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A B S T R A C T

Spatial layout significantly impacts building energy performance, yet systematic optimization 
methods across different climates remain limited. This research develops an integrated three- 
stage framework combining automated layout generation, evolutionary optimization, and 
explainable artificial intelligence (XAI) to reduce energy consumption in mixed-use office 
buildings. Using a typical eight-story office building, we conducted comparative analysis across 
five Chinese climate zones: severely cold (Harbin), cold (Beijing), hot summer-cold winter 
(Shanghai), subtropical (Shenzhen), and mild (Kunming). In Stage 1 - Layout Generation, grid- 
based algorithms with geometric constraints automatically generate energy-efficient spatial 
configurations. In Stage 2 - Optimization, evolutionary algorithms (SPEA-2 and HypE) integrated 
with building energy simulation minimize cooling and heating loads, generating over 1700 
optimized solutions per climate zone. In Stage 3 - XAI Interpretation, random forest models 
predict energy performance with high accuracy (R2 = 0.801–0.874), while SHAP analysis 
quantifies the contribution of 26 spatial layout features.

Results demonstrate substantial energy savings potential. Subtropical climate (Shenzhen) 
achieves the best absolute performance with 17.25 % reduction in total loads, while mild climate 
(Kunming) shows the highest percentage reduction at 24.91 %. Average energy savings across all 
climate zones range from 9.67 % to 13.60 % for heating-dominated regions. SHAP analysis re
veals climate-specific design strategies. It is found that orientation area distribution is the most 
critical factor for subtropical climates, while space centralization and space adjacency optimi
zation are essential for cold regions. This methodology provides architects and engineers with 
computationally efficient, evidence-based tools for climate-adaptive sustainable building design 
during early planning stages.
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Nomenclature
Abbreviation

AI Artificial Intelligence ​
ANN Artificial Neural Network ​
HVAC Heating, Ventilation, and Air Conditioning ​
HypE Hypervolume Estimation Algorithm ​
IPCC Intergovernmental Panel on Climate Change ​
MAPE Mean Absolute Percentage Error ​
ML Machine Learning ​
MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition ​
NRMSE Normalized Root Mean Square Error ​
NSDE Non-dominated Sorting Differential Evolution ​
NSGA-II Non-dominated Sorting Genetic Algorithm II ​
R2 Coefficient of Determination ​
RF Random Forest ​
RMSE Root Mean Square Error ​
SHAP SHapley Additive exPlanations ​
SPEA-2 Strength Pareto Evolutionary Algorithm 2 ​
TMY Typical Meteorological Year ​
UNEP United Nations Environment Programme ​
WWR Window-to-Wall Ratio ​
XAI Explainable Artificial Intelligence ​

Variable Description Unit
Agenerated(z) Generated area for zone z m2

Amin(z) Minimum area requirement for zone z m2

Amax(z) Maximum area requirement for zone z m2

Ademand(z) Required area for zone z m2

Acurrent(z) Current area of zone z during growth m2

ϕ0 Expected model output over baseline dataset –
ϕi(x) ϕi(x) SHAP value for feature i –
ht(x) Prediction from the tth decision tree –
T Number of decision trees in random forest –
τ Area tolerance parameter –
Ui,j,k Spatial unit at coordinates (i,j,k) –

1. Introduction

The construction industry plays a significant role in global energy consumption in the face of the global climate change challenge. 
According to United Nations Environment Programme (UNEP) and the Global Construction Alliance, the global construction industry 
accounted for 32 % of total global energy consumption and 34 % of global carbon emissions as of 2023 [1]. With rising living standards 
globally, building energy consumption continues to grow, making energy efficiency interventions increasingly urgent. Meanwhile, 
IPCC suggested that the construction sector has great potential for emission reduction and relatively lower costs [2]. This combination 
of high emissions contribution and significant reduction potential positions the construction sector as a critical lever for achieving 
carbon peak and carbon neutrality goals. Building energy efficiency is an overall optimization issue that requires comprehensive 
consideration and collaboration from multiple fields through the entire design process, which needs to balance influencing factors such 
as passive and active design strategies. According to the ANNEX-30 project study by the International Energy Agency, the performance 
of buildings is largely influenced by the early design stage, and decisions made in the early design stage have more than 40 % potential 
for energy savings [3]. Therefore, understanding and optimizing early-stage design decisions is fundamental to achieving substantial 
energy reductions in the built environment. Among the various design factors affecting building energy performance, building en
velope and shape have been extensively studied as primary determinants. Building envelope performance, including thermal insu
lation properties, window-to-wall ratios, and material selection, directly influences heat transfer between interior and exterior 
environments [4–7]. Evolutionary optimization approaches have been widely applied to envelope design across different climate and 
seismic zones, demonstrating significant potential in energy saving and carbon emission reduction [8].

Recent advances in AI-based and optimization-driven approaches also have significantly expanded the scope of computational 
building design. Advanced computational methods, including artificial neural network-based genetic algorithms, have proven 
effective in optimizing building geometry for thermal energy efficiency in public buildings [9]. Parametric design frameworks inte
grated with genetic algorithms have been applied to optimize climate-responsive building passive strategies [10]. On urban scale, they 
have also been applied to optimize urban morphology, building density, and street configurations for energy efficiency and envi
ronmental performance [11]. Deep learning methods, particularly generative adversarial networks, have demonstrated capability in 
predicting urban-scale energy consumption patterns and generating energy-efficient building forms [12]. Reinforcement learning 
approaches have been employed for real-time building energy management and HVAC control optimization [13]. Multi-objective 
optimization frameworks combining building performance simulation have enabled optimization of building energy systems [14].

