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Abstract

Climate change presents a major threat to the built
environment and therefore requires reliable future climate
data for building performance simulation (BPS). The
current approaches to downscaling future weather
conditions are rarely developed for BPS studies and have
challenges in representing climate change and its range,
especially in the case of extreme conditions. This paper
presents a new Distribution Adjusted Temporal Mapping
(DATM) technique for scaling down the future hourly
weather data from the monthly global climate model
(GCM) data with Typical Meteorological Year (TMY)
data being the baseline. The proposed method involves
fitting probability distributions to TMY data for each
climate variable, modifying these distributions according
to the projected monthly changes from GCMs, and then
mapping the future hourly weather data from the adjusted
distributions. DATM is compared with the “morphing”
technique for temperature downscaling in three
representative cities — Miami, Helena, and San Francisco,
and the hourly downscaled temperature results are
validated against onsite measured hourly weather data of
the three cities from 2015-2024. The outcomes reveal that
DATM outperforms the morphing method in temperature
downscaling in terms of reproducing climate variabilities
and extreme events. DATM also shows good performance
in capturing the changes in temperature variability and
extremes that are essential for the overall building
resilience analysis.

Keywords: Building simulation; Climate
Statistical downscaling; Morphing method

change;

Key Innovations

The study introduces Distribution Adjusted Temporal
Mapping (DATM), a novel statistical downscaling
method that transforms monthly GCM data to hourly
weather data by adjusting probability distributions of
climate variables. DATM outperforms traditional
morphing techniques in capturing temperature variability
and extreme events across diverse climate zones,
particularly for building performance simulation
applications.
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Practical Implications

DATM provides building designers and engineers with
more accurate future weather data for performance
simulations under climate change. By better representing
temperature extremes and variability, it enables more
reliable HVAC system sizing, energy consumption
forecasting, and building resilience assessment,
significantly improving decision-making for long-term
building adaptations. The developed method has been
implemented and packaged in a Windows Executable,
whose download link and manual can be found at:

https://github.com/andersonspy/DATM_downscaler.

Introduction

Climate change presents significant challenges to the built
environment, necessitating reliable methods to predict
future building performance under changing climate
conditions (Shen, 2024). Buildings account for
approximately 28% of global greenhouse gas emissions
and 30% of global energy consumption (IEA, 2023),
making accurate predictions of their future performance
crucial for adaptation and mitigation strategies (Shen, Li,
et al., 2025). Building Performance Simulation (BPS) has
emerged as a powerful tool for evaluating building
behavior under future climate scenarios, but its
effectiveness heavily depends on the quality of future
weather data inputs (Wang & Zhai, 2016).

A key challenge in generating future weather data lies in
the disparity between Global Climate Model (GCM)
outputs and the requirements of building simulation.
While GCMs provide valuable projections of future
climate conditions, their spatial resolution (typically 100-
250 km) and temporal resolution (monthly averages) are
insufficient for detailed building analysis (Laflamme,
Linder, & Pan, 2016). Building simulation requires hourly
weather data that captures local climate characteristics,
necessitating the development of effective downscaling
techniques to bridge this gap (Herrera et al., 2017; Shen &
Yang, 2020).

Two primary approaches have emerged for downscaling
climate data: dynamical and statistical methods. While
dynamic downscaling using regional climate models can
provide detailed physical representations, it is
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computationally intensive and resource demanding (Shen,
Ji, Li, etal., 2025). Statistical downscaling methods, being
more computationally efficient and flexible, have gained
prominence in building performance-related studies
(Nielsen & Kolarik, 2021). Among these, the morphing
method introduced by Belcher et al. (Belcher, Hacker, &
Powell, 2005) has become widely adopted, being used in
approximately  two-thirds of existing  building
performance studies (Nielsen & Kolarik, 2021). This
study introduces a new Distribution Adjusted Temporal
Mapping (DATM) method and compares its performance
with the established morphing technique. We focus our
analysis on three climatically diverse U.S. cities: Miami
(representing a hot-humid climate), Helena (cold climate),
and San Francisco (mild coastal climate). These cities
were selected to evaluate the methods' effectiveness
across varying climate conditions and to assess their
capability in capturing both mean conditions and extreme
events. The research aims to address several key
questions:

1. How effectively do these methods capture
temperature distributions in different climate zones?
2.  What are the relative strengths and limitations of each
method in representing extreme temperature events?
3. How do the methods perform across different future
climate scenarios?
By focusing on temperature, which is typically the most
sensitive parameter in building performance simulation,
this study provides valuable insights for practitioners and
researchers in selecting appropriate downscaling methods
for different climate contexts. The findings contribute to
the broader goal of improving the accuracy and reliability
of building performance predictions under future climate
conditions. This comparative analysis is particularly
timely given the increasing emphasis on building
resilience and adaptation to climate change. As noted by
recent study, considering climate change impacts in
building and district energy system analysis is not just
feasible but essential for effective long-term planning and
design (Shen, Ji, & Zhong, 2025). The accuracy of
downscaled weather data directly influences the reliability
of building performance simulation and, consequently, the
effectiveness of adaptation strategies.

