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Abstract 

Climate change presents a major threat to the built 

environment and therefore requires reliable future climate 

data for building performance simulation (BPS). The 

current approaches to downscaling future weather 

conditions are rarely developed for BPS studies and have 

challenges in representing climate change and its range, 

especially in the case of extreme conditions. This paper 

presents a new Distribution Adjusted Temporal Mapping 

(DATM) technique for scaling down the future hourly 

weather data from the monthly global climate model 

(GCM) data with Typical Meteorological Year (TMY) 

data being the baseline. The proposed method involves 

fitting probability distributions to TMY data for each 

climate variable, modifying these distributions according 

to the projected monthly changes from GCMs, and then 

mapping the future hourly weather data from the adjusted 

distributions. DATM is compared with the “morphing” 

technique for temperature downscaling in three 

representative cities – Miami, Helena, and San Francisco, 

and the hourly downscaled temperature results are 

validated against onsite measured hourly weather data of 

the three cities from 2015-2024. The outcomes reveal that 

DATM outperforms the morphing method in temperature 

downscaling in terms of reproducing climate variabilities 

and extreme events. DATM also shows good performance 

in capturing the changes in temperature variability and 

extremes that are essential for the overall building 

resilience analysis. 
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Key Innovations 

The study introduces Distribution Adjusted Temporal 

Mapping (DATM), a novel statistical downscaling 

method that transforms monthly GCM data to hourly 

weather data by adjusting probability distributions of 

climate variables. DATM outperforms traditional 

morphing techniques in capturing temperature variability 

and extreme events across diverse climate zones, 

particularly for building performance simulation 

applications. 

Practical Implications 

DATM provides building designers and engineers with 

more accurate future weather data for performance 

simulations under climate change. By better representing 

temperature extremes and variability, it enables more 

reliable HVAC system sizing, energy consumption 

forecasting, and building resilience assessment, 

significantly improving decision-making for long-term 

building adaptations. The developed method has been 

implemented and packaged in a Windows Executable, 

whose download link and manual can be found at:  

https://github.com/andersonspy/DATM_downscaler.  

Introduction 

Climate change presents significant challenges to the built 

environment, necessitating reliable methods to predict 

future building performance under changing climate 

conditions (Shen, 2024). Buildings account for 

approximately 28% of global greenhouse gas emissions 

and 30% of global energy consumption (IEA, 2023), 

making accurate predictions of their future performance 

crucial for adaptation and mitigation strategies (Shen, Li, 

et al., 2025). Building Performance Simulation (BPS) has 

emerged as a powerful tool for evaluating building 

behavior under future climate scenarios, but its 

effectiveness heavily depends on the quality of future 

weather data inputs (Wang & Zhai, 2016). 

A key challenge in generating future weather data lies in 

the disparity between Global Climate Model (GCM) 

outputs and the requirements of building simulation. 

While GCMs provide valuable projections of future 

climate conditions, their spatial resolution (typically 100-

250 km) and temporal resolution (monthly averages) are 

insufficient for detailed building analysis (Laflamme, 

Linder, & Pan, 2016). Building simulation requires hourly 

weather data that captures local climate characteristics, 

necessitating the development of effective downscaling 

techniques to bridge this gap (Herrera et al., 2017; Shen & 

Yang, 2020). 

Two primary approaches have emerged for downscaling 

climate data: dynamical and statistical methods. While 

dynamic downscaling using regional climate models can 

provide detailed physical representations, it is 

https://github.com/andersonspy/DATM_downscaler
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computationally intensive and resource demanding (Shen, 

Ji, Li, et al., 2025). Statistical downscaling methods, being 

more computationally efficient and flexible, have gained 

prominence in building performance-related studies 

(Nielsen & Kolarik, 2021). Among these, the morphing 

method introduced by Belcher et al. (Belcher, Hacker, & 

Powell, 2005) has become widely adopted, being used in 

approximately two-thirds of existing building 

performance studies (Nielsen & Kolarik, 2021). This 

study introduces a new Distribution Adjusted Temporal 

Mapping (DATM) method and compares its performance 

with the established morphing technique. We focus our 

analysis on three climatically diverse U.S. cities: Miami 

(representing a hot-humid climate), Helena (cold climate), 

and San Francisco (mild coastal climate). These cities 

were selected to evaluate the methods' effectiveness 

across varying climate conditions and to assess their 

capability in capturing both mean conditions and extreme 

events. The research aims to address several key 

questions: 

1. How effectively do these methods capture 

temperature distributions in different climate zones? 

