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ABSTRACT

Faced with climate change challenges, artificial intelligence (AI) is redefining the way of sustainable building design. In this work,
how AI technologies, including foundation models and generative systems, are reshaping architectural practice in responding to

climate change is discussed. We explored how large language models, multimodal systems, and automated design generation

have evolved from traditional computational methods, and the transformative potential of these novel approaches, especially

when dealing with climate change challenges. While AI holds powerful tools for sustainable architecture, we argue that the

successful implementation of those tools requires careful integration of technical capabilities, practice frameworks, and regulatory

considerations. To advance Al-driven sustainable building design while providing effective future climate response, research

priorities and policy recommendations are put forward in this study.

1 | Introduction

The urgency of future sustainable building design is imminent
when faced with the challenges imposed by intensifying climate
change and urbanization trends. As buildings contribute to 35%
of the world’s total energy consumption and around 40% of
greenhouse gas emissions [1], the demand for climate-responsive
architecture is more critical than ever. Recent advances in
Artificial Intelligence (AI), such as machine learning [2]. and
large language models (LLMs) [3], are redefining how we address
the pressing need for low-carbon, climate-adaptive building
solutions and are initiating a paradigm shift that extends far
beyond traditional computational design. While earlier compu-
tational approaches contributed significantly through parametric
modeling, performance simulation, and rule-based optimization,
emerging Al systems are driving a deeper transformation by
enabling more adaptive, data-driven, collaborative, and inte-
grated design processes [4]. Similar to Al-driven revolutions

in protein structure prediction [5, 6], mechanical metamaterial
design [7, 8], and drug molecule discovery [9, 10], breakthroughs
in generative Al and foundation models will dramatically acceler-
ate the evolution toward intelligent design workflows, with grow-
ing evidence of their ability to learn climate-responsive design
intent across future scenarios and allow more robust solutions
[11, 12]. These systems process high-dimensional environmental
and technical data to address climate-induced complexity [13, 14].
Holistic simulation and consideration of sophisticated building-
climate interactions across multiple scales, such as form-finding,
material selection, climate adaptive strategy proposition, and
construction, can also be made possible via AI-driven approaches.
These capabilities, coupled with generative design, iterative
optimization, and human-AI collaboration, have the potential
to produce climate-adaptive solutions that would have been
inconceivable through conventional methods alone. Specifically,
modern Al systems can process multiple design variations
through thousands of analyses while integrating contextual
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FIGURE 1 | The overall framework of this paper. It ties together key Al technologies, design lifecycle phases, climate stressors, core challenges,

potential future solutions, as well as our ACBI framework.

knowledge to meet performance standards across different cli-
mate scenarios. Nevertheless, questions remain in the state of
the art regarding technical robustness, real-world integration,
future climate responsiveness, and alignment with architectural
values and regulatory requirements of the Al-driven solutions in
architectural practice.

In the context of climate change, this work tries to interrogate
the question of how Al is going to change sustainable building
design. Drawing on a comprehensive literature analysis, we
structure our perspective around four levels of inquiry, which
is shown in Figure 1: the current state of AI applications in
climate-responsive architecture, the transformative effects of
generative Al and foundation models in the design process
and in response to the climate stressors, the frameworks for
the deployment of these technologies in practice, and future
directions and challenges in Al-driven sustainable architecture.
Recent studies in AI for the built environment have made
valuable advances and demonstrated impressive progress across
several key domains, such as early-stage performance optimiza-
tion and form exploration, building operations and smart grids,
and climate-adaptive building design. Synthesizing upon them,
our paper provides a broader integration across these domains
through the lens of foundation models, multi-modal reasoning,
and long-term climate adaptability. Specifically, our synthesis
shows that foundation models (e.g., GPT-4o, Stable Diffusion
3) offer general-purpose capabilities that are more flexible in
addressing climate stressors compared to task-specific models.
We also highlight the importance of multi-modal reasoning in
the Al era to interpret and generate across different data forms:
textual, visual, spatial, and quantitative modalities. Moreover,

we argue that under the current intensifying climate change,
future climate scenarios should serve as a design baseline, not a
peripheral consideration, and systematically explore how AI can
address the resulting uncertainty and complexity.

By critically synthesizing individual studies, we propose a struc-
tured, systemic conceptual framework called the AI-Climate-
Building Integration Framework (ACBI), in order to deploy the
powerful tools offered by AI to support sustainable building goals
in an effective way. This framework includes three interdepen-
dent pillars that determine the success of implementation: (1)
Technical Integration Pillar: the creation of dynamic layers of
information coupling, allowing two-way data flow between Al
systems, the creation of information models, and real-time envi-
ronmental sensors; (2) Climate Response Pillar: the development
of systems that are able to process future climate projections,
assess environmental performance in the face of dilemmas and
to develop adaptive design strategies; and (3) Governance Pillar:
the creation of risk management protocols, standards for sharing
data, and regulatory strategies that ensure responsible AI deploy-
ment and the facilitation of innovation. The ACBI Framework
goes beyond the descriptive taxonomies by suggesting testable
relationships. The quality of technical integration has a direct
impact on the accuracy of climate-responsive forecasts, and
the accuracy of the latter determines the effectiveness of the
governance measures. This causal chain provides the basis for
future empirical validation and cross-study comparison.

It should be acknowledged that technological sophistication
alone is insufficient. The value of Al-driven solutions ultimately
lies in their ability to interface with real-world constraints and
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respond meaningfully to the complexities introduced by climate
change. Moreover, beyond technical optimization, Al also has a
role to play in supporting creative design processes and aligning
with climate adaptation strategies. We believe the time has
come for the architectural profession to understand how to best
leverage Al as climate challenges become increasingly complex
and urgent for the building sector.

2 | Review Methodology

This review used a structured narrative approach in order to
synthesize the literature on the application of AI in the field
of sustainable building design. We searched Web of Science,
Scopus, and Google Scholar using combinations of keywords
such as ‘artificial intelligence’ OR ‘machine learning’ OR ‘deep
learning’ OR ‘large language model’ AND ‘sustainable building’
OR ‘green building’ OR ‘climate-responsive architecture’ OR
‘building energy’ OR ‘building performance optimization’ The
search was conducted in publications from January 2010 to
October 2024, and a focus was put on the post-2020 publications
to reflect the latest progress in the world of foundation models
and generative AL Inclusion criteria included: (1) peer-reviewed
journal articles, conference papers, and authoritative technical
reports, (2) studies that reported on the use of AI in building
design, performance prediction, or climate adaptation, and (3)
English-language publications. Exclusion criteria were: (1) study
only on building operation and not covering the design impli-
cations; (2) purely theoretical AI papers, not covering building
domain application; (3) duplicate publications.

Our searches came up with 647 records at first. After the removal
of duplicates (n = 156) and screening of the titles and abstracts
for relevance (excluding n = 289), a total of 202 full-text articles
were assessed. Of these 116 fulfilled the inclusion criteria and
formed the basis of this review. While this work is more of a
narrative review than a systematic review, this approach allows
for transparent coverage of the fast-developing intersection of
Al and sustainable building design. The flow diagram for the
literature screening process of the present review work is plotted
in Figure 2.

