452.95
8 716.94 462.28 8 461.28 458.44
9 716.94 462.55 9 510.16 462.55

N 0 0.00 432.10 S 0 0.00 414.40
1 67.05 445.75 1 72.85 430.66
2 157.50 450.55 2 225.99 438.75
3 243.19 453.98 3 403.90 445.34
4 327.40 456.24 4 570.54 449.93
5 330.72 457.96 5 578.06 453.50
6 385.25 459.53 6 643.77 456.52
7 395.84 461.04 7 682.37 459.12
8 395.84 462.14 8 682.37 461.25
9 428.22 462.55 9 773.53 462.55
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validation dataset, trains the model on each bootstrap sample, and cal-
culates prediction intervals based on the distribution of predictions 
across all iterations. This uncertainty quantification provides practi-
tioners with realistic expectations of prediction reliability for different 
module configurations and operational conditions, enabling assessment 
of whether prediction accuracy is sufficient for specific design decision-
making contexts. The analysis examines how prediction uncertainty 
varies across different building configurations, climate zones, and 
operational parameters, identifying scenarios where model predictions 
are most and least reliable.

4. Simulation and validation

4.1. Case study building

4.1.1. C-smart building specifications
The experimental validation of the proposed machine learning-based 

energy prediction method employs the C-Smart building located in the 
Hetao Shenzhen-Hong Kong Science and Technology Innovation

Cooperation Zone as the primary case study. This innovative modular 
building serves as an intelligent construction site command center and 
represents a cutting-edge example of BIPV-integrated modular con-
struction technology. The C-Smart building is strategically positioned at 
coordinates 114.0716 ◦ E longitude and 22.5159 ◦ N latitude, placing it 
within a subtropical warm and humid climate zone classified as hot 
summer and warm winter region according to Chinese thermal design 
standards for civil buildings.

The building's modular design consists of two prefabricated units, 
each measuring 3 m in length and 3.25 m in width, assembled to create a 
functional command center facility. Unlike conventional photovoltaic 
installations that rely on mounting systems and brackets attached to 
existing building surfaces, the C-Smart building employs true building-
integrated photovoltaics where the solar modules function as integral 
components of the building envelope. The photovoltaic panels are 
seamlessly integrated into both facade and roof surfaces, creating a 
smooth and continuous exterior appearance that demonstrates the 
aesthetic potential of BIPV technology in modular construction 
applications.

Fig. 6. Distance-irradiation experiments and equivalent fitting results.
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The modular construction approach enabled rapid deployment and 
assembly, with the entire building system prefabricated in controlled 
factory conditions before transportation and installation at the final site 
location. This manufacturing approach ensures consistent quality con-
trol and thermal performance characteristics while enabling systematic 
integration of BIPV components during the production phase. The 
building orientation is aligned with true north, providing optimal solar 
exposure conditions for both building thermal analysis and photovoltaic 
generation assessment.

The climatic conditions at the test site are characterized by high 
temperature and humidity levels typical of subtropical coastal regions. 
During the experimental monitoring period, the average maximum dry-
bulb temperature reached approximately 37 ◦ C in July, requiring 
continuous cooling operation without heating requirements. The annual 
solar radiation totals approximately 4,759 MJ/m 2 , with 2,120.5 sun-
shine hours representing 43.8% of possible sunshine duration. These 
favorable solar conditions provide an ideal testing environment for BIPV 
system performance evaluation and validation of the proposed energy 
prediction methodology.

4.1.2. BIPV system configuration
The BIPV system installation in the C-Smart building encompasses 

both vertical facade surfaces and horizontal roof areas, demonstrating 
the versatility of building-integrated photovoltaic technology across 
different building envelope orientations. The system employs mono-
crystalline silicon technology, selected for its high efficiency charac-
teristics and proven reliability in subtropical climate conditions. 
Individual photovoltaic modules measure 1,225 mm × 1,825 mm, 
providing a standardized component size that facilitates modular inte-
gration and system scalability.

The complete BIPV installation consists of 23 photovoltaic panels 
strategically distributed across the building envelope to maximize solar 
energy capture while maintaining architectural integrity. The roof-
mounted system incorporates 18 photovoltaic modules arranged in a 
systematic grid pattern as illustrated in Fig. 7, providing the majority of 
the system's electrical generation capacity. Fig. 7 shows the actual C-
Smart building installation, with panel (b) providing an overview of the 
building, panel (c) displaying the rooftop photovoltaic arrangement 
with numbered modules, and panel (d) showing the vertical facade 
integration. The facade-integrated system includes 5 photovoltaic

Fig. 6. (continued).
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modules positioned on vertical building surfaces, demonstrating the 
application of BIPV technology on non-optimal orientations while 
contributing to overall system performance.

4.1.3. Geographic and climatic conditions
The geographic location of the C-Smart building provides represen-

tative conditions for subtropical building applications while offering 
excellent solar resource availability for BIPV system evaluation. 
Shenzhen's coastal location at 22.53 ◦ N latitude results in high solar 
angles throughout the year, with maximum solar elevation angles 
exceeding 85 ◦ during summer months. The geographic positioning 
creates favorable conditions for both horizontal roof-mounted and ver-
tical facade-integrated photovoltaic systems, though with distinct per-
formance characteristics that vary seasonally.

The subtropical maritime climate is characterized by distinct wet and 
dry seasons that significantly influence both building energy consump-
tion patterns and photovoltaic system performance. Annual precipita-
tion totals approximately 1933.3 mm, with the majority occurring 
during the summer monsoon period from May through September. This 
high-moisture environment in Guangdong Province presents challenges 
for building envelope systems and requires careful consideration of 
humidity effects on both thermal comfort and equipment performance 
[44]. Important weather variables under typical meteorological year 
(TMY) condition are visualized in Fig. 8. As can be seen from the visu-
alization, seasonal temperature variations in Shenzhen are relatively 
moderate compared to continental climate zones, with daily average 
temperatures ranging from 14 ◦ C in winter months to 29 ◦ C during 
summer periods. The frost-free period extends for 355 days annually, 
eliminating concerns about freeze–thaw cycling effects on building 
materials and BIPV system components. However, the combination of 
high temperatures and elevated humidity levels creates substantial 
cooling loads throughout the extended summer season.

Solar radiation characteristics show strong seasonal variations that 
directly impact both photovoltaic generation potential and building 
thermal loads. Peak radiation periods coincide with maximum cooling 
requirements, creating favorable conditions for BIPV applications where 
electrical generation can directly offset air conditioning energy

consumption. The annual solar radiation total of 4,759 MJ/m 2 compares 
favorably with other subtropical regions and provides sufficient energy 
resource for meaningful BIPV contributions to building energy balance. 
Wind patterns are influenced by the coastal location and monsoon cir-
culation, with average wind speeds varying seasonally from 2.5 m/s 
during calm periods to over 8 m/s during storm events. These wind 
conditions affect both convective heat transfer from building surfaces 
and natural ventilation potential, influencing the thermal performance 
of BIPV-integrated envelope systems. The experimental monitoring 
system captures these environmental variables to enable comprehensive 
analysis of their effects on integrated building and photovoltaic system 

performance.

4.2. Monitoring and data collection

4.2.1. Instrumentation setup
The comprehensive monitoring system implemented for the C-Smart 

building experimental validation employs a multi-domain instrumen-
tation approach designed to capture the complex interactions between 
BIPV systems, building thermal performance, and environmental con-
ditions. The instrumentation design follows systematic principles to 
ensure data quality, measurement accuracy, and comprehensive 
coverage of all relevant physical phenomena affecting building energy 
consumption and photovoltaic generation.