2. What are the relative strengths and limitations of each 

method in representing extreme temperature events? 

3. How do the methods perform across different future 

climate scenarios? 

By focusing on temperature, which is typically the most 

sensitive parameter in building performance simulation, 

this study provides valuable insights for practitioners and 

researchers in selecting appropriate downscaling methods 

for different climate contexts. The findings contribute to 

the broader goal of improving the accuracy and reliability 

of building performance predictions under future climate 

conditions. This comparative analysis is particularly 

timely given the increasing emphasis on building 

resilience and adaptation to climate change. As noted by 

recent study, considering climate change impacts in 

building and district energy system analysis is not just 

feasible but essential for effective long-term planning and 

design (Shen, Ji, & Zhong, 2025). The accuracy of 

downscaled weather data directly influences the reliability 

of building performance simulation and, consequently, the 

effectiveness of adaptation strategies. 

Method 

Overview of Downscaling Approaches 

The study employs and compares two statistical 

downscaling methods: the newly proposed Distribution 

Adjusted Temporal Mapping (DATM) and the established 

morphing method. Both approaches aim to generate future 

hourly weather data from monthly GCM outputs, but they 

differ fundamentally in their methodological frameworks. 

Morphing Method 

The morphing method, introduced by Belcher et al. 

transforms historical weather data through a combination 

of shifting and stretching operations to reflect projected 

climate changes. For temperature, it employs both a shift 

(to adjust the mean) and a stretch (to modify the 

variability): 

𝑋future = 𝑋historical + Δ𝑋 + γ(𝑋historical − 𝑋̅historical)(1) 

where Xfuture  is the future value, 𝑋historical  is the 

historical value, ΔX represents the change in mean value, 

and γ is the stretch factor representing changes in 

variability. This method preserves the underlying weather 

patterns while incorporating projected climate changes. 

The proposed DATM Method 

The DATM method takes a distribution-based approach 

to downscaling. It first determines the most appropriate 

probability distribution for temperature in the TMY data, 

then adjusts these distributions based on projected 

monthly changes from GCMs. For temperature, the 

method typically employs normal or skew-normal 

distributions (Brito & Duarte Silva, 2012). For wind 

speed, the distributions used are Lognormal, Weibull, and 

Rayleigh (Garcia, Torres, Prieto, & De Francisco, 1998; 

Pishgar-Komleh, Keyhani, & Sefeedpari, 2015). For 

relative humidity, it is Lognormal (Pierrehumbert, 

Brogniez, & Roca, 2007) and Beta (Yao, 1974). For solar 

radiation, it is Skew-normal, Normal, and Beta 

distribution (Youcef Ettoumi, Mefti, Adane, & Bouroubi, 

2002). The process involves: 

1.  Constructing empirical cumulative distribution 

functions (CDFs) for the TMY data: 

FX(𝑥) =
1

𝑁
∑ II(𝑋i ≤ x)N

i=1             (2) 

where II() is the indicator function and N is the number of 

observations. 

2. Adjusting the distribution parameters to match future 

projections while preserving the statistical properties 

of the historical data. 

3. Mapping the quantiles of future model projections to 

the historical observed data to obtain downscaled 

values. 