3 | Emergence of Al for Sustainable Building
Design

The concept of “sustainable development” first formed in the
1970s when the first energy crisis took place, which was later
consolidated by the Brundtland Report in 1987 [15]. Later, the
emergence of the concept “sustainable building” can be dated
back to the 1990s when the United Kingdom and the United States
began to introduce green building standards, though the notion of
sustainable building and green building slightly differs nowadays
[16]. Content-wise, sustainable architecture has arisen from the
confluence of empirical knowledge and scientific understanding
of building physics [17]. Passive strategies and efficient active
system integration are the main focus of traditional sustainable
design approaches. The foundation of sustainable architecture
encapsulates passive design strategies, including but not limited
to orientation, form, and envelope design, to maximize natural
ventilation, daylighting, and thermal performance [18]. Solar

shading, thermal mass utilization (a strategy closely related to
demand response and building-grid interaction), and natural
ventilation systems have been shown to be able to effectively
improve indoor environmental quality and occupant comfort,
as well as reduce building energy consumption [19]. However,
they can be less effective in some climate zones and become
increasingly unpredictable under a changing climate [20, 21].

Structured systems to quantify and improve building perfor-
mance have emerged in the form of energy efficiency guidelines
and frameworks. Popularly referenced building performance
codes like BREEAM, LEED, CASBEE, etc., have set up metrics
and benchmarks for building energy consumption, indoor and
outdoor multi-sensory comfort, and environmental impact [22].
They assess buildings’ sustainable performance based on existing
simulation tools and post-occupancy evaluation. Building energy
simulation software allows designers to predict energy consump-
tion and thermal behavior [23], while environmental assessment
tools can assess broader sustainability metrics [24]. These frame-
works were driving industry transformation and have played a
critical role in promoting measurable and performance-driven
sustainable architecture.

However, these frameworks are fundamentally grounded in static
models, historical climate data, and isolated design workflows,
limiting their capability of addressing dynamic climate chal-
lenges. Most building performance simulations rely on complex,
physics-based engines that are computationally intensive and
often difficult to calibrate, particularly in early-stage design.
While effective in past applications, such tools are increas-
ingly challenged by the rising uncertainty of future climate
conditions, growing demand for resilience, and accelerated time-
lines imposed by climate emergencies. Moreover, standardized
weather files based on past climate data may fail to address
climate uncertainty and capture future extremes [25], and con-
ventional tools lack the ability to rapidly test adaptive solutions
under evolving scenarios, creating a potential mismatch between
predicted and actual building performance [26]. In addition,
climate change introduces multidimensional design pressures
that extend beyond traditional building performance codes, such
as flood mitigation, urban overheating, disaster risk reduction,
and broader ecological resilience [21]. These priorities require
the processing of diverse and dynamic data sources and coor-
dinating decisions across multiple scales and design phases.
While traditional strategies like solar shading, thermal massing,
and envelope tuning remain essential, their performance is no
longer guaranteed in future contexts, and thus must be recon-
sidered in earlier, more integrated stages of the design process.
Moreover, the integration of new energy and environmental
technologies, such as building-integrated photovoltaics (BIPV),
high-performance insulation, and phase-change materials, is
becoming increasingly critical for achieving climate-responsive
built environments. However, the complexity introduced by these
technologies further exposes the limitations of traditional design
methods, which struggle to accommodate the dynamic, intercon-
nected demands of future-oriented sustainable architecture.

In order to overcome the restrictions of traditional methods,
the application of AI in architectural design is a crucial step
from the use of early computational methods to contemporary
Al systems. Computational design started with computer-aided
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FIGURE 2 | Literature screening process and flow diagram.

design (CAD) in the 1960s [27], parametric modeling [28], and
culminated in the current Al-driven approaches that are capable
of autonomously generating and evaluating design solutions [29].
Currently, Large language models (LLMs) [30] and computer
vision models [31] have emerged as powerful foundation models
in architectural design. These models can be trained on massive
architectural domain knowledge as well as visual data and
understand complex design requirements in order to generate
contextually appropriate solutions. LLMs such as GPT-40 and
GPT-5.2, among the most representative current AI systems,
can interpret architectural briefs, generate design specifications,
and even suggest sustainable design strategies given the climate
conditions, though detailed and tailor-made design schemes
are still limited in non-fine-tuned LLMs [32, 33]. The recent
emergence of open-source foundation models such as DeepSeek
[34], which is particularly apt at reasoning and multi-modal
input, further amplifies the scalability and possibility of LLM
application in domain-specific architectural contexts.

The computer vision models, on the other hand, are able to ana-
lyze existing architectural precedents and derive design principles
that respond to particular environmental challenges, for example,
daylighting-driven architectural design [35]. Text-to-image [36].
and text-to-3D [37]. generation are also revolutionary advances in
architectural design tools. Models like DALL-E, Midjourney, and
the most current Stable Diffusion 3 can take textual descriptions
and produce architectural visualizations. Advanced text-to-3D
models are capable of generating building geometries from
natural language descriptions [38]. Deep learning algorithms
such as U-net can support the automated generation of building
layout graph [34, 39]. Recently, Sora, a video-based foundation
model, has shown the potential to simulate spatial experiences
and occupant interactions over time. Yet, geometric accuracy and
physical feasibility limitations still currently preclude automatic
operation and demand careful human oversight [40].

The above models have the crucial ability to process multimodal
data (e.g., text, numeric, geometry), including future climate
scenarios, to understand regulatory constraints, to simulate

v

- Non-building application (n=31)
- Duplicates (n=15)

performance, and to enable interactive generation and selection
of optimal alternatives. For example, AI can parse climate-
responsive design briefs to create material specifications that
adhere to specific carbon reduction targets in particular regions
under future climate extremes, thus linking algorithmic design
with effective architectural strategies. These capabilities are
particularly useful in the early design phase, where options
for sustainable design can be rapidly explored, and their possi-
ble environmental impact can be evaluated. Collectively, these
capabilities provide the foundation for an expanded, human-AI
collaborative design workflow by linking algorithmic synthesis
with human creativity and performance intelligence.

However, there are also integration challenges with current
practices when it comes to Al adoption. Al tools are showing
promise, but incorporating them into existing architectural work-
flows is complicated. Those challenges include compatibility with
Building Information Modeling (BIM) systems, validation of the
Al-generated designs with building codes, and standardization
of protocols for AI-human interaction and collaboration [41].
At the same time, the architectural profession also needs to
deal with the changing role of the architect in an era where
design generation and evaluation are being supported by Al
techniques and tools, which are shown in Figure 3. This shift
necessitates a rethinking of traditional design processes and the
development of new frameworks that can seamlessly integrate
Al into architectural practice. Practical implementation barriers,
including data availability and workflow integration, will be
addressed in later discussions in Sections 5 and 6.

4 | AI-Driven Design Transformation

4.1 | AI-Empowered Climate Change Awareness
in Design and Responsive Strategies

One of the most critical contributions of AI to sustainable
building design lies in its capacity to enhance awareness of future
climate conditions and enable more resilient design strategies.
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FIGURE 3 | Historical development and Al emergence for sustainable building design methods. Traditional approaches: People initiated using
computers in assisting architectural design by introducing parametric modeling and building performance simulation methods to sustainable
architecture during the 1960s. Computational Integration: Computational technology partnered with sustainable architecture after 2000 to achieve
optimization of basic operations and energy efficiency frameworks through Building Information Modeling (BIM). Modern AI Systems: Modern AL
systems emerged in the early 2020s, marked by the rise of foundation models such as Stable Diffusion (2022) and ChatGPT (2022), and have since
progressed to today’s cutting-edge multimodal models, including GPT-4o0, Sora, and Stable Diffusion 3. These advanced systems are increasingly popular
in sustainable architectural design, as they can generate climate-adaptive solutions using various data modalities by leveraging Large Language Models
(LLMs), Large Vision Models (LVMs), and other AI models. Integration Layer: The integration layer maintains communication between Al-created
sustainable designs and upcoming climate limitations. The integration framework includes three components: (1) systems like BIM that can deliver static
information about geometry and attributes and historical data; (2) IoT Systems that provide real-time environmental data; (3) digital twins that unite
static (BIM) and dynamic (IoT) data for interactive assessment. The integrated system helps decision making for operational needs while also optimizing
energy efficiency by considering future climate predictions. Key Capabilities: The main abilities of generative Al systems consist of form-finding &

optimization, together with performance prediction and climate-responsive analysis.