Building shape factors, such as aspect ratio, compactness, and surface-to-volume ratio, substantially affect energy consumption 
patterns [15,16]. However, beyond envelope and shape optimization, studies in the past decade have revealed that building spatial 
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layout, which refers to the internal arrangement of functional spaces, represents another critical yet understudied dimension of 
early-stage energy efficiency design. It is found that effective spatial layout design can reduce unnecessary energy consumption and 
improve the overall sustainability of the building [17]. Hence, the impact of building spatial plans on energy consumption is a key 
factor in energy conservation design, especially in the early stages of building design [18–20]. Conventional design methods have 
struggled to meet complex optimization requirements, while computational design and machine learning models, as emerging tools, 
have provided important support for building performance optimization [21]. Computational design, through computer simulation 
and optimization algorithms, predicts the performance of the building layout in the early design stage and can evaluate the perfor
mance of different schemes in terms of energy efficiency, natural lighting, thermal comfort, etc. [22,23]. This computational 
design-based approach can improve design efficiency, guide design decisions, and provide an important basis for building energy 
conservation. Meanwhile, the machine learning methods can effectively facilitates the prediction of complex relationship between 
building layout and energy consumption by analyzing historical data [24]. Compared with traditional physical simulation, machine 
learning can handle more variables, perform evolutionary optimization, and propose optimal design schemes, especially under 
different climatic conditions [25]. These models provide data-driven decision support for design teams to help achieve energy-efficient 
design and emission reduction targets. By combining computational design with machine learning, architectural design can achieve an 
integrated optimization of multiple goals such as energy efficiency, comfort, and environmental adaptability. The emerging methods 
now equip designers with better approaches in rapid decision-making and drive progress in sustainable development and carbon 
reduction efforts in the construction industry.

The remainder of this paper is organized as follows: Section 2 presents a comprehensive literature review examining the impact of 
spatial layout on building energy performance, climate-adaptive design strategies, and the application of simulation-based optimi
zation and machine learning methods in building performance research. Section 3 describes the research methodology and framework, 
including the automated spatial layout generation algorithm, machine learning-based energy prediction model, spatial layout design 
variables and feature engineering, optimization problem formulation, and case study building configuration across five climate zones. 
Section 4 presents and discusses the results, analyzing climate-specific impacts of spatial layout on building energy performance, 
validating the machine learning model performance, and providing interpretability analysis using explainable AI to reveal design 
mechanisms. Section 5 concludes the paper by summarizing key findings, discussing climate-specific design strategies, acknowledging 
research limitations, and suggesting directions for future work.

2. Literature review

Under the condition of a fixed building form, spatial layout inside the building is shown to exert significant impact on energy 
consumption [17]. Du et al. found that an office building in Sweden can reduce its annual heating and cooling energy demands by 14 % 
and 57 % respectively by changing spatial layout, while a certain office building in the UK reduced its peak lighting demands by 67 % 
and 43 % respectively by changing the layout [26]. In addition, Du Tiantian et al. took an office building as an example and proposed 
11 different spatial layout schemes under a fixed building profile [18]. They investigated the building performance of the research 
object in three different climates (temperate, cold and tropical) and three typical cities (Amsterdam, Harbin and Singapore) and 
conducted lighting and energy consumption simulations. The results show that under a fixed building profile, Optimizing spatial 
layout scheme can significantly reduce the energy consumption of buildings. Therefore, it is evident that even within the same building 
outline, a reasonable spatial layout of the building can effectively improve the overall energy consumption performance of the 
building.

The influence of spatial layout on building performance is mainly reflected in multiple aspects such as the organization mode of 
cooling and heating needs, the coordination degree between building orientation and natural lighting resources, the formation of 
ventilation paths and the influence on natural ventilation efficiency, as well as the spatial integration relationship between different 
usage periods and energy consumption patterns. For example, when high-energy-demand spaces are concentrated in the core area of a 
building far from the envelope, heat transfer loss can be effectively reduced [27]; Placing office areas with high daylight resource not 
only improves the quality of lighting but also reduces lighting energy consumption [28]; In addition, a well-organized flow line can 
enhance the efficiency of natural ventilation and reduce reliance on mechanical systems. If the operating hours of different spatial 
layouts and the pattern of heat load changes can be matched with each other, it will also help improve the operational efficiency of the 
building system [29]. The mutual coupling and dynamic interaction of these factors in architectural space make the influence of spatial 
layout on the energy performance of buildings show a high degree of complexity and adaptive differences [30].

Moreover, in the context of global climate change, passive measures are essential to improve the energy performance and climate 
adaptability of buildings [6]. The rational choice of design strategies has significant regional characteristics in different climate 
conditions, and the same type of energy efficiency measures may even have opposite results in different climate zones. Therefore, 
formulating building design strategies based on local conditions is the key path to achieving building energy conservation goals. 
Taking the insulation performance of the envelope as an example, it is considered crucial to enhance the insulation effect of the en
velope in temperate climates, and this view has been verified in southern Chile, but in some other regions, increasing insulation poses 
the risk of overheating [31,32]. It is also emphasized by previous research that the applicability of passive measures is closely related to 
climatic characteristics, even with changing future climate conditions [6].