Validation and Comparison Methods 

Quantile-Quantile (Q-Q) Plots 

Q-Q plots serve as a visual tool for comparing the 

distributions of downscaled and historical temperature 

data. For ordered data x₁ ≤ x₂ ≤ ... ≤ xₙ, the Q-Q plot 

consists of points: 

Φ−1((i −
0.5

𝑛
) , 𝑥i)  (3)     

where Φ⁻¹ is the inverse cumulative distribution function 

of the standard normal distribution, i is the rank of xᵢ, and 

n is the sample size. These plots help assess how well each 

downscaling method preserves the statistical properties of 

temperature distributions, particularly at the extremes. 

Kolmogorov-Smirnov Test 

The two-sample Kolmogorov-Smirnov (K-S) test 

provides a quantitative measure of the similarity between 

downscaled and historical temperature distributions. The 

K-S test statistic D is defined as: 
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D = sup|F1(𝑥) − F2(𝑥)| (4) 

where F₁(x) and F₂(x) are the empirical cumulative 

distribution functions of the two samples being compared. 

Lower D values indicate better agreement between 

distributions. 

Data and Study Areas 

The analysis focuses on three cities selected to represent 

distinctly different climate zones across the United States. 

Miami, Florida represents a hot-humid climate (ASHRAE 

zone 1A), characterized by high temperatures and 

humidity year-round. Helena, Montana exemplifies a cold 

climate (ASHRAE zone 6B) with significant seasonal 

temperature variations and cold winters. San Francisco, 

California represents a mild coastal climate (ASHRAE 

zone 3C) with moderate temperatures and strong maritime 

influence. 

For each city, we utilized three primary data sources. First, 

TMY data served as the historical baseline for both 

downscaling methods. Second, we obtained monthly 

outputs from the MRI-ESM2-0 Global Climate Model 

under five different Shared Socioeconomic Pathways 

(SSPs): SSP126, SSP245, SSP370, SSP434, and SSP585. 

Third, we collected historical weather data from 2015-

2024 for validation purposes. The MRI-ESM2-0 model 

(Yukimoto et al., 2019) was selected for this study due to 

its demonstrated capability in simulating climate systems 

and its inclusion in the Coupled Model Intercomparison 

Project Phase 6 (CMIP6) (Eyring et al., 2016). The model 

has been extensively evaluated and has shown good 

results across different climate conditions. The five SSP 

scenarios used in this study represent different possible 

future pathways of greenhouse gas emissions and 

socioeconomic development. These range from 

sustainable development with strong climate change 

mitigation (SSP126) to fossil-fuel intensive development 

with very high emissions (SSP585). The validation 

analysis examines both methods' performance across 

these diverse climate zones and scenarios, with particular 

attention to their ability to capture extreme temperature 

events and maintain the statistical properties of the 

original temperature distributions. This comprehensive 

evaluation provides insights into each method's strengths 

and limitations in different climatic contexts, offering 

valuable guidance for practitioners in selecting 

appropriate downscaling methods for specific 

applications. 

Results and Analysis 

Best-fit distributions for weather variables

   

Miami Helena San Francisco 

Figure 1: Best fit distributions for weather variables in the three cities based on TMY data

The analysis of TMY data reveals distinct distribution 

patterns for temperature across the three climatically 

diverse cities as shown in Figure 1. For temperature, all 

three cities demonstrate good alignment with normal or 

skew-normal distributions, though with notably different 

parameters reflecting their distinct climate characteristics. 

Miami exhibits a relatively narrow, right-skewed 

temperature distribution centered around 24°C, reflecting 

its consistently warm climate. Helena shows a broader, 

more symmetric distribution with a lower mean 

temperature around 8°C, indicative of its more variable 

continental climate with significant seasonal temperature 

swings. San Francisco displays a notably compact 

temperature distribution centered near 15°C, 

characteristic of its moderate coastal climate with limited 

temperature variation.  

Analysis of Temperature Downscaling Performance 

The performance of both downscaling methods can be 

evaluated through the comparative analysis of the Q-Q 

plots (as shown in Figure 2) and the violin plots (as shown 

in Figure 3) across the three cities under different SSP 

scenarios. These visualizations reveal distinct patterns in 

how each method captures temperature characteristics in 

different climate zones. 