While future climatic data is available through methods like
deterministic models, AI plays a crucial role in processing,
interpreting, and extracting actionable insights from such com-
plex datasets [42, 43]. Contemporary Al models can identify
key trends, such as shifts in temperature, precipitation, and
wind patterns, which are then used to inform early-stage design
decisions [20, 44].

In particular, Al-processed climate variables are converted into
constructive design decisions through different pathways. Analy-
sis of temperature patterns, especially cooling and heating degree
days, directly informs envelope design, including thermal mass,
glazing ratios, and insulation levels. AI models assessing future
diurnal temperature fluctuations can optimize thermal mass
configurations to buffer indoor temperatures through effective
heat storage and release [21]. Precipitation pattern changes, such
as the intensity and frequency of extreme rainfall events, inform
decisions of roof drainage capacity, specifications for founda-
tion waterproofing, and site grading. AI analysis of projected
precipitation extremes allows sizing of stormwater management
systems and also affects the choice between permeable and
impermeable surface materials. Wind pattern changes influence
the viability of natural ventilation strategy, building orientation
optimization, and structural wind load computations. Machine
learning algorithms handling wind rose projections can be a
means to optimize building form and opening configuration to
maximize passive cooling potential whilst maintaining structural
resilience in the event of intensifying storm events. These climate-
to-design linkages are shown in Table 1, which describes how

climate data flows through digital twin systems to inform certain
design parameters.

Machine learning algorithms can be adopted to downscale
global climate models (GCM) to building-relevant spatial and
temporal resolutions, identifying local climate shifts that inform
design decisions [14, 42]. AI models can process diverse climate
projection datasets to extract actionable insights about temper-
ature shifts, precipitation patterns, and extreme weather events
[45], enabling early-stage design decisions grounded in projec-
tion rather than historical conditions. This capability proves
particularly critical for long-lived infrastructure, where design
decisions made today must perform across decades of climate
change. Recent implementations demonstrate that GAN-based
urban form generation integrated with microclimate simulation
can achieve 1.8°C nighttime temperature reductions through
optimized design, while poorly designed high-density develop-
ments showed temperature increases of 2.3°C [46]. Machine
learning applications in urban regeneration have documented
SUHII reductions of 0.94°C in summer and 0.54°C in winter
following targeted interventions, including 19.46% vegetation
cover increases and 3.09% albedo improvements [47]. These
quantifiable outcomes validate AI’s role in designing thermally
resilient urban environments, particularly as heat stress becomes
a defining challenge for cities worldwide. When it comes to
flooding prediction and informing building design, AI-powered
forecasting transforms flood preparedness from reactive response
to proactive adaptation. Machine learning has extended reliable
flood forecasts from zero to five days globally, with Google’s
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TABLE 1 | Climate variable to architectural design strategy mapping.

Climate variable Al processing capability

Design strategy output Building system affected

Temperature shifts
(mean, extremes)

Trend detection, anomaly
identification

Precipitation changes
(intensity, frequency)

Extreme event prediction

Wind pattern shifts Directional analysis, speed
projections
Humidity changes Seasonal pattern analysis

Thermal mass configuration,
glazing ratios

Envelope, HVAC sizing

Drainage capacity,
waterproofing specs

Site design, roof systems

Natural ventilation,
structure

Orientation optimization,
opening design

Vapor barrier placement,
material selection

Envelope, material systems

Flood Hub now providing seven-day advance forecasts across
80+ countries covering 460 million people [48]. Critically, AI-
based systems have improved forecast accuracy in data-scarce
and underdeveloped regions to levels comparable with Europe,
addressing longstanding inequities in climate adaptation capac-
ity. This enables building designers and urban planners to
incorporate site-specific flood risk into early design decisions,
from elevation strategies to material selection and evacuation
planning.

In parallel, the coupling of machine learning algorithms with
building physics models has made it possible to simulate and
optimize building performance across a wide range of projected
climate scenarios [20, 25, 49]. This allows for a more nuanced
understanding of how buildings will perform under future
conditions, moving beyond historical weather files and static
assumptions. By identifying subtle changes between historical
and future climatic patterns, Al systems can help architects
tailor climate-adaptive strategies that are better suited to local
conditions, as we have discussed in earlier sections. Moreover,
the incorporation of uncertainty analysis into design workflows
potentially enables the exploration of multiple climate scenarios,
supporting the development of robust and flexible building
solutions. With access to more accurate future weather data, such
optimizations of building climate-adaptive systems through AI-
driven approaches can move us one step closer to more efficient
and sustainable architecture.

These capabilities also allow AI to enhance the real-world
effectiveness of climate-adaptive strategies by optimizing the
operation of responsive elements in real-time. Contemporary
algorithms can manage complex responsive systems such as
dynamic shading and adaptive ventilation by learning from
occupant behavior and changing environmental conditions [50].
Integrated with sensor networks, IoT devices, and building man-
agement systems, Al approaches enable continuous monitoring
of how buildings respond to external climate variations [51, 52]. As
aresult, climate-responsive building elements can be dynamically
adjusted to improve energy efficiency, thermal comfort, and
overall environmental performance [53], thereby maximizing the
impact of the intended climate-adaptive design. Data generated
in this process, in return provides valuable feedback for future
sustainable design. Collectively, these advances position Al as a
critical enabler of climate-aware architecture, capable of support-
ing both robust long-term planning and real-time adaptability
under conditions of increasing climate uncertainty.

4.2 | Design Generation Integrated with
Multi-Source Information Processing

AT’s capability of processing diverse, multi-source information
is also critical to sustainable building design, especially under
the current broad range of multidimensional design pressures
introduced by climate change, such as flood mitigation, urban
overheating, and disaster risk reduction. The complexity of
information across diverse and dynamic sources is beyond the
capability of individual designers or engineers, and this is where
AT’s ability comes into play.

The emergence of LLM in recent years has unlocked unprece-
dented possibilities to translate design requirements into exe-
cutable architectural specifications [33, 54]. These models can
interpret complex architecture project briefs, environmental reg-
ulations, and performance requirements, and generate design
specifications incorporating sustainable strategies [55]. Based
on the understanding of contextual requirements, LLM also
exhibits a remarkable ability for contextual reasoning and multi-
objective balancing, enabling it to suggest coherent, sustainable,
and diverse design options that align with both performance
targets and architectural intent, thus narrowing the gap between
human design aspirations and computational generation. Given
that model fine-tuning still consumes huge computational costs
and entails abstruse professional knowledge [56, 57], prompt
engineering has been a key ingredient for architectural design,
allowing for finely tuned Al-generated deliverables at the cur-
rent stage of Al development [58]. Architects will be able to
explore design variations in generative Al systems by structuring
queries that align their design work with sustainability goals
and performance requirements. Recent research has shown that
well-designed prompt strategies can improve building energy
performance [59]. However, comparative studies, both within the
building domain [60, 61] and more broadly across Al research
[62], have shown that even under identical prompts, different
LLMs can yield substantially different outputs. These differences
exist not only between general-purpose models (e.g., GPT-40
vs. DeepSeek), but also between general-purpose and domain-
specific fine-tuned models, the latter often exhibiting stronger
contextual alignment and technical accuracy. This suggests that
while prompt engineering remains critical at the current stage,
future research may benefit from hybrid approaches combining
optimized prompting and domain-specific, knowledge-enhanced
model adaptation for more robust and verifiable outputs. This is
especially valuable during early-stage design, where rapid itera-
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FIGURE 4 | Al-driven design generation pipeline for sustainable buildings. Input Texts: Design specifications for sustainability, along with

their boundaries, were entered into the system as input texts. Al-driven Design: The first phase of Al-driven Design involves LLMs analyzing

design requirements to obtain essential design criteria and parameters. Generation of sustainable building visual models through multi-objective

optimization occurs by processing the criteria and parameters through generative Al systems. Sustainability Analysis: The Al-enabled sustainable

building models then go through sustainability evaluation that includes environmental assessments, performance predictions, and simulation testing.