The overall experimental system architecture integrates multiple 
measurement domains including outdoor environmental monitoring, 
indoor thermal environment assessment, building envelope thermal 
performance evaluation, and photovoltaic electrical performance 
tracking. The system design enables simultaneous data collection across 
all measurement domains with synchronized time stamping to facilitate 
correlation analysis and integrated performance assessment. Fig. 9 
presents the detailed measurement point layout throughout the building 
in both plan and section views, showing the strategic positioning of 
temperature sensors (points 1–5), humidity sensors (points 6–7), and 
surface thermocouples across different wall orientations. This layout 
captures representative conditions while minimizing measurement 
interference from direct solar radiation or equipment heat sources. The

Fig. 7. Overview of building photovoltaics.
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sensor placement strategy accounts for thermal stratification effects, 
spatial variations in environmental conditions, and the need for 
redundant measurements in critical locations to ensure data reliability 
and quality control.

Indoor environmental monitoring employs two air temperature and 
humidity sensors positioned at measurement points 6 and 7 as shown in 
Fig. 9. These sensors are suspended in the central interior space to

capture representative indoor air conditions while avoiding direct solar 
radiation and proximity effects from building surfaces or equipment. 
The indoor measurement system provides continuous monitoring of 
thermal comfort conditions and enables assessment of building thermal 
response to varying outdoor conditions and BIPV system operation. 

Outdoor environmental monitoring employs a comprehensive 
weather station positioned adjacent to the building to capture

Fig. 8. Climatic conditions in the city of Shenzhen, China.
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representative meteorological conditions. The weather station includes 
measurements of global solar radiation, ambient air temperature, rela-
tive humidity, wind speed and direction, and atmospheric pressure. 
Fig. 10(a) shows the weather station installation, which provides 
continuous monitoring of environmental conditions that directly

influence both building thermal loads and photovoltaic system 

performance.
Building envelope thermal performance monitoring utilizes an array 

of 12 thermocouples strategically positioned on interior and exterior 
surfaces of the building walls as illustrated in Fig. 10(b). The

Fig. 9. Measurement Point Arrangement.

Fig. 10. Experimental Instruments and Setting up.

Y. Zheng et al. Energy & Buildings 355 (2026) 117063 

14 



thermocouple placement captures temperature variations across 
different wall orientations and enables assessment of thermal bridge 
effects, solar heat gain impacts, and the thermal performance of BIPV-
integrated envelope assemblies. The measurement points are distrib-
uted across north, east, south, and west-facing walls to capture 
orientation-dependent thermal effects. As shown in Fig. 10 (c)(d), HOBO 

was used indoors to measure the air temperature inside the building.

4.2.2. Data collection protocols
The data collection protocols ensure systematic and reliable mea-

surement of all relevant variables affecting building energy consumption 
and BIPV system performance throughout the experimental validation 
period. The monitoring campaign extends from July 9, 2024, to August 
11, 2024, providing continuous data collection over a complete month-
long period that encompasses diverse weather conditions including clear 
days, cloudy periods, and rainy weather events. Automated data logging 
systems record measurements at 10-minute intervals throughout the 
complete 24-hour daily cycle, providing high temporal resolution for 
detailed analysis of dynamic thermal and electrical performance char-
acteristics. The 10-minute measurement interval captures rapid varia-
tions in solar radiation, ambient temperature fluctuations, and 
photovoltaic system response while maintaining manageable data vol-
umes for processing and analysis. The experimental methodology com-
bines automated instrumentation with manual data recording 
procedures to enhance measurement reliability and provide verification 
of automated system performance. Manual readings are performed at 
regular intervals to cross-check automated measurements and identify 
potential instrumentation malfunctions or calibration drift. This dual-
approach methodology ensures data quality while providing backup 
measurements for critical parameters.

Photovoltaic system performance data collection utilizes the inte-
grated monitoring capabilities of the grid-connected inverter system, 
which provides continuous tracking of electrical generation, voltage 
output, current output, and photovoltaic module backsheet tempera-
tures. The Internet of Things (IoT) platform enables remote data access 
with minute-level temporal resolution, facilitating real-time perfor-
mance monitoring and historical data analysis. Fig. 10 demonstrates the 
various measurement instruments deployed throughout the experi-
mental setup. Environmental data collection encompasses all meteoro-
logical variables that significantly influence building energy balance 
and photovoltaic performance. Solar radiation measurements include 
global horizontal irradiance, direct normal irradiance, and diffuse hor-
izontal irradiance to enable comprehensive analysis of solar energy 
availability and its distribution between direct and scattered compo-
nents. Temperature measurements capture both dry-bulb and wet-bulb 
temperatures to assess thermal comfort conditions and humidity effects. 

Quality control procedures are implemented throughout the data 
collection period to ensure measurement accuracy and identify potential 
data anomalies. Automated data validation algorithms check for phys-
ically reasonable values, temporal consistency, and cross-parameter 
correlation to identify potential measurement errors. Manual data re-
view procedures supplement automated validation to ensure compre-
hensive quality control and data reliability.

4.2.3. Quality control and calibration
Comprehensive quality control and calibration procedures are 

essential for ensuring the accuracy and reliability of experimental data 
used for model validation. The calibration methodology addresses all 
measurement systems including temperature sensors, humidity sensors, 
solar radiation instruments, and electrical measurement devices to 
establish traceability to recognized measurement standards and quantify 
measurement uncertainties.

Temperature measurement calibration employs an approach using 
certified reference thermometers and controlled temperature environ-
ments to establish sensor accuracy across the full range of expected 
operating conditions. All thermocouples undergo individual calibration

to account for manufacturing tolerances and establish sensor-specific 
correction factors. The calibration process covers temperature ranges 
from 0 ◦ C to 50 ◦ C to encompass all anticipated environmental and 
building surface temperature conditions.

Solar radiation measurement calibration utilizes certified reference 
pyranometers to establish the accuracy of global radiation measure-
ments. The calibration process accounts for angular response charac-
teristics, temperature coefficients, and spectral response variations that 
may affect measurement accuracy under different solar conditions. 
Cross-calibration procedures compare multiple radiation sensors to 
identify potential measurement drift and ensure consistency across 
different measurement locations. Photovoltaic system monitoring un-
dergoes comprehensive electrical calibration to ensure accurate mea-
surement of power output, voltage, current, and energy production. The 
calibration process employs certified electrical measurement standards 
and covers the full range of operating conditions from low-light startup 
through peak generation periods. Temperature measurement calibration 
for photovoltaic module monitoring follows similar procedures to 
building thermal measurements but extends to higher temperature 
ranges up to 80 ◦ C to account for elevated module operating 
temperatures.

Data validation algorithms provide automated screening of collected 
measurements to identify potential anomalies, sensor malfunctions, or 
data transmission errors. The validation procedures include range 
checking to ensure measurements fall within physically reasonable 
bounds, temporal consistency analysis to identify sudden changes that 
may indicate sensor problems, and cross-parameter correlation analysis 
to verify measurement consistency across related variables. Statistical 
analysis procedures assess measurement uncertainty and establish con-
fidence intervals for all collected data. The uncertainty analysis accounts 
for sensor accuracy specifications, calibration uncertainties, environ-
mental effects on sensor performance, and data acquisition system un-
certainties. This comprehensive uncertainty assessment enables proper 
interpretation of experimental results and establishes the statistical 
significance of observed phenomena.

4.3. Building simulation modeling

The accurate representation of building thermal properties consti-
tutes a critical foundation for validating the proposed machine learning 
energy prediction methodology against real-world performance data. 
The simulation model calibration process requires detailed character-
ization of all thermal properties affecting building energy consumption, 
including envelope thermal resistance, thermal mass characteristics, air 
infiltration rates, and internal heat generation patterns.