Similarly, the overall building spatial layout also has different influence mechanisms on building energy consumption in different 
climate zones. Recent studies have conducted case studies and analyses based on specific climatic conditions and specific building 
types. In cold regions of China, Shi et al. investigated the building layout and energy consumption of 30 public hospitals in cold regions 
of China, classified the layout patterns of outpatient and inpatient departments, analyzed and compared with energy consumption 
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data, and found that among the sampled hospital cases, the general outpatient department had the highest energy-saving rate of 16.3 % 
by using the grid-like courtyard layout. The "L" layout in the inpatient department achieved the highest energy efficiency (5.9 %) [33]. 
Dai et al. investigated the impact of university building layouts on energy performance in the cold and dry Xinjiang region. They 
conducted energy consumption simulation on five typical layouts of individual university buildings using EnergyPlus, and the results 
showed that in the cold region, the lower zone atrium layout consumed more energy than the intra-zone corridor and single-side 
corridor layouts [34]. In the cold region, Cheng et al. used DesignBuilder software to simulate the energy consumption of six 
typical rural residential layouts and found that the building layout had a greater impact on heating energy consumption and a smaller 
impact on cooling energy consumption, among which the rectangular building layout had the best energy-saving effect [35].

In addition to studies in a single climate zone, there were also studies comparing the effects of building geometry and layout on 
energy consumption under different climate conditions. Irina Susorova et al. examined the impact of building and window geometry 
parameters on energy consumption and energy savings in office buildings and found that in tropical climates, medium and large 
window areas with a window-to-wall ratio of (WWR) 50–80 % in medium and high depth rooms (9–15 m) could achieve maximum 
energy savings; In temperate climates, medium and high depth rooms (6–15 m) achieved better energy savings with medium and large 
window areas (WWR 50–60 %). In cold climates, energy savings mainly occurred with small window areas (WWR 20–30 %) in shallow 
rooms (6 m) and medium and high depths (9–15 m) in south-facing rooms. Medium and large window sizes (WWR 50–80 %), while 
south-facing rooms generally have better energy performance in all climates [36]. Du et al. analyzed the impact of spatial layout on 
building energy demand under three climatic conditions: Amsterdam, Harbin, and Singapore, and found that in temperate climates, 
spatial layout had the highest impact on energy performance, especially in terms of lighting requirements; In cold climates, the impact 
of spatial layout on energy performance is relatively small; In tropical climates, spatial layout has the least impact on building energy 
performance [18]. There are significant differences in response mechanisms to building spatial layout across different climate zones. 
These differences are mainly influenced by a combination of solar radiation intensity, temperature and humidity conditions, venti
lation potential, and the type of heat load dominant (heating or cooling). Therefore, exploring climate-sensitive spatial layout stra
tegies is an important direction for promoting the construction of energy-efficient and climate-adaptive design systems in buildings. A 
comprehensive overview of the literature on building spatial layout and building performance related domains is presented in Table 1.

To sum up, climate factors play a crucial role in the impact of building layout on energy performance. Only by combining specific 
climatic conditions can one optimize spatial layout to effectively improve building energy performance. Nevertheless, compared to 
other architectural design elements, there are relatively few specific studies on the energy performance of building spatial layout under 
different climatic conditions. At present, most of the research on spatial layouts is focused on cold climate zones, while research on 
other climate zones is relatively scarce. In these case studies, many are based on specific building types, first summarizing and 
classifying existing buildings, and then conducting in-depth analyses of typical layouts. While this approach can provide more specific 
and targeted research results, it also has obvious limitations. For example, due to the limited number of cases of research subjects, the 
conclusions drawn may not have broad applicability. At the same time, in real-world case studies, it is difficult to completely eliminate 
the influence of other possible interfering factors on the research results. It is worth noting that the effects of various elements in 
building spatial layout on energy performance are complex and interrelated. However, most current studies have not conducted 
quantitative analyses of these influencing factors to clearly explore their specific relationship with building energy performance.

On the other hand, traditional research on building energy conservation mostly focuses on single-objective optimization or 
empirical rules, making it difficult to systematically deal with a large number of high-dimensional design variables and their complex 
combination relationships involved in building spatial layouts. In recent years, building energy consumption simulation, as one of the 
most core supporting technologies for achieving performance-driven optimization, has been playing an increasingly crucial role in 
multi-scale and multi-stage building carbon reduction practices [37]. Meanwhile, simulation-based optimization has shown unique 
advantages in dealing with the discontinuity, multimodal characteristics, target conflicts and uncertainties of building optimization 
problems [38].Among them, simulation optimization methods represented by evolutionary algorithms (such as NSGA-II, MOEA/D, 
NSDE, etc.) are widely used in building performance evaluation [38,39]. This method can seek a balance among multiple building 
performance objectives, generate Pareto optimal solution sets, and provide a technical path for multi-dimensional co-optimization of 
building performance. Research on the combination of building energy consumption simulation and evolutionary algorithms has 
achieved remarkable results in various types of buildings, including residential and office buildings [40–43]. These tools enable 
efficient construction, iteration and evaluation of design schemes in the simulation-optimization cycle.