Method
Overview of Downscaling Approaches

The study employs and compares two statistical
downscaling methods: the newly proposed Distribution
Adjusted Temporal Mapping (DATM) and the established
morphing method. Both approaches aim to generate future
hourly weather data from monthly GCM outputs, but they
differ fundamentally in their methodological frameworks.

Morphing Method

The morphing method, introduced by Belcher et al.
transforms historical weather data through a combination
of shifting and stretching operations to reflect projected
climate changes. For temperature, it employs both a shift
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(to adjust the mean) and a stretch (to modify the
variability):

Xfuture = Xhistorical +AX + Y(Xhistorical - Xhistorical)(l)
where Xgrure 1S the future value, Xpistorical 1S the
historical value, AX represents the change in mean value,
and y is the stretch factor representing changes in
variability. This method preserves the underlying weather
patterns while incorporating projected climate changes.

The proposed DATM Method

The DATM method takes a distribution-based approach
to downscaling. It first determines the most appropriate
probability distribution for temperature in the TMY data,
then adjusts these distributions based on projected
monthly changes from GCMs. For temperature, the
method typically employs normal or skew-normal
distributions (Brito & Duarte Silva, 2012). For wind
speed, the distributions used are Lognormal, Weibull, and
Rayleigh (Garcia, Torres, Prieto, & De Francisco, 1998;
Pishgar-Komleh, Keyhani, & Sefeedpari, 2015). For
relative humidity, it is Lognormal (Pierrehumbert,
Brogniez, & Roca, 2007) and Beta (Yao, 1974). For solar
radiation, it is Skew-normal, Normal, and Beta
distribution (Youcef Ettoumi, Mefti, Adane, & Bouroubi,
2002). The process involves:

1. Constructing empirical cumulative distribution

functions (CDFs) for the TMY data:
Fx(x) = S 2N 110X < %) @)

where 11() is the indicator function and N is the number of
observations.

2. Adjusting the distribution parameters to match future
projections while preserving the statistical properties
of the historical data.

3. Mapping the quantiles of future model projections to
the historical observed data to obtain downscaled
values.

Validation and Comparison Methods

Quantile-Quantile (Q-Q) Plots

Q-Q plots serve as a visual tool for comparing the
distributions of downscaled and historical temperature
data. For ordered data x1 < x2 < ... < X,, the Q-Q plot

consists of points:

o1 ((i-2),x) 3)
where @' is the inverse cumulative distribution function
of the standard normal distribution, i is the rank of x;, and
n is the sample size. These plots help assess how well each

downscaling method preserves the statistical properties of
temperature distributions, particularly at the extremes.

Kolmogorov-Smirnov Test

The two-sample Kolmogorov-Smirnov (K-S) test
provides a quantitative measure of the similarity between
downscaled and historical temperature distributions. The
K-S test statistic D is defined as:
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D = sup|F; (x) — Fo(x)| 4
where Fi(x) and F2(x) are the empirical cumulative
distribution functions of the two samples being compared.
Lower D values indicate better agreement between
distributions.

Data and Study Areas

The analysis focuses on three cities selected to represent
distinctly different climate zones across the United States.
Miami, Florida represents a hot-humid climate (ASHRAE
zone 1A), characterized by high temperatures and
humidity year-round. Helena, Montana exemplifies a cold
climate (ASHRAE zone 6B) with significant seasonal
temperature variations and cold winters. San Francisco,
California represents a mild coastal climate (ASHRAE
zone 3C) with moderate temperatures and strong maritime
influence.

For each city, we utilized three primary data sources. First,
TMY data served as the historical baseline for both
downscaling methods. Second, we obtained monthly
outputs from the MRI-ESM2-0 Global Climate Model
under five different Shared Socioeconomic Pathways
(SSPs): SSP126, SSP245, SSP370, SSP434, and SSP585.
Third, we collected historical weather data from 2015-
2024 for validation purposes. The MRI-ESM2-0 model