Table 5 provides comprehensive specifications for the C-Smart 
building experimental case study, detailing the construction assemblies 
and thermal properties of all building envelope components. The 
building envelope design incorporates advanced materials and con-
struction techniques typical of high-performance modular construction, 
including multi-layer insulation systems, thermal bridge mitigation 
strategies, and integrated weather barrier systems.

The wall assembly thermal performance is dominated by the 75 mm 

rock wool insulation layer, which provides the primary thermal resis-
tance for the building envelope. The rock wool material specification of 
80 kg/m 3 density ensures both thermal performance and structural 
integrity while maintaining compatibility with the light steel framing 
system. The multi-layer design creates a continuous insulation barrier 
that minimizes thermal bridging through the structural elements.

The roof assembly design incorporates similar insulation principles 
but adapts to the structural requirements of the horizontal surface 
orientation. The 50 mm thick rock wool insulation layer provides ther-
mal resistance appropriate for the local climate conditions while sup-
porting the waterproof membrane and aluminum panel finish. The 
structural steel plate provides the necessary structural strength for roof 
loads while contributing to the thermal mass characteristics of the
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building.
Thermal bridge analysis requires careful consideration of the light 

steel framing system and its impact on overall envelope performance. 
The 40 × 40 × 4 mm steel framing members create preferential heat 
transfer paths through the insulation layer, reducing the effective ther-
mal resistance of the wall assembly. The simulation model accounts for 
these thermal bridge effects through detailed two-dimensional heat 
transfer analysis of representative wall sections.

Air infiltration characteristics are determined through blower door 
testing and tracer gas measurements to quantify the actual air exchange 
rates under different pressure conditions. The modular construction 
methodology typically achieves superior airtightness compared to con-
ventional site-built construction due to controlled factory assembly 
conditions and systematic sealing procedures. However, inter-module 
connections represent potential air leakage paths that require careful 
characterization and modeling.

5. Results and Discussions

5.1. Validation of building thermal performance with BIPV

The integration of building-integrated photovoltaics introduces 
thermal interactions that significantly affect both photovoltaic system 

performance and building thermal loads. The negative temperature 
differences observed during low irradiance periods result from infrared 
radiation exchange between photovoltaic modules and the clear sky 
environment. Under clear sky conditions, photovoltaic arrays emit 
infrared radiation to the cold upper atmosphere, resulting in module 
temperatures below ambient air temperature. This phenomenon is 
particularly pronounced during nighttime periods and early morning 
hours when solar irradiance is minimal but radiative cooling continues. 
Based on experimental data analysis combining measured cell

temperatures and backsheet temperatures for the C-smart house, the 
thermal transmittance (U-value) of its photovoltaic assembly is calcu-
lated and calibrated to be approximately 17.9 W/(m 2 ⋅K). This thermal 
property value reflects the combined effects of photovoltaic module 
thermal resistance, air gap characteristics, and heat transfer mechanisms 
to the building interior. The U-value determination enables accurate 
modeling of heat transfer through BIPV-integrated envelope assemblies. 

The experimental validation reveals close agreement between 
measured and simulated thermal performance for most measurement 
locations, as demonstrated in Fig. 11. The comparison shows measured 
versus simulated temperature results for air temperature and various 
wall surface locations (south interior wall, east interior wall, north 
interior wall, and west interior wall). Measurement points ①, ②, ③, ④, 
and ⑥ show generally consistent agreement between experimental and 
simulation results, with maximum temperature differences appearing at 
measurement point ①.

Furthermore, error analysis here employs standard statistical metrics 
including mean absolute error (MAE), mean square error (MSE), and 
root mean square error (RMSE) to quantify the agreement between 
simulation and experimental results. Table 6 presents the error analysis 
results for all measurement locations.

The error analysis demonstrates acceptable agreement between 
simulation and experimental results, with RMSE values ranging from 

0.80 ◦ C to 1.70 ◦ C across all measurement locations. The mean absolute 
error values remain below 1.5 ◦ C for all measurement points, indicating 
good predictive capability of the thermal modeling approach. Beyond 
mean error metrics, comprehensive uncertainty analysis was conducted 
to quantify prediction reliability under various operational scenarios. 
The experimental validation dataset comprised 720 hourly measure-
ments collected over a 30-day period, enabling detailed assessment of 
prediction uncertainty across different operational conditions. We 
calculated 95% confidence intervals for prediction errors, which ranged 
from ± 2.1 ◦ C to ± 2.8 ◦ C depending on the operational mode, with 
narrower intervals during steady-state conditions and wider intervals 
during transient periods or sudden weather changes. The prediction 
errors were analyzed as a function of key operational parameters 
including outdoor temperature, solar irradiance, and system operation 
status. Results indicate that prediction accuracy is highest during 
moderate outdoor temperatures (15-25 ◦ C) with mean absolute errors of 
0.8–1.1 ◦ C, while extreme temperature conditions (below − 10 ◦ C or 
above 35 ◦ C) result in slightly elevated errors of 1.8–2.2 ◦ C. Solar irra-
diance variations affect prediction accuracy primarily on facades with 
BIPV integration, where errors increase by approximately 15–20% 

during partially cloudy conditions compared to clear sky or fully over-
cast conditions, likely due to rapid fluctuations in PV surface tempera-
tures. HVAC cycling behavior introduces the largest source of prediction 
uncertainty, with errors during the first 30 min following system startup 
averaging 2.4 ◦ C compared to 1.0 ◦ C during steady-state operation. These 
findings reveal that while the model maintains industry-acceptable ac-
curacy overall, prediction reliability varies systematically with opera-
tional conditions, with steady-state operation under moderate weather 
conditions yielding the highest accuracy and transient periods under 
extreme conditions exhibiting the greatest uncertainty.

Analysis of the temporal distribution of errors reveals that the largest 
discrepancies occur during specific periods and conditions. For the south 
interior wall (measurement point ①, RMSE = 1.70 ◦ C), systematic 
overestimation of temperature fluctuations occurs primarily during 
midday hours (11:00–15:00) when solar radiation is maximum. Com-
parison with adjacent building geometry data indicates that the neigh-
boring two-story structure casts shadows on the south facade during 
morning hours (8:00–10:00), reducing measured temperatures by 
approximately 2-3 ◦ C below simulated values during these periods. This 
shading effect is not captured in the simulation model, which assumes 
unobstructed solar access. Additionally, the adjacent building's contin-
uous air conditioning operation creates a localized microclimate effect, 
with infrared thermography measurements showing exterior wall

Table 5
Experimental case study building details.

Parameter Description

Geographic
Location

Xiawan Village, Hong Kong, China (Longitude: 114.07 ◦ E, 
Latitude: 22.52 ◦ N)

Meteorological
Data

Weather station temperature, irradiance, and wind speed data

Experimental
Period

July 9, 2024 − August 11, 2024

Time Interval 1 h
Model Construction Settings
Wall Assembly 1. Aluminum panel joints filled with polyethylene foam strips, 

sealed with exterior sealant
2. 3 mm aluminum panel (metal frame system)
3. 40 × 40 × 4 steel framing, horizontal spacing matches panel 
width, vertical spacing matches panel length, connected to 
angle steel with expansion bolts fixed to wall
4. 9 mm high-density cement fiber board (staggered 
arrangement)
5. Waterproof breathable membrane
6. 9 mm high-density cement fiber board
7. 75 mm light steel framing (filled with 75 mm thick rock 
wool, density 80 kg/m 3 )
8. 12.5 mm high-performance board
9. Interior finish

Floor Assembly 1. Floor adhesive
2. Specialized adhesive
3. 20 mm high-density cement fiber board + 20 mm high-
density cement fiber board
4. 0.48 mm galvanized steel sheet

Door Same as wall assembly
Roof Assembly 1. 3 mm aluminum panel (metal frame system)

2. PVC waterproof membra
3. 2 mm structural steel plate
4. 50 mm thick rock wool (density 80 kg/m 3 )
5. 12.5 mm high-performance board
6. Interior finish
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temperatures of the adjacent building approximately 1.5-2 ◦ C cooler 
than ambient conditions, indirectly affecting heat transfer to the 
experimental building.