Nonetheless, a number of key research gaps in terms of comprehension and the optimization of buildings spatial layouts in different 
climatic environments exist despite these technological improvements. The available studies are largely single-climate, or on case 
studies, with no systematic cross-climate comparative analysis employing uniform methodologies. Although computational optimi
zation and machine learning have demonstrated sufficient capabilities in their respective domains, they have not yet been fully 
deployed, at least when applied to spatial layout problems, to exploit explainable AI methods to give interpretable interpretations of 
the complex layout-energy relationships. In addition, the literature on predetermined layouts tends to be based on ad hoc layouts with 
no formal quantification of the relative significance of the spatial variables and no investigation of the non-linear interactions of 
variables at a range of climate conditions. Despite these technological improvements in spatial layout research, several critical research 
gaps remain:

Gap 1: Lack of systematic cross-climate comparative analysis. Existing spatial layout studies are predominantly single-climate in
vestigations or building-specific case studies (e.g., Shi et al. [33] focusing solely on cold regions, Dai et al. [34] examining only 
Xinjiang climate). No systematic cross-climate comparative analysis employing uniform methodologies, consistent building typol
ogies, and standardized evaluation metrics has been conducted to identify both universal design principles and climate-dependent 
strategies.
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Table 1 
Summary of literature on building spatial layout and building performance related studies.

Authors Year Study Focus Climate/Location Building Type Key Findings Methodology Limitations

Hemsath et al. 
[15]

2015 Building geometry effects on 
energy use

General Generic 
buildings

Aspect ratio and volume stacking reduce energy 
consumption

Sensitivity analysis Limited to geometric 
parameters

Du & Tiantian 
[26]

2020 Space layout effects on energy 
demand

Sweden, UK Office buildings 14–67 % reduction in heating, cooling, and lighting 
demands

Case study analysis Specific cases, small 
sample

Du et al. [18] 2021 Space layout impact across 
climates

Amsterdam, Harbin, 
Singapore

Office buildings Temperate: highest impact; Cold: small impact; 
Tropical: least impact

Energy simulation 11 predefined layouts 
only

Shi et al. [33] 2021 Hospital building layout and 
energy consumption

Cold regions of China Public hospitals Grid courtyard: 16.3 % savings; "L" layout: 5.9 % 
savings

Statistical analysis Building-specific, single 
climate

Dai et al. [34] 2019 University building layout effects Xinjiang, China University 
buildings

Atrium layouts consume more energy than corridor 
layouts

EnergyPlus 
simulation

5 layouts, single climate

Cheng et al. 
[35]

2019 Rural residential layout 
optimization

Cold region of China Rural 
residences

Rectangular layout optimal; heating > cooling 
impact

DesignBuilder 
simulation

Rural-specific, limited 
variations

Susorova et al. 
[36]

2013 Building and window geometry 
parameters

Tropical, temperate, 
cold

Office buildings Climate-specific WWR: 50–80 % (tropical), 50–60 % 
(temperate), 20–30 % (cold)

Parametric analysis Window focus, not 
comprehensive
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Gap 2: Limited application of explainable AI to spatial layout optimization. Although computational optimization and machine learning 
have demonstrated capabilities in building performance prediction, they have not been fully deployed in spatial layout problems to 
provide interpretable explanations of complex layout-energy relationships. Most studies treat optimization algorithms and machine 
learning models as "black boxes," offering optimized solutions without revealing the underlying design mechanisms or the relative 
importance of different spatial variables.

Gap 3: Absence of formal quantification of spatial layout variables. The literature on spatial layouts predominantly relies on pre
determined, ad hoc layout configurations (e.g., Du et al. [18] examined limited number of predefined layouts) without formal 
quantification of spatial variables such as concentration/dispersion patterns, orientation distributions, and adjacency relationships. 
This limits understanding of which specific spatial characteristics drive energy performance and how these characteristics interact 
non-linearly under different climate conditions.

Gap 4: Limited integration of automated generation with optimization. While evolutionary algorithms have been successfully applied to 
envelope and form optimization, their application to spatial layout generation remains limited. Most spatial layout studies evaluate 
manually designed alternatives rather than employing automated generation methods capable of systematically exploring vast design 
spaces while satisfying complex geometric, functional, and regulatory constraints.

Compared to the existing studies, this research compensates for the mentioned gaps by creating a coherent research framework 
integrating the automated generation of spatial layouts and evolutionary optimization with explainable machine learning analysis. We 
developed an automated 3D spatial layout generation method using grid-based algorithms implemented in Rhino-Grasshopper with 
customized Python code, enabling systematic exploration of energy-efficient design alternatives. The generated layouts are optimized 
using evolutionary algorithms (SPEA-2 and HypE) integrated with building energy simulation (Honeybee/EnergyPlus) across five 
Chinese climate zones: severely cold (Harbin), cold (Beijing), hot summer-cold winter (Shanghai), subtropical (Shenzhen), and mild 
(Kunming). Random forest regression models predict energy performance from 26 spatial layout features with high accuracy (R2 >

0.87), while SHapley Additive exPlanations (SHAP) analysis quantifies feature contributions to reveal climate-specific design mech
anisms. This systematic cross-climate comparison using consistent building typology and evaluation metrics demonstrates 9.67 %– 
24.91 % energy savings and identifies that orientation distribution optimization is critical for subtropical climates while space 
centralization is essential for cold regions, providing architects and engineers with evidence-based tools for climate-adaptive sus
tainable building design during early planning stages.

3. Methodology and research framework

3.1. Overall research framework and workflow

This study explores the impact of different spatial layouts on building energy consumption by constructing a research framework 
combining evolutionary optimization and proxy models. The overall process includes three stages as shown in Fig. 1, including data 
preparation, layout generation and optimization, and energy consumption analysis. Data preparation includes spatial layout re
quirements, building exterior profile shapes, and typical weather documents. Space requirements define the area requirements for 
each space inside the building, providing a basis for generating the spatial layout; The outline shape of the building, as a geometric 
constraint, limits the spatial range for layout optimization. In the optimization generation stage, the 3D building spatial layout gen
eration method was used to achieve automatic generation and optimization evaluation of energy-saving oriented spatial layout 
through energy-saving oriented evolutionary algorithms. Based on a fixed building profile, the tool generates multiple sets of spatial 
layout schemes that meet spatial layout requirements and have low energy consumption performance through iterative calculations, 
laying the foundation for further analysis of the simulation data. In the energy consumption analysis phase, an efficient energy 
consumption prediction proxy model was constructed using the random forest model and combined with interpretable artificial in
telligence technology (SHAP value analysis) to reveal the complex relationship between spatial layout and building energy con
sumption. Through model analysis and statistical summary, the study identified the specific impact of different spatial layouts on 
building energy consumption under multiple climatic conditions.