Outputs: Sustainable building designs go through performance tests to determine their effectiveness under projected climate-change conditions and their
related designer specifications. Al-driven design processes will operate with iterative refinement that uses performance feedback until they accomplish
certain compliance or objectives. The final outcome will consist of a validated sustainable building model.

tion and flexible exploration are critical. The plausible pipeline of
the suggested workflow is proposed and illustrated in Figure 4.

Beyond textual data, text-to-design and image-to-design genera-
tion pipelines are another important step forward in supporting
sustainable building design. They can transform textual descrip-
tions into 3D architectural models, facilitating further environ-
mental analysis and performance metrics [63, 64]. AI models
capable of interpreting professional language and generating
geometric structures have paved the way for a more compre-
hensive, integrated approach to sustainable building design.
However, existing implementations still struggle to guarantee
physical feasibility and regulatory compliance with generated
designs. That is to say, though promising, the pressing imperative
to develop robust implementation frameworks to bridge the
gap between technological potential and real-world application
is the utmost challenge faced by emerging Al capabilities. In
addition, Al enables the concurrent generation of comprehensive
performance evaluation in parallel with design, the lagging of
which is inevitable with traditional methods. By processing
vast amounts of historical building performance data alongside
changing climate patterns, deep learning algorithms can now
predict building behavior with greater accuracy, speed, and depth
[65]. In controlled studies, these models have shown particular
success in forecasting energy consumption, thermal comfort, and
daylight utilization [66-68], making performance evaluation an
increasingly accessible and inseparable component of the early
design process. As more diverse data becomes available, these
capabilities can also be extended to addressing new challenges
introduced by climate change, such as flood mitigation and urban
overheat [69].

4.3 | Automated Multi-Scheme Generation,
Optimization, and Interactive Co-Design

Building on the understanding of climate scenarios and the
effective processing of diverse information, AI-driven approaches

enable efficient design generation, optimization, and interac-
tive co-design, responding to dynamic climate conditions and
diverse building performance requirements. Architectural form-
finding and environmental performance evaluation processes
are now going through an evolution that is fundamentally
transformed through AlI-driven approaches and optimization
procedures. Now, Al-driven systems have the potential to explore
thousands of design alternatives while also optimizing for cli-
mate responsiveness through advanced generative algorithms
[11, 70], addressing computation challenges that traditional
methods struggled with. These models can understand complex
relationships between geometry, orientation, and environmental
performance, creating solutions that dynamically respond to local
climate conditions [71]. Recent applications have shown advan-
tages in building energy performance using Al-optimized form
generation over traditional design approaches [72]. Commonly
involved optimization objectives included energy consumption
and thermal comfort, daylighting, material usage and embodied
carbon, and construction resource efficiency. Rather than relying
on specific weightings, most studies adopt a Pareto optimization
approach, which seeks a set of non-dominated solutions where
no objective can be further improved without compromising
another. This approach allows designers to balance compet-
ing requirements, ensuring optimal environmental performance
while respecting practical constraints [73-75].

By extending beyond traditional parametric approaches, Al
design space exploration provides architects and engineers the
opportunity to explore novel solutions that may otherwise be
underexplored. By turning to machine learning algorithms,
successful sustainable designs can be identified, and innovative
alternatives that break conventional wisdom while meeting per-
formance requirements can be generated [49, 76]. Such capability
is especially useful in dealing with the challenges of climate
change, where classic design solutions may not suffice. AI design
scheme synthesis has expanded the potential for sustainable
architecture, as well as posing questions of creative (artistic)
control and design validation [77, 78]. Although AI systems
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can produce design variations optimized for environmental per-
formance, the integration of these solutions with architectural
schemes and cultural context is still a challenge [79]. When
designers need to tackle complex sustainability requirements, the
balance of human design judgment and Al-driven optimization
becomes critical in order to avoid outcomes that are technically
efficient but contextually inappropriate or lacking in aesthetic
and experiential qualities.

4.4 | Integrated Design across Form, Material,
Systems, and Construction

In traditional preliminary design, each step was done sequen-
tially, without the ability to precisely assess performance or find
the optimal solution, because the later stages were unknown.
Under the demand for climate responsiveness, the deliverables of
this approach can be suboptimal. AI enables integrated design by
allowing all aspects, including form, materials, systems, and con-
struction, to be considered together from the beginning, ensuring
the best climate-adaptive strategies are identified early on. AT also
has the capability to select materials considering environmental
impact, performance requirements, and life cycle factors [80].
Smart material selection algorithms can evaluate large databases
of material properties, environmental data, and performance met-
rics, and recommend the best solutions for a given climate context
[81]. Such algorithms can facilitate the specification of sustain-
able building components to higher precision, predicting their
material behavior in different environmental conditions [82, 83].

Moreover, Al facilitates more targeted and integrated design of
building systems that align with climate adaptation goals by
providing access to detailed energy use patterns and predictive
system responses [84]. By combining deep learning with complex
interactions between HVAC, lighting, and other building systems,
AT makes it possible to maximize building performance while
minimizing energy consumption [85-87]. By learning from oper-
ational data, these models can predict system behavior under
various conditions and can be used for proactive optimization
strategies that maintain a high-quality indoor environment while
reducing system energy consumption by up to 30% [88-90].
Advanced neural networks further support dynamic adjustments
based on occupancy patterns, weather shifts, and energy demand,
making performance optimization continuous rather than static.
As a result, optimal system control and precise energy manage-
ment strategies become more readily achievable, feeding back
into the design phase to inform system selection and integra-
tion decisions that enhance both energy efficiency and indoor
environmental quality [91, 92]. AI’s capability to predict not only
overall energy consumption but also specific end-use patterns
enables the development of more targeted and efficient system
design strategies [93].

Al also helps optimize the construction process to purvey sus-
tainability considerations beyond the traditional design phase.
Construction sequences, material logistics, and the utilization
of resources can be optimized by machine learning algorithms,
leading to less waste and lower environmental impact during
construction [94, 95]. They offer the ability to predict and pre-
vent construction challenges while facilitating the execution of
sustainable design intentions into built reality. By incorporating

Al-driven analysis, lifecycle analysis (LCA) can be more precise
in a way that allows building environmental impacts to be
better evaluated over the entire life cycle [96]. Complex LCA
data can be processed by machine learning models to find opti-
mal material and system choices that minimize environmental
impact while meeting structural and environmental performance
requirements [97]. With better accuracy, these tools can now
predict long-term environmental consequences to facilitate more
informed decision-making by architects in sustainable building
design strategies.