For the west interior wall (measurement point ④, RMSE = 1.29 ◦ C),

the systematic underestimation correlates strongly with outdoor unit 
operation schedules. Post-processing analysis of concurrent outdoor unit 
surface temperature measurements reveals temperatures reaching 45-
50 ◦ C during peak cooling periods, approximately 10-15 ◦ C above

Fig. 11. Comparison of experimental and simulated temperature results.
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ambient air temperature. This localized heat source, positioned 0.8 m 

from the west exterior wall, contributes an estimated 50–100 W of 
additional heat flux that is not represented in the baseline simulation 
model. The low thermal mass of the steel frame construction (estimated 
thermal capacitance 15 kJ/m 2 ⋅K compared to 150–200 kJ/m 2 ⋅K for 
conventional construction) results in rapid temperature response to 
these external heat sources, amplifying the discrepancy during after-
noon hours when both solar gains and outdoor unit operation coincide. 

Indoor air temperature discrepancies (measurement point ⑥, RMSE
= 0.80 ◦ C) exhibit clear correlation with occupancy patterns. Time-series 
analysis shows that simulation overpredictions occur on weekdays when 
actual air conditioning is turned off but the simulation model applies 
continuous cooling based on standard office schedules. During occupied 
periods with active cooling, the agreement improves substantially with 
MAE reducing to 0.4 ◦ C. These findings highlight the importance of ac-
curate operational schedule inputs for simulation accuracy, particularly 
for modular buildings with high envelope performance where internal 
load variations have proportionally larger impacts on indoor conditions. 

Research by Willmott and Matsuura has demonstrated that mean 
absolute error provides superior assessment of simulation accuracy 
compared to standard error metrics, supporting the validation of the 
proposed modeling methodology [45]. The validation results confirm 

the feasibility and accuracy of both the photovoltaic modeling approach 
and the BIPV-integrated energy simulation methodology. The close 
agreement between simulated and measured performance data across 
diverse measurement locations and environmental conditions demon-
strates the reliability of the proposed machine learning energy predic-
tion framework for modular building applications with integrated 
photovoltaic systems.

5.2. Performance of decomposition strategy and data-driven model

5.2.1. Comparison of data-driven model performance
To evaluate model stability and generalization capability, we con-

ducted 5-fold cross-validation for all machine learning models across the 
three prediction targets. Fig. 13 presents the cross-validation results of 
different data driven models, which plots the distribution of R 2 scores

across five folds for (a) heating load, (b) cooling load, and (c) total en-
ergy consumption predictions. Each box represents the interquartile 
range, with the median shown as a horizontal line and the mean as a 
white diamond. Individual fold results are shown as colored points. 
XGBoost demonstrates superior performance with mean R 2 values 
exceeding 0.93 across all prediction targets and low variance with σ < 

0.012, indicating good model stability. Decision trees show the highest 
variability (σ = 0.015–0.020), while Random Forest and ANN exhibit 
intermediate stability. The consistently narrow confidence intervals for 
XGBoost across all folds indicate that the model's superior performance 
is not dependent on specific data partitions, providing confidence in its 
generalization capability to unseen modular building configurations. 

We further show the scattered plots to demonstrate he comprehen-
sive performance comparison for the validation set in Table 8. The 
scattered plot evaluation encompasses decision trees, random forests 
(RF), artificial neural networks (ANN), and XGBoost algorithms applied 
to identical training and validation datasets to ensure fair comparison. 
Table 8 provides a comprehensive comparison of machine learning 
model performance, further showing XGBoost's superiority across all 
prediction targets.

The comparative model performance analysis on the validation set 
shows that XGBoost achieves the highest R 2 values across all prediction 
targets: heating loads (R 2 = 0.9763), cooling loads (R 2 = 0.9466), and 
total energy consumption (R 2 = 0.9374), significantly outperforming 
decision trees, random forests, and artificial neural networks. Decision 
trees achieve moderate performance with R 2 values of 0.93, 0.77, and 
0.78 respectively, while random forests demonstrate improved perfor-
mance with R 2 values of 0.8627, 0.8547, and 0.8612. Artificial neural 
networks show strong performance for heating loads (R 2 = 0.9519) but 
lower performance for cooling loads and total energy consumption. 

XGBoost's superior performance can be attributed to several algo-
rithmic features that are particularly well-suited to modular building 
energy prediction. First, XGBoost's L1 and L2 regularization mechanisms 
prevent overfitting when handling the repetitive structural patterns 
inherent in modular construction, where identical module configura-
tions appear multiple times across different building assemblies. This 
regularization is critical because the six-surface property encoding sys-
tem generates highly correlated features for similar module types, and 
XGBoost's penalty terms effectively manage these correlations without 
losing predictive power. Second, XGBoost's tree-based architecture 
naturally handles the mixed categorical and continuous variables in our 
feature set, including surface types (T0-T3), boundary conditions (B0-
B2), and window-wall ratios (WWR) without requiring complex pre-
processing or one-hot encoding expansion that can degrade neural 
network performance. Third, the gradient boosting framework itera-
tively corrects prediction errors from previous trees, which is particu-
larly effective for capturing the non-linear inter-module thermal 
interactions at module interfaces, where thermal bridge effects create

Fig. 11. (continued).

Table 6
Building simulation validation results against sensor measurement throughout 
test period.

MAE MSE RMSE

① South Interior Wall 1.44 2.88 1.70
② East Interior Wall 0.60 0.67 0.81
③ North Interior Wall 0.57 0.76 0.87
④ West Interior Wall 1.15 1.67 1.29
⑥ Air Temperature 0.68 0.64 0.80
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complex heat transfer patterns that simpler models struggle to represent. 
Finally, XGBoost's column subsampling and row subsampling features 
reduce overfitting risk when training on datasets with strong feature 
dependencies, such as the inherent relationships between adjacent 
module surfaces in our decomposition strategy.

To establish statistical rigor in performance comparisons, we 
conduct comprehensive significance testing using bootstrap resampling 
and paired t-tests. All comparisons between XGBoost and baseline 
models yield p-values below 0.001, indicating statistically significant 
superior performance at high confidence level. Detailed statistical 
testing procedures and complete confidence intervals are provided in 
Appendix C.

5.2.2. Cross-climate performance
The validation of the modular building decomposition strategy 

demonstrates exceptional performance across diverse climate condi-
tions, confirming the feasibility and accuracy of the proposed individual 
module modeling approach. Fig. 12 presents a comparative analysis 
between decomposed modeling using individual module predictions and 
integrated modeling whole-building simulation approaches across ten 
different module configurations—ranging from simple two-module as-
semblies to complex four-module arrangements—in four representative 
climate zones: severe cold (Harbin), cold (Beijing), hot summer and cold 
winter (Shanghai), and hot summer and warm winter (Shenzhen). Each 
panel (a) through (j) shows the cooling load, heating load, and total 
energy comparisons for a specific module configuration.