Fig. 1. Diagram of the framework of the paper.
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3.2. Automated spatial layout generation method

This study develops an automated spatial layout generation method that combines inverse workflow design principles with 
computational optimization to generate energy-efficient building layouts. The method operates on the Rhino-Grasshopper platform 
and utilizes custom Python algorithms to systematically explore the design space while satisfying both space use requirements and 
energy performance objectives under multiple design constraints.

3.2.1. Inverse design workflow framework
The work implements an inverse workflow approach where energy performance targets and spatial requirements drive the design 

process, rather than traditional forward design methods that evaluate performance after layout creation. This approach consists of 
three core stages: (1) establishing energy performance requirements and spatial programming constraints, (2) applying generative 
algorithms to automatically produce layout configurations, and (3) optimizing generated layouts through energy simulation feedback 
to identify optimal solutions. The inverse methodology enables direct exploration of energy-efficient design alternatives, significantly 
improving computational efficiency compared to conventional trial-and-error approaches.

3.2.2. Design constraints and generation rules
The spatial layout generation method operates under multiple constraint categories that ensure generated layouts meet both space 

use and regulatory requirements. Geometric constraints define the spatial boundaries and structural limitations, including building 
envelope boundaries, column grid alignment requirements, and floor height restrictions. The method enforces strict adherence to the 
building’s external contour while maintaining compatibility with the structural system. Functional constraints ensure that generated 
layouts satisfy programmatic requirements and operational needs. These include minimum and maximum area requirements for each 
zone, defined as: 

Amin(z)≤Agenerated(z) ≤ Amax(z)

where Agenerated(z) represents the actual generated area for zone z. Additionally, space use constraints encompass adjacency re
quirements between specific zones, accessibility standards for circulation paths, and floor assignment restrictions for certain spaces.

Connectivity constraints maintain spatial coherence and ensure proper circulation throughout the building. The method enforces 
zone contiguity requirements, preventing fragmented spaces that could compromise operational efficiency. Vertical circulation 
accessibility is mandatory for all zones, with the algorithm verifying that each space maintains connection to primary circulation 
systems. The connectivity validation function can be expressed as: 

Connectivity(z)=
∑

u∈z
Adjacent(u, circulation) ≥ 1 

where u represents individual spatial units within zone z, and Adjacent(u, circulation) evaluates proximity to circulation systems.
Regulatory constraints ensure compliance with building codes and safety requirements, including minimum egress path widths, 

maximum travel distances to exits, and fire separation requirements between specific zones. The method incorporates these constraints 
through rule-based validation systems that continuously monitor generated layouts against established criteria. These constraints are 
parameterized through: building contour polylines and column grid spacing for geometric boundaries; space requirements tables with 
area bounds and adjacency matrices for functional requirements; graph-based representations for connectivity validation; and rule- 
based functions for regulatory compliance based on Chinese building codes.

3.2.3. 3D spatial layout generation algorithm

3.2.3.1. Grid-based spatial representation. The generation process begins with a grid-based spatial representation system that dis
cretizes the building volume into manageable spatial units. To accommodate irregular building geometries, the algorithm employs a 

Fig. 2. Ideal mesh model for buildings.
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two-stage grid projection method. First, an ideal orthogonal 3D grid is established based on the building’s structural column network, 
providing a systematic framework for spatial organization. This ideal grid is then projected onto the actual building geometry, 
transforming regular spatial units into building-specific volumes while preserving spatial relationships and adjacency requirements, 
which is shown in Fig. 2.

The transformation process maintains spatial continuity through geometric mapping spaces that preserve topological relationships 
between adjacent units. For a spatial unit Ui,j,k in the ideal grid at coordinates (i, j, k), the corresponding projected unit Uʹ

i,j,k in the 
irregular building form is calculated using: 

Uʹi, j, k=T
(
Ui, j, k,Gbuilding

)

where T represents the transformation function and Gbuilding defines the building’s geometric constraints. This approach ensures that 
spatial allocation logic remains consistent regardless of building form complexity.

3.2.3.2. Zone growth algorithm. The spatial layout generation employs a zone growth algorithm that simulates the organic expansion 
of spatial layout from designated starting points. The algorithm operates on two parameter sets: fixed parameters defining space use 
requirements (zone, area_demand, area_tolerance, floor) and variable control parameters governing growth patterns (start_unit, 
step_len, direction).

The growth process follows an iterative expansion mechanism where spaces expand from initial seed units according to specified 
growth rules. For each zone space z, the algorithm calculates the current area Acurrent(z) and compares it against the required area 
Ademand(z) with tolerance τ: 

Growth Complete(z)=Acurrent(z) ≥ Ademand(z)×

The zone expansion follows directional priorities defined by the direction parameter, with growth step lengths controlled by step_len 
values. Adjacent vacant units are systematically incorporated into expanding zones based on connectivity rules and spatial constraints. 
The generation process is illustrated and visualized in Fig. 3.