Table 2 provides a comprehensive synthesis of Al techniques
across the building design lifecycle, drawing on 45 studies with
evidence distributed unevenly across design phases. Building
systems control (n =9) and in the early stages of design generation
(n = 7) are the most studied aspects, whereas construction
planning (n = 2) is still much less studied, despite its sus-
tainability implications. Approximately 65% of cited studies rely
on simulation-based validation, with only 20% reporting field
deployment results, indicating a significant gap between demon-
strated technical capability and real-world verification. The
progression reveals several observed patterns: (1) the shift from
single-objective optimization to multi-objective balancing that
addresses the complex tradeoffs inherent in sustainable design;
(2) the increasing integration of real-time adaptation capabilities
that extend AI benefits beyond the design phase into building
operation; (3) the persistent challenge of bridging technical
capability with practical implementation. The field still confronts
fundamental challenges in data availability, model validation,
and real-world deployment. Evidence quality varies considerably.
Performance prediction and building systems control benefit
from relatively robust validation across multiple studies, whereas
material selection and construction optimization claims rest on
thinner evidential foundations that warrant cautious interpreta-
tion. The diversity of AI techniques shown in Table 2 underscores
the necessity for architectural practitioners to develop multi-
method literacy while maintaining focus on sustainable design
principles and climate adaptation goals. The translation of these
diverse Al methods into physical structures can be exemplified by
recent demonstration projects that integrate multiple techniques
across the design-to-construction pipeline.

In Figure 5, an example of a coffee shop in Shanghai is illus-
trated, which was designed and constructed entirely through
Al-driven processes by a team from Tsinghua University. This
real-world design case shows the transformation of sustainable
architecture via current stage Al driven design and smart building
construction technologies, integrating onsite 3D Printing. The
project has measured sustainability effects in terms of contri-
butions with the help of AI at various stages. During design
generation, multi-objective optimization has led to a reduction
of annual energy consumption, approximately 18% compared
to the conventional design of coffee shops at a similar scale,
by optimizing building orientation, envelope geometry, and
glazing distribution according to the local climate. The iterative
optimization process to evaluate more than a thousand design
variants with respect to thermal radiation, daylight availability,
and carbon emission criteria found Pareto-optimal solutions that
human designers alone would not have been able to efficiently
explore. During the construction phase, at the time of the AI-
generated toolpath optimization for 3D printing, material waste
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Stage 1: Automated multi-scheme generation

Design Ideas

Design concepts generation

The three selected design concepts are provided for investors to
choose from.

[ A
| 2o=l=7|
| e |

Generative Al Model

Automated multi-opti

tion and co-design Output: Optimal sustainable building results Final renderings

Multi-objective optimization 3D model desplay Thermal radiation analysis

Mulfi-generation aptimization (n)

Structural analysis

Foundation treatment 3D Printing Process

FIGURE 5 | A real-world implementation and example of Al-driven design process—design generation and 3D printing construction process of
a coffee house in Shanghai. The design and manufacturing process comprises three major phases: (a) Computational design generation: initiated
with a coffee cup conceptual framework, employing GPT-4 for prompt engineering and DALL-E 3 for visualization alternatives before parametric
model development on the TRIPO platform. (b) Performance simulation and optimization: incorporating multi-objective algorithms with sustainability
parameters, generating optimized architectural solutions with corresponding visualizations. (c) Digital fabrication implementation: beginning with
structural analysis, followed by toolpath generation, site preparation, large-scale additive manufacturing, and culminating in the completed architectural
structure.
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was reduced by around 25% compared to traditional conventional
construction using formwork, while the additive manufacturing
process allowed for the construction of complex geometries
that optimize structure efficiency, given the least amount of
material use. The essential Al contribution is not only automa-
tion, but considering aesthetics in combination with structural
feasibility and environmental performance, and construction
constraints at the same time, which is an integrated optimiza-
tion and simply cannot be performed by traditional sequential
workflows.

Due to the recency of Al technologies and the long timelines
for typical building projects, fully documented AI buildings
with long-term measured performance data remain very scarce.
One illustrative case is the Georgia Tech Kendeda Building for
Innovative Sustainable Design, which is a completed and certified
net-positive energy project leveraging Al-enabled digital twin for
smart operation as well as assessing building energy use under
hypothetical occupancy conditions (e.g., without pandemic,
extreme full occupancy). The building has real-time data from
over 700 sensors during a 12-month operational period. Results
showed that even under full-load stress conditions, the building
achieved a 38% net-positive energy balance, rising to 125% under
typical conditions, with a low actual EUI of 53.3 kWh/m?/year
[101, 102]. Another example is Harvard’s CGBC HouseZero, a
retrofitted ultra-low-energy building demonstrating how Al can
support continuous performance improvement during opera-
tion. A two-year high-resolution building performance dataset
has been collected [103], and a data-informed Building Energy
Management framework (DiBEM) derived from it shows that AI-
empowered operational interventions can reduce the EUI from
54.1 to 42.8 kWh/m?/year [104]. These two cases demonstrate
that AI techniques can help with data-driven model calibration,
scenario analysis, rigorous performance evaluation, and dynamic
energy saving.

5 | Addressing Climate Change Challenges in
Sustainable Building Design

The climate crisis demands urgent transformation in how build-
ings respond to extreme weather, energy volatility, and long-term
environmental change. Al-driven approaches have emerged not
merely as optimization tools but as essential enablers of climate-
responsive architecture. Here we examine how AI addresses
specific future climate challenges facing the building sector,
synthesizing documented performance outcomes with imple-
mentation pathways toward climate-resilient built environments.

5.1 | Building Energy Resilience under Climate
Uncertainty

Climate-driven energy challenges can be complex, considering
rising cooling demands, shifting heating patterns, grid stress
during extreme events, and integration of variable renewable
generation [84, 85]. Al-powered energy management addresses
these interconnected pressures through predictive analytics and
adaptive control. Deep learning energy forecasting achieves mean
absolute percentage errors (MAPE) as low as 1.67%-4.80% for
multi-building load prediction [105, 106], outperforming conven-

tional statistical models. This accuracy enables proactive demand
management, critical for grid stability during climate extremes.
Documented energy savings of 20%-50% have been achieved
through Al-optimized building operations [84]. Moreover, deep
reinforcement learning approaches, such as Soft Actor-Critic
frameworks, have demonstrated 24.2% energy savings compared
to baseline algorithms [107], while expert-guided training meth-
ods reduce deployment timelines by factors of 8.8 [108]. These
systems learn optimal control policies that balance comfort with
efficiency under varying climate conditions, adapting in real-
time to weather fluctuations and occupancy patterns. Holistic
approaches like the OCTOPUS system demonstrate coordinated
control of HVAC, lighting, shading, and natural ventilation
[109], addressing the complex interdependencies that determine
building climate response.

Climate-responsive buildings require coordination across scales,
from material properties to district energy networks, and across
systems that traditionally operate in isolation. AI enables this
integration through capabilities spanning real-time operations,
renewable energy coordination, and long-term adaptation plan-
ning [92]. Studies have demonstrated that deep reinforcement
learning systems can simultaneously optimize multiple build-
ing subsystems, balancing competing objectives like thermal
comfort, daylight availability, energy efficiency, and ventilation
quality [109]. At the building-grid interface, Al-driven demand
response and energy storage management enable buildings to
function as active participants in decarbonized electricity sys-
tems, shifting loads to align with renewable availability [110].
The challenge extends to urban scales where AI must integrate
building-level interventions with neighborhood green infrastruc-
ture, district thermal networks, and city-wide climate strategies
[69].

5.2 | Evidence-Based Pathways forward in
Handling Future Climate

Table 3 synthesizes the documented performance outcomes of
Al-driven approaches across six major climate challenges, pro-
viding a comprehensive look into the quantitative evidence base
that supports AI implementation in climate-responsive build-
ing design. The table organizes evidence by climate challenge,
documenting the specific AI solutions employed, validated per-
formance metrics, climate scenarios considered, implementation
scales, and representative studies from recent literature. This
synthesis reveals both the maturity of certain application areas,
such as energy forecasting and HVAC optimization, and emerging
domains, including flood resilience and urban heat mitigation,
where Al demonstrates transformative potential but requires
further validation and scaling.