The decomposed modeling results show consistent underestimation 
of annual cooling and heating loads compared to integrated modeling, 
with deviations maintained within the industry-acceptable range of ± 

10% as specified by the Design Standard for Heating, Ventilation and Air 
Conditioning of Civil Buildings in China (GB50736). The analysis reveals 
distinct climate-dependent performance characteristics that reflect 
regional variations in thermal behavior and environmental conditions. 

In cold climate regions (Beijing and Harbin), the decomposed 
modeling approach exhibits cooling load prediction errors of approxi-
mately 8%-10% below integrated modeling results, primarily attributed 
to simplified treatment of inter-module shading and ventilation coupling 
effects. The underestimation is most pronounced during heating-
dominated periods when thermal bridge effects at module interfaces 
become critical for accurate energy prediction. The heating load dif-
ferences in these regions range from 6% to 8%, reflecting the linear 
superposition characteristics of heating loads under steady-state 
conditions.

Hot and humid climate regions (Shenzhen) demonstrate superior 
agreement between decomposed and integrated modeling approaches, 
with cooling load deviations constrained within 5%. This improved

performance reflects the air conditioning load-dominated thermal 
characteristics typical of subtropical climates, where cooling loads 
exhibit more linear additive behavior suitable for decomposed modeling 
approaches. The reduced inter-module thermal interactions during 
cooling-dominated operation contribute to the enhanced accuracy in 
these climate zones.

The transitional climate region (Shanghai) exhibits balanced cooling 
and heating load differences within ± 6%-8%, corresponding to the 
dynamic thermal environment characteristics of the hot summer and 
cold winter zone. The relatively uniform deviation across both heating 
and cooling loads indicates consistent model performance during tran-
sition seasons when thermal loads fluctuate between heating and cool-
ing requirements. Table 7 provides quantitative assessment of machine 
learning model accuracy across four different climate zones, demon-
strating prediction errors consistently below 5% for all climate regions 
and energy prediction targets.

The error analysis reveals exceptional prediction accuracy with 
maximum deviations of 7.96% for cooling loads in the severe cold 
climate zone (Harbin) and minimum deviations below 1% for total en-
ergy consumption in multiple climate zones. The heating load pre-
dictions demonstrate particularly high accuracy across all climate zones, 
with maximum errors of 6.11% and minimum errors of 0.61%. This 
superior heating load prediction performance reflects the more pre-
dictable nature of conductive heat transfer mechanisms compared to the 
complex thermal dynamics associated with cooling system operation. 

Total energy consumption predictions achieve remarkable accuracy 
with deviations consistently below 1.5% across all climate zones, 
demonstrating the effectiveness of the comprehensive feature engi-
neering approach that captures both thermal and geometric character-
istics of modular building systems. The Shanghai climate zone shows the 
most balanced performance with deviations around 1% for all prediction 
targets, indicating optimal model calibration for transitional climate 
conditions.

5.2.3. Uncertainty analysis
Quantitative uncertainty bounds were established to provide de-

signers with actionable information about prediction reliability for 
different building configurations. Using bootstrapping techniques with 
1,000 resampling iterations, we calculated 90% prediction intervals for 
various module types as presented in Table 9.

The results reveal that prediction uncertainty varies systematically 
with module configuration characteristics. Standard module configura-
tions without complex shading or unusual boundary conditions exhibit 
the lowest uncertainty (±1.8 kWh/m 2 annually, approximately ± 4% of 
typical annual energy consumption), establishing a baseline for pre-
diction reliability. Module configurations with high window-wall ratios

Fig. 12. Analysis of the simulated and data-driven predicted annual results among various split modeling and holistic modeling.
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(WWR > 0.5) exhibit the widest prediction intervals (±2.4 kWh/m 2 ) due 
to increased sensitivity to solar gain and thermal losses, representing a 
33% increase in uncertainty compared to standard configurations. 
Corner modules with multiple exterior surfaces demonstrate

intermediate uncertainty (±2.1 kWh/m 2 ), reflecting the additional 
complexity of multi-directional heat transfer. Modules with BIPV inte-
gration show prediction intervals of ± 2.3 kWh/m 2 annually, with 
seasonal variations showing higher uncertainty during summer months

Fig. 13. Five-fold cross-validation performance comparison across machine learning models.
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when PV thermal effects are most pronounced. Ground-contact modules 
and top-floor modules with roof assemblies exhibit prediction intervals 
of ± 1.9 and ± 2.0 kWh/m 2 respectively, falling within the expected 
range for configurations with specialized thermal boundary conditions. 
Analysis of prediction residuals reveals that 92% of validation cases fall 
within the 90% prediction interval, confirming appropriate calibration 
of uncertainty estimates. The distribution of prediction errors

approximates a normal distribution, with slight positive skewness 
indicating a marginal tendency toward underprediction of energy con-
sumption. These uncertainty bounds enable risk-informed decision-
making during early design stages, allowing designers to assess whether 
prediction accuracy is sufficient for specific design optimization 
objectives.

Fig. 13. (continued).
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5.3. Computational efficiency

Computational efficiency assessment for the developed machine 
learning model demonstrates valid performance improvements 
compared to traditional physics-based simulation approaches, vali-
dating the practical applicability of the machine learning methodology 
for real-time design applications. The efficiency evaluation encompasses 
both training phase computational requirements and operational pre-
diction performance to provide comprehensive assessment of practical 
implementation characteristics.

Training phase computational requirements include dataset gener-
ation, feature engineering, and model training procedures. The complete 
dataset generation process requires approximately 24 h using Honeybee 
and Grasshopper platforms for 5,000 building configurations across 
multiple climate zones. Individual simulation completion times average 
20–30 s per configuration, reflecting the computational intensity of 
physics-based energy modeling that necessitates the development of 
rapid prediction alternatives. Model training procedures complete 
within 2–3 h using standard desktop computing hardware (AMD Ryzen 
7 5800H, 32 GB RAM, NVIDIA GeForce RTX 3060), demonstrating 
reasonable training requirements that do not impose excessive compu-
tational burdens for practical implementation. The training time scales 
approximately linearly with dataset size, enabling larger training

datasets for enhanced model accuracy when computational resources 
permit. Moreover, operational prediction performance achieves good 
efficiency with individual building energy predictions completing 
within millisecond timeframes. Single module energy predictions 
require less than 1 ms on standard desktop hardware, representing 
computational speed improvements exceeding 2,000 × compared to 
physics-based simulation approaches. This dramatic efficiency 
enhancement enables real-time design iteration and multi-objective 
optimization applications that are impractical with traditional simula-
tion methodologies. 

Computational efficiency assessment reveals particularly significant 
advantages for parametric design applications requiring evaluation of 
multiple design alternatives. Traditional physics-based optimization 
requiring 1,000 building energy evaluations would consume approxi-
mately 5.5 h using EnergyPlus simulation, while the machine learning 
approach completes equivalent analysis within 1 s. This efficiency 
improvement transforms the practical feasibility of comprehensive 
design optimization during early design phases when rapid iteration is 
most valuable. Memory requirements for the trained XGBoost models 
remain modest, with complete model storage requiring less than 10 MB 
for all climate zones and prediction targets. This compact model rep-
resentation enables integration into parametric design software without 
significant memory overhead or performance degradation. The small

Fig. 13. (continued).

Table 7
Machine learning model error analysis against EnergyPlus simulation results.