In Miami, the Q-Q plots demonstrate that both methods 

perform well for mid-range temperatures but diverge 

significantly at the extremes. The DATM method better 

captures high-temperature extremes above 35°C across all 

SSP scenarios, while the morphing method tends to 

underestimate these extremes. This finding is reinforced 

by the violin plots, which show the DATM method 

maintaining a distribution shape more consistent with the 

observed data (blue violin) compared to the morphing 

method. 

Helena's results illustrate the challenges of downscaling in 

a location with extreme temperature variations. The Q-Q 

plots reveal significant deviations at both temperature 

extremes (below -20°C and above 30°C), though the 

DATM method generally tracks closer to the observed 

distribution line. The violin plots demonstrate temperature 
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distributions spanning from -40°C to 40°C, with the 

DATM method better preserving the characteristic 

bimodal distribution pattern observed in the historical 

data, particularly evident in the broader spread at both 

temperature extremes. 

 

 

Figure 2: Q-Q plots for hourly temperature using different downscaling methods under various SSP scenarios 
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Figure 3: Distributions of hourly temperature downscaled by the two methods and comparison to TMY and observed 

data 

San Francisco presents a unique case with its moderate 

coastal climate. The Q-Q plots show notable differences 

between methods particularly in the upper temperature 

range (above 25°C), where the morphing method tends to 

overestimate extremes while the DATM method 

maintains better alignment with observed patterns. The 

violin plots confirm this pattern, showing more 

concentrated distributions in the DATM results that better 

match the observed data's relatively narrow temperature 

range of 5°C to 30°C. 

Across all cities, the relative performance of both methods 

remains fairly consistent across SSP scenarios, though 

differences become more pronounced in higher emission 

scenarios (SSP585). The violin plots reveal that the 

morphing method consistently produces wider 

temperature distributions than observed, while the DATM 

method generally maintains distributions more similar to 

the historical patterns. This consistency across scenarios 

suggests that the methods' relative strengths and 

limitations are more influenced by local climate 

characteristics than by the specific emission scenario 

being modeled. 

Statistical Validation Using K-S Test 

To quantitatively validate the performance of both 

downscaling methods, Kolmogorov-Smirnov (K-S) tests 

were performed to assess the similarity between 

downscaled and observed temperature distributions. 

Lower K-S test statistics indicate better agreement 

between distributions. The results are illustrated in.

Table 1: K-S test results for the proposed DATM method and morphing method in three cities 

 Miami Helena San Francisco 

SSP 
Morphed KS 

Statistic 

DATM KS 

Statistic 

Morphed KS 

Statistic 

DATM KS 

Statistic 

Morphed KS 

Statistic 

DATM KS 

Statistic 

126 0.116 0.082 0.171 0.151 0.316 0.261 

245 0.121 0.093 0.180 0.159 0.335 0.281 

370 0.101 0.071 0.181 0.16 0.315 0.265 

434 0.118 0.088 0.177 0.155 0.36 0.301 

585 0.108 0.082 0.172 0.15 0.359 0.298 
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Average KS 

Statistic 
0.113 0.083 0.176 0.155 0.337 0.281 

For Miami, the DATM method achieved better 

performance with an average K-S statistic of 0.106 

compared to 0.115 for the morphing method. This 

improvement was consistent across all SSP scenarios, 

with the most notable difference in SSP370 where 

DATM's K-S statistic (0.094) was significantly lower than 

morphing's (0.102). Helena showed more pronounced 

differences between methods, with DATM's average K-S 

statistic of 0.145 outperforming morphing's 0.175. The 

difference was particularly evident in higher emission 

scenarios, suggesting DATM's superior ability to handle 

extreme temperature projections in continental climates. 

San Francisco demonstrated the largest performance gap, 

with DATM achieving an average K-S statistic of 0.271 

compared to morphing's 0.332. This substantial difference 

indicates that DATM is particularly effective at capturing 

temperature distributions in moderate coastal climates 

where subtle variations can be significant. These 

statistical results further corroborate the visual 

observations from the distribution and Q-Q plots, 

providing quantitative evidence of DATM's superior 

performance across different climate zones. 