Table 3 compiles evidence distilled from 25 studies dealing with
climate adaptation driven by AI, although the coverage for
each of the challenge areas differs significantly. Energy demand
management (n = 5) and building system optimization (n = 7)
have attracted much attention for research, while flooding and
water management (n = 2) and building-grid interaction (n = 3)
are relatively unexplored despite their increasing importance in a
climate change scenario. The evidence base is largely simulation-
based; the Large-Scale Flood prediction domain is the only one
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that benefits from large-scale field validation through operational
deployments such as Google’s Flood Hub.

Reported performance needs to be interpreted with care. Energy
savings of 22%-50% are best case results of controlled simulation
studies or pilot projects with favorable conditions [62, 84]; with
practical field installations, the savings can generally be achieved
by 20%-30% [84]. There are challenges with sensor degradation,
occupant override behavior, and HVAC system constraints. Urban
Heat Mitigation effects are highly contextual and dependent on
the background climate, urbanization density, and the scale of
interventions; poorly designed interventions can raise tempera-
tures by 2.3°C, hence the importance of optimizing the quality
of Al The flood prediction advances, while offering impressive
global coverage, have been validated mostly in areas where there
is a sufficient hydrological monitoring infrastructure in place;
generalization of the performance in a context where data is
scarce is an open question.

The evidence also reveals that Al implementation is not without
constraints and premises. Success depends critically on data avail-
ability and quality, computational resources, technical expertise,
and institutional capacity, and those factors vary dramatically
across regions and contexts. The documented performance out-
comes should therefore be understood not as guaranteed results
that AI automatically delivers, but rather as achievements that
emerge when Al is deployed within supportive ecosystems that
provide adequate data infrastructure, validation frameworks,
and integration with existing systems and practices. Where the
literature shows contradictory findings, for instance, regarding
reinforcement learning sample efficiency and transferability
across building types, we have reported ranges rather than point
estimates to reflect this uncertainty honestly. This observation has
important implications for research priorities and policy devel-
opment, which means simply developing more sophisticated Al
algorithms will not suffice if the foundational infrastructure and
institutional conditions for their effective deployment are absent.

Though the documented performance outcomes synthesized here
validate AI’s technical capacity to address climate challenges in
building design, effectiveness depends critically on supportive
conditions, including but not limited to high-quality training
data, computational resources, technical expertise, and institu-
tional capacity that vary dramatically across contexts [83, 116,
117]. Success emerges not from AI algorithms alone but from
their deployment within building-related ecosystems providing
adequate infrastructure, validation frameworks, and integration
with existing practices. Several strategic priorities strengthen this
evidence base. For example, expanding validation across longer
timescales, diverse geographies, and broader building typologies
would clarify boundary conditions for reliable AI performance.
Standardized metrics and reporting protocols would enable sys-
tematic cross-study comparison. Moreover, explicit attention to
equity, accessibility, and governance must be integrated into Al
development rather than treated as afterthoughts. Since climate
challenges intensify as climate change still presses on, Al offers us
demonstrated capabilities for enhancing building performance,
reducing environmental impacts, and supporting resilience, but
realizing these potential requires thoughtful deployment dedi-
cated to validation, equity, and real-world integration complexi-
ties.

5.3 | Critical Considerations: Risks, Trade-Offs,
and Uncertainties

Having examined AI’s capabilities and applications, we now
consolidate critical limitations and risks that practitioners must
address. While AI has encouraged considerable potential for
sustainable building design, a balanced evaluation will entail an
honest discussion of risks, trade-offs, and limitations that are
frequently ignored by the current enthusiasm of this concept.
First of all, it is the carbon footprint of AI systems that is
a paradox for sustainable building applications. Training large
foundation models can potentially use a large amount of energy
and release CO, equivalent [118, 119]. Recent analyses also
indicate that training GPT-scale models consumed huge amounts
of freshwater for cooling alone [120]: it becomes clear that
environmental costs extend beyond carbon to include water and
material resources. Inference costs, while reasonable compared
to other companies, are high enough when AI systems are
used to support iterative design exploration across thousands
of building projects. This is a computationally intensive task,
which begs the question: at what scale of deployment do the
efficiency gains from AI outweigh the environmental costs
of the AI systems themselves? Current evidence suggests net
benefits arise when AI optimizations are employed over large
building portfolios or high-impact decisions, but the break-
even calculus is poorly characterized and most likely context-
specific. Practitioners should therefore consider computational
efficiency in addition to predictive accuracy when choosing
Al approaches, and favor, wherever possible, lightweight sur-
rogate models over computationally intensive deep learning
counterparts.

Efficiency improvements made possible by AI may also lead to
a higher environmental impact due to rebound effects [121, 122].
Evidence from the residential sector indicates direct rebound
effects ranging from 41% in the short-run to 71% in the long-run for
electricity consumption in U.K.[123], and behavioral responses
of efficiency gains are likely to be very large to offset projected
energy savings [124]. If Al-optimized buildings decrease opera-
tional costs, the savings can potentially be used for additional
construction, additional conditioned floor area, or increased com-
fort expectations, possibly cancelling out or exceeding the initial
efficiency improvements. At the urban scale, the densification
strategies enabled by Al that enhance energy efficiency per-capita
may lead to an increase in aggregate resource consumption (rate
of development). These kinds of systemic dynamics are yet rarely
investigated in the literature on Al in buildings, which mainly
focuses on technical performance metrics rather than feedback
loops in terms of socio-economic factors. Future studies will need
to take system-level views and consider performance changes in
behavior and markets to Al-driven efficiency improvements.

AT systems risk amplifying existing inequities in climate adap-
tation capacity. Training data predominantly originates from
well-monitored buildings in developed regions, embedding
assumptions about construction practices, occupant behaviors,
and climate conditions that may not transfer to underserved
contexts. Performance prediction models validated on commer-
cial buildings in temperate climates may perform poorly for
informal settlements in tropical regions, which are precisely
those contexts where climate adaptation is most urgent. Further-
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more, the computational resources, technical expertise, and data
infrastructure required for AI deployment create barriers that
favor well-resourced actors, potentially widening the gap between
climate adaptation haves and have-nots and creating inequalities
indirectly. Geographic bias in climate data compounds these
concerns; regions with sparse monitoring networks receive less
accurate projections, limiting AI’s ability to support adapta-
tion where vulnerability is greatest. Addressing these inequities
requires deliberate efforts to diversify training datasets, validate
models across contexts, and develop lightweight AI solutions
accessible to resource-constrained practitioners.

Climate-responsive design operates under deep uncertainty that
Al methods handle with varying degrees of complexities. Climate
projections carry cascading uncertainties from emission scenar-
ios, global climate model structural differences, downscaling
methods, and internal climate variability, collectively spanning
ranges that can exceed the signal being predicted. Most Al
applications in building design nowadays optimize for expected
performance under a single scenario or a limited scenario
ensemble, potentially producing solutions that perform well on
average but fail under plausible alternative futures, for example,
extreme weather events. The distinction between optimization
for expected performance and optimization for robustness under
uncertainty deserves greater attention. Robust design approaches
that minimize worst-case performance degradation or maximize
performance across scenario ranges may sacrifice some efficiency
under expected conditions but provide crucial resilience against
climate surprises. Current Al implementations rarely incorpo-
rate formal uncertainty quantification or robust optimization
frameworks, representing a methodological gap. Furthermore,
AI model uncertainty, which arises from training data limi-
tations, architectural choices, and hyperparameter sensitivity,
can complicate climate uncertainty but is seldom propagated
through design recommendations. Practitioners receiving Al-
generated suggestions typically lack visibility into confidence
intervals or sensitivity analyses that would support informed
decision-making under uncertainty.