Climate Zone Prediction Type Heating Load (kWh/m 2 ) Deviation Cooling Load (kWh/m 2 ) Deviation Total Energy (kWh/m 2 ) Deviation

Shenzhen Predicted 62.53 − 6.11% 394.67 − 0.68% 467.95 − 1.20%
Actual 49.96 397.32 473.65

Beijing Predicted 664.01 − 0.93% 113.87 − 4.21% 804.25 − 1.37%
Actual 670.25 118.88 815.49

Shanghai Predicted 361.8 − 1.13% 188.6 − 1.05% 576.7 − 1.06%
Actual 365.9 190.6 582.9

Harbin Predicted 1318.8 − 0.61% 40.9 − 7.96% 1385.1 − 0.83%
Actual 11325.8 44.4 1396.7
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model size also facilitates model deployment across different computing 
platforms and enables cloud-based design services.

5.4. Feature importance analysis

5.4.1. Model-Specific feature importance patterns
Fig. 14 presents the comparative feature importance analysis across 

the three XGBoost models (cooling load, heating load, and total energy 
consumption), with horizontal bar charts showing the relative impor-
tance scores for each input feature. The figure reveals distinct patterns 
that reflect the underlying physical mechanisms governing different 
types of building energy loads in BIPV-integrated modular buildings. 

The cooling load model demonstrates pronounced emphasis on the 
Top Surface (Roof), which emerges as the dominant feature with the 
highest importance. This pattern aligns with cooling-dominated build-
ing performance, where roof surfaces experience maximum solar heat 
gain due to horizontal orientation and direct solar exposure throughout 
daylight hours. The substantial roof importance reflects its critical role 
in determining cooling loads through both direct solar heat gain and 
BIPV system thermal performance. The relatively lower importance of 
facade surfaces indicates that roof thermal performance significantly 
outweighs wall contributions for cooling energy consumption.

The heating load model exhibits a markedly different hierarchy, with 
Bottom Surface (Floor) emerging as the most critical feature. This re-
flects fundamental heating load physics, where ground-coupled heat 
transfer through floor assemblies represents the primary thermal loss 
mechanism during heating periods. The substantial floor importance 
demonstrates the critical role of ground thermal coupling in determining 
heating energy requirements, particularly in modular construction 
where elevated assemblies may experience enhanced thermal losses

Table 9
Prediction uncertainty bounds for different module configurations.

Module
Configuration

90% 

Prediction 
Interval 
(kWh/m 2 / 
year)

Relative 
Uncertainty (% of 
typical 
consumption)

Potential
Uncertainty
Source

Standard 
configuration 
(moderate WWR, 
simple 
boundaries)

±1.8 ±4% Baseline
variability

High window-wall 
ratio (WWR > 0.5) 

±2.4 ±5.5% Solar gain 
sensitivity 

Corner modules 
(multiple exterior 
surfaces) 

±2.1 ±4.7% Multi-
directional heat 
transfer

BIPV-integrated 
modules

±2.3 ±5.2% PV thermal 
effects (higher in 
summer)

Ground-contact 
modules 

±1.9 ±4.2% Soil temperature 
variations

Top-floor modules 
with roof

±2.0 ±4.5% Roof thermal 
performance

Note: 92% of validation cases fall within the 90% prediction interval. Residual 
distribution: approximately normal (Shapiro-Wilk test, p = 0.18) with slight 
positive skewness of 0.24.

Fig. 14. Feature importance analysis for the three trained XGBoost model.
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compared to conventional slab-on-grade configurations. The heating 
model also shows significant facade surface importance, reflecting 
increased envelope thermal performance relevance during heating pe-
riods when indoor-outdoor temperature differentials are maximized. 

The total load model presents balanced importance distribution 
reflecting combined heating and cooling effects throughout annual cy-
cles. The model assigns substantial importance to both Top Surface and 
Bottom Surface, indicating that total energy consumption is influenced 
by summer cooling loads driven by roof solar gains and winter heating 
loads dominated by ground thermal coupling.

5.4.2. Cross-Model feature correlations
The feature importance heatmap plotted in Fig. 15 uses color in-

tensity ranging from dark purple for low importance to bright yellow for 
high importance to reveal distinct correlation patterns between different 
energy load types and their sensitivity to various building characteris-
tics. The heatmap visualization clearly illustrates how cooling and 
heating loads respond differently to identical building features, with 
some features showing strong model-specific importance while others 
maintain consistent relevance across all prediction targets. 

Surface-related features exhibit the most pronounced model-specific 
variations, with cooling loads showing maximum sensitivity to roof 
thermal performance while heating loads demonstrate primary sensi-
tivity to floor thermal coupling. This divergence reflects the directional 
nature of thermal transfer mechanisms, where upward heat flow 

through roof assemblies dominates cooling load generation while 
downward heat flow through floor systems drives heating load re-
quirements. The facade surfaces show intermediate importance levels 
across all models, indicating their consistent but secondary role in 
determining energy consumption compared to horizontal surfaces. 

Moreover, geometric parameters, represented by the Aspect Ratio 
feature, demonstrate moderate but consistent importance across all 
three models. This pattern indicates that building shape characteristics 
influence energy performance through multiple mechanisms including 
surface area to volume ratios, thermal bridge configurations, and nat-
ural ventilation potential. The consistent geometric importance across 
different load types suggests that modular building proportions affect 
both heating and cooling performance through fundamental building 
physics relationships.

5.4.3. Solar irradiance feature dependencies
Our analysis reveals a notable absence of solar irradiance features

among the top-ranking importance factors in the total load model, which 
raises important questions about the model's representation of solar 
thermal effects. While the individual cooling and heating load models 
may implicitly capture solar effects through surface property encodings, 
the total load model appears to rely primarily on envelope thermal 
performance characteristics rather than direct solar radiation inputs. 
This pattern suggests that the total load model may be capturing solar 
effects through indirect mechanisms embedded within the surface 
property encodings rather than treating solar irradiance as independent 
variables. The six-surface property encoding system described in the 
methodology incorporates construction settings that include BIPV inte-
gration, which may inherently account for solar thermal effects without 
requiring separate irradiance variables. This could potentially create 
feature collinearity between the categorical construction settings (C0-
C3) and continuous irradiance values (D0-D9), where both features 
convey overlapping information about solar exposure. XGBoost's tree-
based algorithm tends to favor the categorical construction settings 
when both provide similar predictive power, resulting in lower apparent 
importance for direct irradiance measurements despite their physical 
significance. Additionally, the spatial shading equivalent radiation 
methodology employed in the feature engineering process may have 
preprocessed solar effects into the surface property classifications, 
reducing the apparent importance of direct solar measurements.

The reduced prominence of solar irradiance features in the total load 
model may also reflect the balancing effects of heating and cooling loads 
throughout annual operation cycles. During cooling periods, increased 
solar irradiance directly increases cooling loads through enhanced heat 
gain, while during heating periods, increased solar irradiance can 
reduce heating loads through beneficial solar gains. These opposing 
effects may result in solar irradiance features showing lower apparent 
importance in total load prediction compared to envelope thermal 
properties that consistently influence energy consumption in the same 
direction regardless of season. This observation highlights the 
complexity of feature importance interpretation in multi-seasonal en-
ergy prediction models and suggests that future model development 
should investigate the explicit inclusion of temporal solar irradiance 
patterns to enhance model interpretability and ensure proper repre-
sentation of BIPV system interactions with building thermal 
performance.

Fig. 15. Summarized heatmap presentation for all features in different models.
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5.5. Integration with parametric design platform

The integration of machine learning energy prediction capabilities 
with parametric design platforms represents a significant advancement 
in building design workflow efficiency and capability. Fig. 16 illustrates 
the implementation of the machine learning model within the Grass-
hopper environment, demonstrating seamless integration that enables 
real-time energy feedback during design development processes.