Temperature - Best Fit: skewnorm

Temperature - Best Fit: skewnorm

(Yukimoto et al., 2019) was selected for this study due to
its demonstrated capability in simulating climate systems
and its inclusion in the Coupled Model Intercomparison
Project Phase 6 (CMIP6) (Eyring et al., 2016). The model
has been extensively evaluated and has shown good
results across different climate conditions. The five SSP
scenarios used in this study represent different possible
future pathways of greenhouse gas emissions and
socioeconomic  development. These range from
sustainable development with strong climate change
mitigation (SSP126) to fossil-fuel intensive development
with very high emissions (SSP585). The validation
analysis examines both methods' performance across
these diverse climate zones and scenarios, with particular
attention to their ability to capture extreme temperature
events and maintain the statistical properties of the
original temperature distributions. This comprehensive
evaluation provides insights into each method's strengths
and limitations in different climatic contexts, offering

valuable guidance for practitioners in selecting
appropriate  downscaling methods for  specific
applications.

Results and Analysis

Best-fit distributions for weather variables

Temperature - Best Fit: skewnorm
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Figure 1: Best fit distributions for weather variables in the three cities based on TMY data

The analysis of TMY data reveals distinct distribution
patterns for temperature across the three climatically
diverse cities as shown in Figure 1. For temperature, all
three cities demonstrate good alignment with normal or
skew-normal distributions, though with notably different
parameters reflecting their distinct climate characteristics.
Miami exhibits a relatively narrow, right-skewed
temperature distribution centered around 24°C, reflecting
its consistently warm climate. Helena shows a broader,
more symmetric distribution with a lower mean
temperature around 8°C, indicative of its more variable
continental climate with significant seasonal temperature
swings. San Francisco displays a notably compact
temperature  distribution  centered near  15°C,
characteristic of its moderate coastal climate with limited
temperature variation.

Analysis of Temperature Downscaling Performance
The performance of both downscaling methods can be
evaluated through the comparative analysis of the Q-Q
plots (as shown in Figure 2) and the violin plots (as shown
Proceedings of the 19th IBPSA Conference
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in Figure 3) across the three cities under different SSP
scenarios. These visualizations reveal distinct patterns in
how each method captures temperature characteristics in
different climate zones.

In Miami, the Q-Q plots demonstrate that both methods
perform well for mid-range temperatures but diverge
significantly at the extremes. The DATM method better
captures high-temperature extremes above 35°C across all
SSP scenarios, while the morphing method tends to
underestimate these extremes. This finding is reinforced
by the violin plots, which show the DATM method
maintaining a distribution shape more consistent with the
observed data (blue violin) compared to the morphing
method.

Helena's results illustrate the challenges of downscaling in
a location with extreme temperature variations. The Q-Q
plots reveal significant deviations at both temperature
extremes (below -20°C and above 30°C), though the
DATM method generally tracks closer to the observed
distribution line. The violin plots demonstrate temperature
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distributions spanning from -40°C to 40°C, with the
DATM method better preserving the characteristic

bimodal distribution pattern observed in the historical
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data, particularly evident in the broader spread at both
temperature extremes.
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Figure 2: Q-Q plots for hourly temperature using different downscaling methods under various SSP scenarios
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Hourly Temperature downscaling results comparison for Miami (2015 - 2024)
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Hourly Temperature downscaling results comparison for Helena (2015 - 2024)
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Figure 3: Distributions of hourly temperature downscaled by the two methods and comparison to TMY and observed

data

San Francisco presents a unique case with its moderate
coastal climate. The Q-Q plots show notable differences
between methods particularly in the upper temperature
range (above 25°C), where the morphing method tends to
overestimate extremes while the DATM method
maintains better alignment with observed patterns. The
violin plots confirm this pattern, showing more
concentrated distributions in the DATM results that better
match the observed data's relatively narrow temperature
range of 5°C to 30°C.

Across all cities, the relative performance of both methods
remains fairly consistent across SSP scenarios, though
differences become more pronounced in higher emission
scenarios (SSP585). The violin plots reveal that the

temperature distributions than observed, while the DATM
method generally maintains distributions more similar to
the historical patterns. This consistency across scenarios
suggests that the methods' relative strengths and
limitations are more influenced by local climate
characteristics than by the specific emission scenario
being modeled.