Widespread AI adoption creates new dependencies that are
worthy of consideration. Reliance on proprietary Al platforms
concentrates control over design capabilities with technology
providers, potentially limiting practitioner autonomy and creat-
ing vendor lock-in. The opacity of many Al systems, particularly
deep learning models, complicates professional accountability.
When Al-informed designs underperform, attributing responsi-
bility between human designers and algorithmic recommenda-
tions becomes problematic. Data dependencies can also create
vulnerabilities. AI systems trained on historical building per-
formance may degrade as climate change renders past patterns
increasingly unrepresentative of future conditions, requiring
ongoing retraining that perpetuates computational and data
demands.

Acknowledging these above limitations does not diminish AI’s
potential contribution to sustainable building design but rather
establishes realistic expectations and identifies priorities for
responsible development. The path forward requires not uncrit-
ical adoption but thoughtful integration that maximizes benefits
while actively mitigating risks.

6 | Implementation Frameworks for AI-Driven
Approaches

Al-driven sustainable building design implementation demands
robust technical infrastructure and frameworks. Hence, these
systems must be able to manage a wide variety of data types,
from building performance metrics to climate predictions, and
ensure the quality and accessibility of data. As demonstrated
by recent work, cloud-based architectures using standardized
data protocols can successfully support AI operations while
maintaining security and scalability [125]. With the increasing
use of Al in architectural practice, model validation has become
an important component of Al implementation in architectural
practice, which means that the technical accuracy of AI pre-
dictions and their practical applicability in sustainable building
design should be verified [126]. Multistage testing processes of
successful validation frameworks shall be developed to compare
Al-generated solutions to traditional performance simulations
and real-world building data. Hybrid validation approaches,
which combine physical testing such as sensor-based monitoring
in the built environments with computational verification using
simulation models, can be a reliable approach in evaluating Al-
driven sustainable building design solutions by capturing both
real-world complexity and variability while enabling systematic
analysis across diverse scenarios.

In design practice, Al systems integration with existing BIM and
CAD platforms has both opportunities and challenges. Recent
reviews confirm that while BIM-digital twin integration shows
promise, challenges, including interoperability between different
models and standardization of data exchange, remain critical
barriers [127]. The 1SO19650 series and IFC standards provide
foundational frameworks [128], but Al-specific protocols for
validation and data exchange are still emerging [129]. The current
BIM framework provides rich data environments for AI applica-
tions, yet their traditional structures are undergoing adaptation
for more advanced Al integration [130]. Intermediate layers that
allow AI systems to interact with BIM data, while preserving
existing workflows, should be developed for architectural prac-
tices. The unique characteristics of Al-generated designs should
also be addressed by performance verification frameworks. These
frameworks can evaluate the reliability and consistency of
Al-generated solutions along with environmental performance
under climate change scenarios. Hence, the development of a
continuous monitoring and feedback system that maintains the
effectiveness of Al-driven sustainable building design strategies
over time is important in real-world implementations.

The transformation of architectural practice toward AlI-driven
implementation also asks for evolution in professional work-
flows. The traditional linear design processes will be replaced
by more iterative and data-driven design processes and be
empowered by Al capabilities throughout the design lifecycle.
To achieve this transformation, architectural teams need to
invent new collaborative models for melding human ‘creativity’
with AI analysis and optimization. We argue that human-AI
hybrid workflows, where human designers lead the creative
process while Al supports, rather than replaces human decision-
making, will produce the most successful outcomes, as design
decisions are shaped not only by quantitative metrics but also
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by cultural, ethical, and regulatory considerations. As our review
shows, Al can enable performance gains and uncertainty-aware
exploration, but it is rarely sufficient to identify a single opti-
mal solution without human judgment. Therefore, empowering
human designers to guide and critically interpret Al-generated
outcomes is essential to achieving robust and context-sensitive
building solutions. The implementation of AI also poses sub-
stantial challenges to architecture education in terms of skills
and training requirements. In addition to technical expertise in
Al systems, future professionals must also learn know-how on
data analysis, prompt engineering, machine learning, and design
optimization [33, 131]. Comprehensive training programs that
blend technical skills with sustainable building design principles
should be developed by leading universities and institutes that
would ensure the AI tools are used effectively in solving future
environmental challenges. Prompt engineering has become a
critical skill in architectural practice, and as such, practitioners
must be able to effectively communicate design intent with Al
systems. Implementation can be successful only when structured
approaches for prompting creation are developed that reliably
generate useful and relevant design solutions. The development
of standardized prompt libraries and collaborative prompt devel-
opment processes can increase the effectiveness of Al-driven
design exploration in organizations in the future.

Risk management in Al-driven design implementation also plays
a vital role and addresses technical and professional liability
issues in the use of AlI, which shall account for the reliability of
Al-generated solutions, security of data, and professional respon-
sibility [132]. The regulatory landscape for Al in building design is
evolving rapidly [133]. The EU AI Act [134] establishes risk-based
classification relevant to safety-critical applications, while the
NIST AI Risk Management Framework [135] provides voluntary
guidelines for trustworthy AI development. ISO/IEC 42001:2023
offers the first international standard for AI management sys-
tems, though building-sector-specific guidance remains limited
[136]. These frameworks collectively emphasize transparency,
accountability, and human oversight—principles that must be
adapted for the unique context of climate-responsive archi-
tectural design. Such frameworks are needed in architectural
practices to balance innovation against risk mitigation, through
robust verification processes and documentation of Al-driven
decision-making. The regulatory frameworks must evolve to
incorporate Al-driven sustainable building design practices that
are as safe for public safety and as environmentally protective.
Provisions for Al-generated designs should be built into building
codes, and new validation methods and compliance verification
processes shall be established.

Figure 6 summarizes key AI technologies and their chal-
lenges faced in current sustainable building design. It also
includes our proposed solutions, providing a structured view
of the discussion above. Adaptive frameworks incorporating
technological advancement while enforcing strict standards are
proposed here in Figure 7. The integration layer needs to
function through three mechanisms: validation frameworks that
evaluate Al-generated designs against performance benchmarks
and regulations; risk management protocols addressing liabil-
ity, data privacy, and algorithmic bias; and standards verifi-
cation ensuring cross-platform interoperability. Beyond techni-
cal considerations, policy implications should extend to bring

broader societal impacts, which emphasize transparency and
accountability of decision-making. The implementation frame-
work depicted in Figure 7 operationalizes the three pillars
of the proposed ACBI Framework. The Data Infrastructure
and AI Systems components represent the Technical Integra-
tion Pillar, demonstrating how information flows enable Al
capabilities. The Design Workflow and Performance Simula-
tion elements embody the Climate Response Pillar, showing
how AI processes climate scenarios to inform design decisions.
The Integration Layer, comprising Validation Framework, Risk
Management, and Standards & Protocols, instantiates the Gover-
nance Pillar. This structured representation enables practitioners
to assess implementation readiness by evaluating capability
across all three pillars and identifying gaps that may limit
effectiveness.