The Python scripting component visible in Fig. 16 requires three 
primary input categories from the parametric model: geometric pa-
rameters including module dimensions, aspect ratios, and top floor in-
dicators extracted from the Rhino 3D geometry, surface properties 
including six-surface encodings including surface types T0-T3, boundary 
conditions B0-B2, construction settings C0-C3, and WWR specified 
through user interface sliders, and environmental parameters including 
solar irradiance values D0-D9 calculated from site location and building 
orientation. The script packages these inputs into the feature vector 
format expected by the trained XGBoost model, executes the prediction 
using the stored model file, and returns three output values: predicted
heating load, cooling load, and total energy consumption in kWh/m 2 .
These predictions are immediately visualized in the Grasshopper canvas 
through numerical display panels and can be connected to optimization 
components for automated design space exploration. Designers use this 
real-time feedback to iteratively adjust module configurations, window-
wall ratios, and BIPV placement while observing immediate energy 
performance implications, enabling energy-informed decisions during 
early design stages when modifications are most cost-effective.

The integration methodology employs Python scripting within

Grasshopper to access the trained XGBoost models through remote 
component interfaces. This approach enables direct model execution 
within the parametric design environment without requiring external 
software dependencies or complex data transfer protocols. The inte-
gration maintains full compatibility with existing Grasshopper work-
flows while adding comprehensive energy prediction capabilities. 

Real-time performance assessment demonstrates responsiveness 
with energy predictions updating immediately as geometric parameters 
are modified within the Grasshopper interface. This immediate feedback 
capability enables designers to observe energy performance implica-
tions of design modifications in real-time, facilitating energy-informed 
design decisions throughout the conceptual design phase. The rapid 
response enables iterative design exploration that was previously 
impractical due to computational limitations of physics-based simula-
tion. The integration supports both single module analysis and complete 
building assessment through automatic aggregation of individual mod-
ule predictions. This scalability enables application across diverse 
project scales from small residential modules to large-scale modular 
construction projects without computational performance degradation. 
Parametric optimization integration enables automated design space 
exploration through integration with genetic algorithm and multi-
objective optimization tools available within the Grasshopper 
ecosystem.

5.6. Limitations and Future Directions

While this research demonstrates effective machine learning-based 
energy prediction for BIPV-integrated modular buildings, several

Fig. 16. Machine learning model integration in Grasshopper platform of Rhino 7.
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limitations warrant discussion. The model's scalability to very large 
buildings with hundreds of modules has not been extensively validated. 
Although the decomposition strategy theoretically supports aggregation 
of numerous individual modules, the cumulative prediction errors and 
computational memory requirements for extremely large assemblies 
(exceeding 50–100 modules) remain unexplored and may require hier-
archical prediction strategies or model ensemble approaches to maintain 
accuracy. The current framework is optimized for standardized rectan-
gular modules with consistent dimensions and construction specifica-
tions. Non-standard modules with irregular geometries, curved surfaces, 
or highly customized construction assemblies may not be adequately 
represented by the existing six-surface encoding system, requiring 
extension of the feature engineering framework with additional geo-
metric descriptors or surface subdivision strategies. Modules with 
significantly different thermal properties or unconventional BIPV inte-
gration configurations may fall outside the model's training distribution, 
necessitating either model retraining with expanded datasets or devel-
opment of transfer learning approaches.

Moreover, while the model demonstrates strong cross-climate per-
formance in simulation-based validation across four climate zones, 
additional experimental validation across diverse geographic locations 
and building typologies would strengthen confidence in real-world 
applicability. The current approach focuses on steady-state annual en-
ergy predictions and does not explicitly model transient thermal 
behavior or short-term load forecasting, limiting its applicability for 
real-time building control that requires hourly or sub-hourly pre-
dictions. The model also assumes typical occupancy patterns and does 
not account for atypical user behaviors or operational scenarios that 
may significantly deviate from standard conditions. Future research 
should address these limitations by validating model performance on 
larger building assemblies, extending the feature engineering frame-
work for non-standard geometries, conducting multi-site experimental 
validations, and developing temporal prediction capabilities for build-
ing control applications.

6. Conclusions

This research presents a comprehensive machine learning-based 
rapid energy prediction method specifically designed for BIPV-
integrated modular buildings, addressing critical computational limi-
tations of traditional physics-based simulation approaches while 
leveraging the unique structural characteristics of modular construction 
systems. Some major findings in this research are as follows:

• The proposed modular building decomposition approach achieves 
prediction accuracy within ± 10% compared to integrated modeling 
across various climate zones, with R 2 values exceeding 0.90, 
demonstrating the feasibility of individual module analysis for 
system-level energy prediction.

• The XGBoost-based model significantly outperforms alternative ap-
proaches, achieving R 2 values of 0.9763, 0.9466, and 0.9374 for 
heating loads, cooling loads, and total energy consumption

respectively, compared to maximum R 2 values of 0.93, 0.86, and 
0.87 from competing algorithms.

• Prediction speeds exceed 2,000 × faster than traditional physics-
based simulation, with individual predictions completing within 
milliseconds, enabling real-time design iteration and comprehensive 
optimization during conceptual design phases.

• Case study validation using the C-Smart building demonstrates mean 
absolute errors below 1.5 ◦ C and RMSE values of 0.80–1.70 ◦ C across 
all measurement locations, confirming model accuracy and 
reliability.

• Feature importance analysis reveals cooling loads dominated by roof 
surfaces, heating loads by floor surfaces, and total loads showing 
balanced roof-floor importance, with solar irradiance features hav-
ing reduced prominence due to opposing seasonal effects on heating 
versus cooling demands.

The implementation of our proposed method with Grasshopper 
parametric design platforms provides immediate energy feedback, 
facilitating energy-informed design decisions and supporting wide-
spread adoption of sustainable modular construction practices. Future 
research should explore applications to other building typologies and 
integration with advanced building control systems to further enhance 
practical value for sustainable building design. The advancement pre-
sented in this work overcomes processing limitations to energy perfor-
mance optimization for modular buildings and supports the broader 
adoption of sustainable modular construction practices by providing 
practical tools for energy-informed design decision-making.
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Appendix

APPENDIX A: Data generation and constraints handling.

A.1 Latin Hypercube sampling methodology

The generation of comprehensive training datasets for modular building energy prediction requires systematic sampling across the multi-
dimensional parameter space defined by the feature engineering framework. Latin Hypercube Sampling (LHS) is employed to ensure efficient and 
representative coverage of the parameter space while minimizing the total number of required simulations. LHS provides superior space-filling 
properties compared to random sampling, ensuring that each input variable is sampled uniformly across its entire range.

For modular building applications, the LHS implementation addresses 12 primary input parameters including six-surface property encodings,
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geometric characteristics, and solar irradiance values as systematically detailed in the previous Table 3. The selection of samples balances three 
competing requirements: adequate coverage of the multi-dimensional parameter space, computational cost of physics-based simulations, and machine 
learning training data requirements (XGBoost typically requires thousands of samples for robust generalization across diverse conditions). Our 
preliminary testing with smaller sample sizes (1,000–2,000) resulted in inadequate representation of parameter space corners and reduced prediction 
accuracy, while larger sample sizes (10,000 + ) provided diminishing returns in model performance relative to the doubled computational time. The 
5,000-sample size also aligns with machine learning best practices for tabular data, where the sample-to-feature ratio of approximately 400:1 (5,000 
samples for 12 primary features) ensures sufficient data density to prevent overfitting while capturing non-linear relationships. The sampling pro-
cedure generates 5,000 unique parameter combinations, providing sufficient diversity for robust model training while maintaining computational 
feasibility for energy simulation execution using LHS. The mathematical foundation of LHS ensures uniform distribution across the parameter space:

x ij = 
π j (i) − u ij 

n

where x ij represents the normalized parameter value for sample i and parameter j, π j (i) denotes a random permutation of integers from 1 to n for 
parameter j, and u ij represents a random number between 0 and 1.