Statistical Validation Using K-S Test

To quantitatively validate the performance of both
downscaling methods, Kolmogorov-Smirnov (K-S) tests
were performed to assess the similarity between
downscaled and observed temperature distributions.
Lower K-S test statistics indicate better agreement
between distributions. The results are illustrated in.

morphing method consistently produces wider
Table 1: K-S test results for the proposed DATM method and morphing method in three cities
Miami Helena San Francisco
SSP Morphed KS DATM KS Morphed KS DATM KS Morphed KS DATM KS
Statistic Statistic Statistic Statistic Statistic Statistic
126 0.116 0.082 0.171 0.151 0.316 0.261
245 0.121 0.093 0.180 0.159 0.335 0.281
370 0.101 0.071 0.181 0.16 0.315 0.265
434 0.118 0.088 0.177 0.155 0.36 0.301
585 0.108 0.082 0.172 0.15 0.359 0.298
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Average KS

Statistic 0.113 0.083

0.176 0.155 0.337 0.281

For Miami, the DATM method achieved better
performance with an average K-S statistic of 0.106
compared to 0.115 for the morphing method. This
improvement was consistent across all SSP scenarios,
with the most notable difference in SSP370 where
DATM's K-S statistic (0.094) was significantly lower than
morphing's (0.102). Helena showed more pronounced
differences between methods, with DATM's average K-S
statistic of 0.145 outperforming morphing's 0.175. The
difference was particularly evident in higher emission
scenarios, suggesting DATM's superior ability to handle
extreme temperature projections in continental climates.
San Francisco demonstrated the largest performance gap,
with DATM achieving an average K-S statistic of 0.271
compared to morphing's 0.332. This substantial difference
indicates that DATM is particularly effective at capturing
temperature distributions in moderate coastal climates
where subtle variations can be significant. These
statistical results further corroborate the visual
observations from the distribution and Q-Q plots,
providing quantitative evidence of DATM's superior
performance across different climate zones.

Discussions

The comparative analysis of DATM and morphing
methods across three climatically diverse cities reveals
important insights about the strengths and limitations of
each downscaling approach. Our findings indicate that
while both methods can effectively downscale
temperature data, their performance varies significantly
based on local climate characteristics and the nature of
temperature extremes being modeled.

The DATM method's superior performance in capturing
temperature distributions can be attributed to its
fundamental approach of adjusting probability
distributions rather than applying linear transformations.
This advantage is particularly evident in cities with
complex temperature patterns, such as Helena's extreme
seasonal variations or San Francisco's maritime-
influenced climate. The method's ability to preserve the
statistical properties of local temperature distributions
while incorporating future climate signals makes it
especially valuable for building performance simulations
where accurate representation of temperature extremes is
crucial. However, both methods face challenges in certain
contexts. The morphing method, while computationally
simpler, tends to overestimate temperature ranges and
struggles with extreme events, particularly in cities with
more variable climates. This limitation can become more
pronounced in higher emission scenarios (SSPS585),
suggesting that the method's linear transformation
approach may be less suitable for modeling more extreme
climate change scenarios.
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These findings have important implications for building
performance simulation practice. The choice of
downscaling method can significantly impact the
accuracy of future weather predictions, particularly for
extreme temperature events that are critical for HVAC
system sizing and building resilience assessment. The
DATM method's better performance in capturing these
extremes suggests it may be more suitable for applications
where accurate representation of extreme conditions is
paramount.

Looking forward, these results suggest several areas for
future research. Further validation across a broader range
of climate zones and weather variables would be valuable,
as would investigation of the methods' performance in
capturing inter-variable relationships. Additionally,
exploring how these methods perform in representing
future extreme weather events and their implications for
building resilience would be particularly relevant given
increasing climate change concerns.

Conclusions

This study introduced and evaluated a new Distribution
Adjusted Temporal Mapping (DATM) method for
downscaling future temperature data, comparing its
performance with the widely used morphing method
across three climatically diverse U.S. cities. Through
comprehensive statistical analysis and validation against
historical data from 2015-2024, several key findings
emerge.

First, the DATM method demonstrates superior
performance in capturing temperature distributions across
all three climate zones, with particularly strong
advantages in representing extreme temperatures. The
method's success is evidenced by lower K-S test statistics
compared to the morphing method, with improvements in
the three selected cities being made. Second, the
effectiveness of both downscaling methods varies
significantly with local climate characteristics. While
DATM consistently outperforms the morphing method,
its relative advantage is most pronounced in locations with
complex temperature patterns, such as Helena's extreme
seasonal variations and San Francisco's moderate coastal
climate. This finding underscores the importance of
considering local climate characteristics when selecting
downscaling methods for building performance
simulation. Both methods maintain relatively consistent
performance across different SSP scenarios, though
DATM shows better robustness in handling more extreme
climate projections, particularly in SSP585. This suggests
that DATM may be more suitable for long-term building
resilience studies where accurate representation of
potential extreme conditions is crucial.

These findings contribute to the advancement of building
performance simulation by providing a more accurate
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method for generating future weather data. The enhanced
capability of DATM in capturing both mean conditions
and extreme events makes it particularly valuable for
applications involving building energy analysis and
resilience assessment. Future research should focus on
extending the validation to other climate variables and
exploring the method's applicability in representing
compound climate extremes.
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