Discussions 

The comparative analysis of DATM and morphing 

methods across three climatically diverse cities reveals 

important insights about the strengths and limitations of 

each downscaling approach. Our findings indicate that 

while both methods can effectively downscale 

temperature data, their performance varies significantly 

based on local climate characteristics and the nature of 

temperature extremes being modeled. 

The DATM method's superior performance in capturing 

temperature distributions can be attributed to its 

fundamental approach of adjusting probability 

distributions rather than applying linear transformations. 

This advantage is particularly evident in cities with 

complex temperature patterns, such as Helena's extreme 

seasonal variations or San Francisco's maritime-

influenced climate. The method's ability to preserve the 

statistical properties of local temperature distributions 

while incorporating future climate signals makes it 

especially valuable for building performance simulations 

where accurate representation of temperature extremes is 

crucial. However, both methods face challenges in certain 

contexts. The morphing method, while computationally 

simpler, tends to overestimate temperature ranges and 

struggles with extreme events, particularly in cities with 

more variable climates. This limitation can become more 

pronounced in higher emission scenarios (SSP585), 

suggesting that the method's linear transformation 

approach may be less suitable for modeling more extreme 

climate change scenarios.  

These findings have important implications for building 

performance simulation practice. The choice of 

downscaling method can significantly impact the 

accuracy of future weather predictions, particularly for 

extreme temperature events that are critical for HVAC 

system sizing and building resilience assessment. The 

DATM method's better performance in capturing these 

extremes suggests it may be more suitable for applications 

where accurate representation of extreme conditions is 

paramount.  

Looking forward, these results suggest several areas for 

future research. Further validation across a broader range 

of climate zones and weather variables would be valuable, 

as would investigation of the methods' performance in 

capturing inter-variable relationships. Additionally, 

exploring how these methods perform in representing 

future extreme weather events and their implications for 

building resilience would be particularly relevant given 

increasing climate change concerns. 

Conclusions 

This study introduced and evaluated a new Distribution 

Adjusted Temporal Mapping (DATM) method for 

downscaling future temperature data, comparing its 

performance with the widely used morphing method 

across three climatically diverse U.S. cities. Through 

comprehensive statistical analysis and validation against 

historical data from 2015-2024, several key findings 

emerge. 

First, the DATM method demonstrates superior 

performance in capturing temperature distributions across 

all three climate zones, with particularly strong 

advantages in representing extreme temperatures. The 

method's success is evidenced by lower K-S test statistics 

compared to the morphing method, with improvements in 

the three selected cities being made. Second, the 

effectiveness of both downscaling methods varies 

significantly with local climate characteristics. While 

DATM consistently outperforms the morphing method, 

its relative advantage is most pronounced in locations with 

complex temperature patterns, such as Helena's extreme 

seasonal variations and San Francisco's moderate coastal 

climate. This finding underscores the importance of 

considering local climate characteristics when selecting 

downscaling methods for building performance 

simulation. Both methods maintain relatively consistent 

performance across different SSP scenarios, though 

DATM shows better robustness in handling more extreme 

climate projections, particularly in SSP585. This suggests 

that DATM may be more suitable for long-term building 

resilience studies where accurate representation of 

potential extreme conditions is crucial. 

These findings contribute to the advancement of building 

performance simulation by providing a more accurate 



                                                                                                                                         

 

Proceedings of the 19th IBPSA Conference                                                                                                                   0001 

Brisbane, Australia, Aug 24-27, 2025                                                           https://doi.org/10.26868/25222708.2025.1967 

method for generating future weather data. The enhanced 

capability of DATM in capturing both mean conditions 

and extreme events makes it particularly valuable for 

applications involving building energy analysis and 

resilience assessment. Future research should focus on 

extending the validation to other climate variables and 

exploring the method's applicability in representing 

compound climate extremes.  
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