A.2 Variable combination and constraint handling

The variable combination procedure addresses the complex interdependencies between different building parameters while ensuring physical 
realism and constructability constraints. According to Table 3, geometric constraints ensure that window-wall ratios remain within feasible ranges for 
different surface types and orientations. The detailed encoding matrix shows that air boundary surfaces, representing open connections between 
modules, are constrained to zero window-wall ratios, as these surfaces cannot accommodate conventional fenestration systems. Similarly, ground 
contact surfaces are restricted to zero window-wall ratios due to their below-grade positioning.

Construction assembly constraints link surface types with appropriate construction specifications as detailed in Table 3. Wall surfaces can 
accommodate either standard wall assemblies (construction setting 0) or photovoltaic-integrated assemblies (construction setting 1), while roof 
surfaces are limited to roof-specific construction types (construction setting 2). Floor surfaces employ specialized assemblies designed for ground 
contact conditions (construction setting 3).

The constraint validation process systematically evaluates each generated parameter combination against predefined feasibility criteria, elimi-
nating invalid combinations while preserving the uniform distribution characteristics of the LHS procedure. The research indicates that approximately 
15% of initially generated combinations are rejected due to constraint violations, requiring iterative generation to achieve the target sample size of 
5,000 valid configurations.

The validated parameter combinations are subsequently processed through physics-based energy simulation using Honeybee and Grasshopper 
platforms, to generate corresponding energy consumption values. This simulation process requires approximately 24 h for comprehensive dataset 
generation, with each individual simulation completing within 20–30 s. The resulting dataset provides the foundation for machine learning model 
training and validation across diverse modular building configurations and climate conditions.

APPENDIX B: Hyperparameter optimization procedures

Hyperparameter optimization employs a systematic grid search approach combined with Bayesian optimization techniques to identify optimal 
parameter configurations for different climate zones and building types. The optimization process considers multiple hyperparameters that signifi-
cantly influence model performance, including learning rate, maximum tree depth, minimum child weight, subsample ratio, and regularization 
parameters.

The learning rate parameter controls the contribution of each tree to the final prediction, with lower values requiring more trees but potentially 
achieving better generalization:

ŷ i (t) = ̂y i (t− 1) + η⋅f t (x i )

where η represents the learning rate, f t (x i ) denotes the prediction from the t-th tree, and ŷ i (t) represents the prediction after t iterations. The
hyperparameter optimization process follows a structured two-stage approach that balances computational efficiency with comprehensive parameter 
space exploration. In the first stage, grid search establishes baseline parameter ranges by evaluating discrete combinations of key hyperparameters: 
learning rate values of 0.01, 0.05, 0.1, and 0.2; maximum tree depths from 3 to 10; minimum child weights of 1, 3, 5, and 7; and subsample ratios of 
0.6, 0.8, and 1.0. This initial grid search evaluates 768 parameter combinations using 5-fold cross-validation, identifying promising parameter regions 
based on validation set R 2 values. The second stage applies Bayesian optimization within the promising regions identified in stage one, using Gaussian 
process priors to model the relationship between hyperparameters and model performance. This Bayesian optimization adaptively samples parameter 
combinations that maximize expected improvement in validation accuracy. The final hyperparameter configuration is selected based on a weighted 
criterion that considers validation accuracy, training time, and model complexity to ensure practical applicability in real-time design workflows. For 
the climate zones studied, optimal configurations converge to learning rates of 0.05–0.08, maximum depths of 6–7, minimum child weights of 3–5, 
and subsample ratios of 0.8–0.9, with specific values varying by approximately 10–15% across different climate zones to account for regional var-
iations in energy consumption patterns. This systematic optimization approach ensures that model performance is not limited by suboptimal 
hyperparameter selection while maintaining computational tractability for practical implementation.
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APPENDIX C: Statistical significance testing procedures and results

F.1 Bootstrap resampling methodology

To establish statistical rigor in performance comparisons, we conduct comprehensive significance testing using bootstrap resampling procedures. 
The bootstrap methodology provides robust estimates of performance metric variability and enables construction of confidence intervals without 
assuming specific probability distributions.

The bootstrap procedure operates through five sequential steps. First, from the validation dataset containing n samples, we randomly select n 
samples with replacement to create a bootstrap sample, where some original samples may appear multiple times while others may not appear at all. 
Second, we train each comparison model (Random Forest, SVM, ANN) on the bootstrap sample using their respective optimized hyperparameters. 
Third, we calculate performance metrics (R 2 , MAE, RMSE) on the out-of-bootstrap samples, which are samples not selected in the bootstrap sample 
and constitute approximately 36.8% of the original data. Fourth, we repeat the first three steps for 1,000 iterations to generate sampling distributions 
of performance metrics. Fifth, we calculate 95% confidence intervals using the percentile method, taking the 2.5th and 97.5th percentiles of the 
bootstrap distribution.

F.2 Paired t-Test procedures

Paired t-tests assess whether the performance difference between XGBoost and each baseline model is statistically significant. The test operates on 
prediction errors rather than performance metrics directly. The null hypothesis (H 0 ) states that the mean prediction error of XGBoost equals the mean 
prediction error of the baseline model, while the alternative hypothesis (H 1 ) states that the mean prediction error of XGBoost differs from the mean 
prediction error of the baseline model.

For each validation sample i, we calculate the XGBoost error as:

e XGB,i = 
⃒
⃒y actual,i − y XGB,i

⃒
⃒

the baseline model error as: 

e baseline,i = 
⃒
⃒y actual,i − y baseline,i

⃒
⃒

and the difference as:

d i = e XGB,i − e baseline,i

The t-statistic is then calculated as:

t =
d

s d /
̅̅̅ 
n

√ 

where d represents the mean difference across all validation samples, s d denotes the standard deviation of differences, and n indicates the number of 
validation samples. The degrees of freedom for the t-test equal n-1, and the p-value is calculated using the two-tailed t-distribution. Statistical sig-
nificance is assessed at the α = 0.001 level, corresponding to 99.9% confidence.

F.3 Statistical test results

Table F.1 Statistical significance analysis of model performance.

Model Heating Load R 2 95% CI Cooling Load R 2 95% CI Total Energy R 2 95% CI p-value vs. XGBoost

XGBoost 0.9763 [0.9721, 0.9798] 0.9466 [0.9401, 0.9524] 0.9374 [0.9305, 0.9437] −

ANN 0.9519 [0.9463, 0.9569] 0.8592 [0.8486, 0.8692] 0.8796 [0.8697, 0.8889] p < 0.001 
Random Forest 0.8588 [0.8497, 0.8674] 0.8616 [0.8511, 0.8715] 0.8553 [0.8449, 0.8651] p < 0.001 
Decision Tree 0.9269 [0.9198, 0.9334] 0.7583 [0.7444, 0.7716] 0.7645 [0.7509, 0.7775] p < 0.001

The 95% confidence intervals are computed using bootstrap resampling with 1,000 iterations, providing robust estimates of metric variability. The 
paired t-tests compare prediction errors (|y_actual − y_predicted|) between XGBoost and each baseline model across all validation samples. All 
comparisons yield p-values below 0.001, indicating that XGBoost's superior performance is statistically significant at the 99.9% confidence level. The 
confidence intervals for XGBoost show relatively narrow ranges (e.g., [0.9721, 0.9798] for heating load R 2 ), demonstrating consistent high perfor-
mance across different subsets of the validation data.

Data availability

Data will be made available on request.
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