3.2.4. Algorithm implementation
The complete layout generation process is formalized through two complementary algorithms. 

Algorithm 1. - Main Layout Generation: This algorithm coordinates the overall generation process, beginning with vertical cir
culation core establishment through create_transport_plan(.), followed by core vertical extension via crea

te_vertical_mass(.). Functional zones are then simultaneously grown using grow_program(.), with any remaining vacant 
spaces filled through fill_program(.). The pseudocode of Algorithm 1 can be found in Appendix 1.

Algorithm 2. - Iterative Growth Process: This algorithm manages the stepwise expansion of individual zones. The process 

Fig. 3. Illustration of spatial layout growth process: (a) Initial state with starting units (b) Parameter structure and data flow (c) Zone growth 
progression.
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initializes with starting point assignment based on gene data, then iteratively expands zones according to directional sequences and 
step lengths while monitoring area constraints and adjacency requirements. The pseudocode of Algorithm 2 can be found in 
Appendix 2.

The growth termination criteria can ensure that zones achieve required areas within specified tolerances or exhaust available 
expansion opportunities. When a zone cannot continue growing from its current configuration, the algorithm selects new vacant units 
as alternative starting points, ensuring comprehensive space utilization. The constraint validation system operates continuously during 
the generation process, rejecting invalid configurations immediately and redirecting the algorithm toward feasible solutions. The rapid 
generation capability of the proposed method enables extensive design space exploration within practical time constraints. The al
gorithm successfully handles both regular orthogonal building forms and irregular geometric configurations while maintaining space 
connectivity and spatial coherence under all imposed constraints.

3.3. Machine learning-based energy prediction model

Building energy consumption analysis involves complex, multidimensional variables with highly nonlinear relationships that 
traditional analytical methods struggle to capture effectively. This study develops a comprehensive machine learning-based prediction 
framework combining random forest regression with explainable artificial intelligence (XAI) techniques to provide both accurate 
predictions and interpretable insights into spatial layout-energy performance relationships.

3.3.1. Random forest regression model
Random forest, an ensemble learning technique widely used for regression analysis [44], demonstrates superior performance in 

building energy consumption prediction due to fewer parameters, stronger generalization ability, and exceptional resistance to 
overfitting compared to other methods [45,46]. The algorithm creates T decision trees trained on bootstrap samples of the original 
data, with final energy consumption predictions calculated as: 

ŷ =
1
T
∑T

t=1
ht(x)

where ht(x) represents the prediction from the t-th tree for input features x. This averaging process reduces variance and improves 
prediction stability while naturally handling missing values and mixed data types with minimal hyperparameter tuning requirements.

3.3.2. Explainable AI (SHAP) analysis
To address the "black box" nature of machine learning models [47,48], this study employs SHAP (SHapley Additive exPlanations) 

analysis [49–51] based on cooperative game theory concepts. SHAP quantifies each input variable’s importance to model predictions 
by decomposing outputs into additive feature contributions: 

f(x)=ϕ0 +
∑m

i=1
ϕi(x)

where ϕ0 represents expected model output over the baseline dataset, and ϕi(x) denotes the SHAP value for feature i. SHAP provides 
both global interpretability (overall feature importance patterns across the dataset) and local interpretability (explanations for indi
vidual predictions) [52,53]., enabling architects to understand how specific layout configurations achieve their energy performance 
outcomes through multiple visualization techniques including feature importance plots, dependence plots, and waterfall plots.

By combining random forest modeling with XAI technology, this framework not only predicts building energy consumption but also 
explains prediction results, enabling architects to understand the specific impact of design decisions on energy efficiency and providing 
reliable tools for optimizing building performance during early design stages.

Table 2 
Characteristics and abbreviations of the impact of building layout on building energy consumption performance.

Characteristics Office Meetings Cafeteria Serviced apartment

Number of floor areas OC MC CC AC
North-facing area ON MN CN AN
East-facing area OE ME CE AE
South-facing area OS MS CS AS
West facing area OW MW CW AW
Office proximity area – O-M O-C O-A
Adjacent area of the meeting O-M – M-C M-A
Area adjacent to the cafeteria O-C M-C – C-A
Hotel-style apartment adjacent area O-A M-A C-A –
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3.4. Spatial layout design variables and feature engineering

To gain a more detailed understanding of the mechanism by which spatial layout affects building energy consumption, this paper 
quantitatively assesses the impact of spatial layout on building energy consumption through three aspects: the concentration and 
dispersion of space, the orientation of space, and the proximity between spaces. A total of 26 features related to building layout in three 
major categories were recorded in each individual energy consumption simulation in the iterative optimization to quantify the factors 
that affect building layout on building heat load. The three categories are: the number of planar areas of each space, the facing area of 
each space, and the adjacent area between each space. The specific factors in each category and their English abbreviations are shown 
in Table 2.

When preparing for the spatial layout generation, each space is divided to be concentrated or dispersed, and the number of planar 
areas for each space is used to quantitatively study the influence of this part. When a certain type of space is arranged in more dispersed 
areas, the number of its planar areas is greater; conversely, it is arranged in a more concentrated manner.

The space orientation is used to quantitatively assess the impact of the orientation of each space on the building’s heat load. Since 
the overall orientation of the building is due south, the orientation area of the space is determined by the sum of the facade areas 
corresponding to its direction. In the case shown in Fig. 4, if we suppose this is A floor plan of a single-story building with a height of 
3m, then the north-facing area of space A is 3 m2, the east and south facing areas are 0, and the west facing area is 3 m2.