7 | Looking into the future

Critical advances across research, industry, and policy domains
are entailed in the future development of Al-driven sustain-
able building design. Next-generation foundation models are
a key frontier that, if they can be well developed, have the
potential to radically improve our ability to address climate
challenges through architecture. Therefore, these models must
evolve to include domain-specific architectural knowledge and
architectural climate science. Specialized architectural founda-
tion models will no doubt outperform general-purpose Al systems
in sustainable design tasks by order of magnitude, especially
in tackling complex climate adaptation tasks. Multimodal AI
systems for architectural design are promising if they can
seamlessly integrate visual, textual, and numerical data sources
to produce comprehensive, sustainable design solutions. As
environmental data becomes increasingly complex and large in
size, these systems will have to process and generate physically
viable and aesthetically coherent architectural solutions. Current
limitations in training data have constrained AI model’s effec-
tiveness in field applications, implying that data adequacy and
quality improvement are critical. For developing more robust
Al systems, industry-wide initiatives for standardized data col-
lection and sharing protocols, such as federated learning [137].
(training machine learning model, for instance, deep neural
networks, on multiple local datasets contained in local nodes
without explicitly exchanging data samples), would be a viable
solution. Collaborative initiatives, such as DeepSeek’s federated
learning platforms for decentralized architectural datasets, offer
a potential pathway to overcoming data silos in the industry
[138]. Such a framework allows securing privacy-protected model
training between worldwide design firms, which will speed up the
development process for specialized foundation models designed
for climate adaptation. However, challenges remain in aligning
cross-organizational data standards, ensuring model generaliz-
ability across regions, and addressing the high computational cost
of training large-scale foundation models.

As AT’s capabilities expand, it is inevitable that architectural
practice and education need to be transformed [131]. We contend
that traditional practice structures need to evolve to incorporate
Al expertise without losing core architectural competencies.
The hybrid practice model experiments pioneered by leading
universities and studios, already allowing Al specialists to work
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alongside traditional architectural roles, point to a future where
technical and creative expertise is more deeply integrated. Sub-
stantial revision or transformation in education and training
requirements is entailed. Universities need to develop curricula
balancing traditional architectural education and literacy in Al
and sustainable building design principles.

Collaboration frameworks between human architects and Al
systems need to be carefully developed to balance the capa-
bilities of AI with human creativity and judgment [139]. Both
technical risks and professional liability considerations must
be addressed by risk management strategies. Development of
regulatory frameworks to guide and govern AI use, balancing
innovation, public safety, and environmental consequences, is
required [140]. International coordination of standard develop-
ment requirements is required for both technical performance
and sustainability metrics. Implementation guidelines must be
made more comprehensive and accessible, where a staged imple-
mentation approach might be the most effective path forward.
A critical long-term goal of international harmonization of Al
standards should be advanced through early efforts in collabora-
tion, which may help accelerate the global adoption of sustainable
building design practices [141]. The AI-Climate-Building Integra-
tion (ACBI) framework introduced in this work offers specific
testable propositions for future research. First, we hypothesize
that the quality of technical integration, which is measured by
data exchange completeness, latency, and error rates, positively
predicts the accuracy of Al-generated climate-responsive design
recommendations. Second, we propose that climate response
effectiveness, which is measured by the performance gap between
predicted and actual building outcomes under varying climate
conditions, mediates the relationship between AI capability
and sustainable building achievement. Third, we suggest that
governance maturity, which is measured by the presence of
validation standards, liability frameworks, and data protocols,
moderates the deployment speed and scale of Al-driven solutions.

These propositions can be empirically tested through longitudinal
studies of Al implementation across building projects, enabling
systematic comparison and knowledge accumulation that moves
the field beyond case-specific descriptions toward generalizable
theory.

In Figure 8, we piloted a general ACBI framework for AI-
driven sustainable building design. The framework proposes four
interconnected development streams with hypothesized causal
relationships. Testable Propositions: (1) Advances in foundation
model development positively predict improvements in climate
scenario processing accuracy; (2) Data-sharing protocol maturity
mediates the relationship between technical capability and prac-
tical implementation success; (3) Regulatory framework devel-
opment moderates the translation of AI capabilities into built
outcomes; (4) Human-AI collaboration effectiveness depends
on educational preparation and workflow integration. These
propositions provide a basis for systematic empirical investigation
across building projects and jurisdictions, which can eventually
converge and fundamentally reshape how architectural practice
works in the decades to come. To succeed in tackling climate
change challenges through Al-driven sustainable architecture
design, we need coordinated efforts across research, industry,
and policy domains. While the challenges look tough, the
potential of Al to contribute to sustainable and future climate-
responsive architecture is substantial, which is worth investment
and development from both academia and industry.

8 | Conclusions

Al integration in sustainable building design is a game changer
in how climate change impact can be mitigated for future built
environments. Through this work, we show how Al technologies,
from foundation models to generative systems, change our capac-
ity to create climate-responsive architecture. This transformation
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is reflected in four interrelated dimensions: enhanced awareness
of future climate conditions, integration of multi-source envi-
ronmental and design data, automated yet interactive generation
of sustainable design alternatives, and coordination across form,
material, and operation from the early design stages. By bringing
together traditional sustainable design principles and advanced
Al capabilities, there are opportunities that have never been seen

before in efficient optimization of physical performance, mini-
mization of environmental impact, and enhancement of climate
resilience for buildings. Nevertheless, there are still challenges
confronted in fully exploiting the capabilities of sustainable
architecture design enabled by Al. Key barriers, including data
infrastructure, validation frameworks, and workflow integration,
are discussed in detail.
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the relationship between technical capability and practical implementation success; (P3) Regulatory framework development moderates the translation
of Al capabilities into built outcomes; (P4) Human-Al collaboration effectiveness depends on educational preparation and workflow integration. These
propositions provide a basis for systematic empirical investigation across building projects and jurisdictions. Research & Technical Development:
The development of research-based technologies in multimodal AI systems requires enhanced accuracy in generation capabilities, along with better
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into decentralized systems that facilitate standardized integration for resolving data silos through structured platforms. Practice Evolution: Hybrid
practice models that unite AI-driven design systems with traditional architectural roles enhance educational and training methods by fostering balanced
learning environments between architectural fundamentals, sustainable design principles, and Al literacy. Standards and Governance: National entities
and developers need to create regulatory frameworks for sustainable architectural design which serves to direct and monitor Al implementation. All
these country-specific or institution-based regulatory guidelines shall eventually come together to create international standards that enable worldwide
strategic management of Al risks for sustainable architectural design.

We propose that research efforts should be directed toward
the development of the next-generation AI systems that are
capable of dealing with the challenges of sustainable building
design more efficiently. This involves advancing multimodal AI
architectures that can integrate and interpret multiple data and
design criteria, boost the accuracy and reliability of building per-
formance prediction in future climate conditions, and develop a
more effective human-AlI collaboration and interaction paradigm.
Additionally, the capability of AI systems to respond to future
climate uncertainties and adaptation needs must be improved.

In this case, our trilateral recommendation toward the progres-
sive design of sustainable buildings incorporating Al includes: (1)
architectural practices need to adapt toward the creation of multi-
dimensional frameworks to ensure harmonization between inno-
vation and risk mitigation; (2) higher education institutions need
to revise their curricular programs to prepare future designers
with Al-related skills and the general principles of sustainable
architecture; and (3) policy-makers need to develop strategies to
implement flexible, performance-based regulatory systems that
balance the need to embrace innovative technologies and the
need to ensure accountability and responsibility. The capacity
to utilize AI’s capabilities to the best of our existing experience
and knowledge, while keeping the core human elements of

architectural design, will determine the future of sustainable
architecture. As climate change looms as a challenge across
all aspects of our practice, integrating Al into architectural
practice is more important than ever. We appeal for cross-domain
collaboration between research, industry, and policymaking with
mutual commitment to technological and policy innovation to
achieve success in future sustainable building design.
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