The adjacent areas between each space are used to quantitatively assess the adjacency between different spaces. The data for this 
feature is obtained by calculating the sum of coplanar areas between each space. In the case shown in Fig. 4, suppose this is A floor plan 
of a single-story building with a floor height of 3m, then the planar adjacent area between space A and space B is 6 m2. The calculation 
of such factors only takes into account the proximity within the same floor in the horizontal direction, not the proximity between 
different floors in the vertical direction.

3.5. Multi-objective optimization problem formulation

To evaluate the impact of spatial layout on the cooling and heating loads of buildings across different climatic conditions, this study 
implements a comprehensive optimization framework that systematically varies spatial arrangements while maintaining consistent 
building parameters and simulation conditions. The optimization targets the minimization of annual average area unit cooling and 
heating loads while ensuring compliance with spatial programming requirements.

3.5.1. Case study building configuration
A typical office building model was established to represent archetypical medium-rise office as the research object for building 

performance simulation [54]. The mixed-use office building has 8 floors with a height of 3m per floor, covering a standard floor area of 
1,536 m2 and a total building area of 12,288 m2. The standard floor plan maintains an aspect ratio of 3:2 and is oriented due south to 
ensure consistent solar exposure analysis across all climate zones. The building form, as shown in Figs. 5 and 6, features a rectangular 
configuration with the middle space designated for vertical traffic and ancillary systems.

The case study office building accommodates four primary spaces of use: office area, meeting area, cafeteria, and hotel-style 
apartment. The specific area allocations and operational parameters for each space are detailed in Table 3 and the general setups 
for building are listed in Table 4.

3.5.2. Climate zones and weather data
To enable comprehensive cross-climate comparison of spatial layout effects on building energy performance, this study selects five 

representative cities based on China’s building thermal design zoning standards. The selected locations represent distinct climate 
characteristics: Harbin, Beijing, Shanghai, Shenzhen, and Kunming. These cities correspond respectively to various climate zones 
according to Köppen climate classification, as detailed in Table 5. Typical meteorological year (TMY) weather files for each city 
provide standardized climatic input data for energy simulations. These files ensure consistent baseline conditions across all climate 
zones while capturing the essential thermal characteristics that influence building energy performance. The heating and cooling 

Fig. 4. Architectural layout factors case floor plan diagram.
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periods for each city are established based on local regulations and climatic conditions, with specific periods detailed in Table 5.

3.5.3. Detailed building energy simulation parameters and settings
Energy consumption simulations utilize Honeybee (interfacing with EnergyPlus) integrated within the Rhino 7/Grasshopper 

environment. Climate-specific boundary conditions are implemented through TMY weather files, while envelope properties, internal 
loads, and HVAC parameters remain constant across climate zones to isolate spatial layout effects. Building envelope materials and 
thermal properties are standardized across all simulations (exterior wall U-value: 0.45 W/m2⋅K; roof U-value: 0.53 W/m2⋅K; windows 
U-value: 2.70 W/m2⋅K). Multi-objective optimization employs the Octopus plugin with SPEA-2 and HypE algorithms, configured with 
60 individuals population size, 10 % elite probability, 80 % crossover rate, 30 % mutation probability, and 30 generations maximum 
iteration limit. Building envelope materials and thermal properties are standardized across all simulations to eliminate confounding 

Fig. 5. Standard floor plan of the mixed-use office building.

Fig. 6. Performance simulation model and zoning diagram of a typical building automatically generated.

Table 3 
Energy consumption simulation parameters for different space uses of the mixed-use office building.

Function Name Area (m2) Per capita possession 
Floor area (m2/person)

Electrical equipment 
Power density (W/m2)

Illumination power 
Density values (W/m2)

Office 4608 10 15 8
Meetings 1280 10 12 12
Apartment 3840 25 15 6
Cafeteria 1536 8 13 12
Vertical transportation 1024 8 5 6
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variables, with complete specifications provided in Table 6.
Operational schedules for personnel activity, electrical equipment usage, lighting systems, and HVAC operations are established 

according to space requirements and local practices, as comprehensively detailed in Appendix 3 (personnel activity and electrical 
equipment), Appendix 4 (lighting schedules), and Appendix 5 (heating and cooling schedules). These schedules differentiate between 
weekday and holiday operations while accounting for zone-specific usage patterns. Temperature setpoints for heating and cooling 
systems vary by space and operational period, as specified in Appendix 5.

The evolutionary optimization employs the Octopus plugin, implementing SPEA-2 and HypE algorithms within the Grasshopper 
platform. Evolutionary algorithm parameters are configured as follows: population size of 60 individuals, elite probability of 10 %, 
crossover rate of 80 %, mutation probability and mutation rate of 30 % each, with a maximum iteration limit of 30 generations serving 
as the termination criterion. For each climate zone, an independent optimization process targets the minimization of annual average 
cooling and heating load per unit area while satisfying all spatial programming constraints.

4. Results and discussions

4.1. Optimization results of the layout of the building

Fig. 7 presents the convergence characteristics of the evolutionary optimization process across all five climate zones over 30 it
erations. The vertical axis represents total annual cooling and heating loads (kWh/m2), while the horizontal axis shows iteration 
number. Each subplot corresponds to one climate zone: (a) Shenzhen (subtropical), (b) Kunming (mild), (c) Shanghai (hot summer- 
cold winter), (d) Beijing (cold), and (e) Harbin (severely cold). The convergence curves demonstrate that optimization systemati
cally reduced energy consumption within 30 iterations across all climates. Shenzhen exhibited the highest absolute load values with 
the steepest reduction trajectory, decreasing from approximately 69 kWh/m2 to 57 kWh/m2, which creates 17.25 % reduction, while 
Kunming showed the lowest baseline loads but achieved the highest percentage improvement of 24.91 %. Heating-dominated climates 
(such as Beijing, Harbin) displayed more gradual convergence patterns compared to cooling-dominated regions (such as Shenzhen), 
reflecting the differential complexity of spatial layout optimization under varying thermal conditions. These convergence charac
teristics confirm the computational efficiency and robustness of the evolutionary optimization framework across diverse climate 
contexts.

Table 4 
Building energy performance simulation model setup.

Parameter Values

1 Meteorological parameters Harbin; Beijing; Shanghai; Kunming; Shenzhen
2 Holidays Chinese holidays
3 Building floors 8 floors above ground
4 Standard floor aspect ratio 3:2
5 Building orientation Due south
6 Total building area 12288 m squared
7 Building dimensions 36m long × 24m wide × 28.8m high
8 Floor height 3.6 m
9 East-west window-to-wall area ratio 0.2
10 South-to-north window-to-wall area ratio 0.4

Table 5 
Selected cities in various climate zones of China and their cooling and heating periods.

City Building Thermal Design Zone Köppen Climate Classification Cooling Period Heating Period

Harbin Severely Cold Regions Continental monsoon climate June 1 - August 31 October 20 - April 20
Beijing Cold regions Warm temperate continental monsoon climate June 1 - August 31 November 15 - March 15
Shanghai Hot summers and cold winters Temperate monsoon climate June 1 - August 31 November 15 - March 15
Shenzhen Hot summers and warm winters Subtropical monsoon climate June 1 - September 31 November 15 - March 15
Kunming Mild Region Subtropical plateau monsoon climate June 1 - August 31 November 15 - March 15

Table 6 
Envelope material parameters of the mixed-use office building.

Construction Materials U value 
(

W/m2 ⋅K)

Exterior wall Pure gypsum board 10 mm + Extruded polystyrene board 60 mm + Pure gypsum board 8 mm +
Heavy mortar clay 240 mm

0.45

Roof Bitumen mineral wool felt 25 mm + extruded polystyrene board 50 mm + bitumen mineral wool felt 30 mm 0.53
Interior walls 20 mm cement mortar +180 mm ceramsite concrete +20 mm cement mortar 3.57
window 6 High transparency Low-E+12 Air +6 transparent heat-insulating metal profiles 2.70
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Fig. 8 illustrates the direct comparison between the worst-case scenarios and optimal spatial layout solutions discovered during the 
evolutionary optimization process, using Beijing as a representative example with typical floor plans shown. The worst-case scenario 
generated maximum cooling and heating loads of 74.89 kWh/m2, while the optimal layout achieved minimum energy consumption of 

Fig. 7. The iterative process of the five groups of experiments.

Fig. 8. The worst-case scenarios and the optimal spatial layout during the iterative process for Beijing.
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67.68 kWh/m2, which is 9.67 % reduction. Color coding distinguishes functional zones: office spaces (blue), meeting rooms (green), 
cafeteria (yellow), and apartments (red). Visual inspection reveals that the optimal solution demonstrates increased space centrali
zation with meeting rooms consolidated into fewer planar areas, reduced office-apartment adjacency through strategic spatial sepa
ration, and rational cafeteria placement to maximize east-facing exposure for passive solar heating. In contrast, the worst-case layout 
exhibits dispersed meeting room configurations, excessive office-apartment adjacent areas exceeding 400 m2 per floor, and suboptimal 
orientation distribution. The visual differences shown here can help substantiate the quantitative energy performance gaps and 
provide architects with concrete examples distinguishing energy-efficient from energy-inefficient spatial arrangements. In addition, 
Appendix 6 presents complete optimization results including worst-case and optimal spatial layouts for all other climate zones 
(Shenzhen, Kunming, Shanghai, and Harbin), which readers can refer to for climate-specific spatial configuration patterns.

4.2. Climate-specific impact of spatial layout on building energy performance

The spatial layout optimization of all cities converged after 30 iterations. After the solutions that did not meet the requirements 
were excluded, more than 1700 historical solutions were generated in each group. The average annual cooling load per unit area and 
annual heating load per unit area of each group are presented in the form of bar graphs in Fig. 9, and Fig. 10 is a box graph of the sum of 
annual cooling load per unit area and heating load per unit area of all historical solutions of the five groups of results.

The optimization results are summarized in Table 7, which demonstrates significant climate-dependent variations in energy savings 
potential. Shenzhen (subtropical) achieved the highest absolute energy savings with loads ranging from 57.06 to 68.95 kWh/m2, 
showing a maximum 17.25 % reduction primarily from cooling load optimization. Kunming (mild climate) exhibited the largest 
percentage reduction (24.91 %) but minimal absolute savings due to low baseline loads (4.01–5.33 kWh/m2).

In heating-dominated climates, spatial layout optimization showed greater impact on heating versus cooling loads: Shanghai (hot 
summer/cold winter) achieved 13.6 % total reduction with 29.38 % heating load variation, Beijing (cold) reached 9.67 % total 
reduction with heating load reductions (18.51 %) exceeding cooling load reductions (9.52 %), and Harbin (severely cold) demon
strated 10.92 % total reduction with heating loads showing 13.31 % variation range.

Overall, the Kunming group had the largest percentage reduction in cooling and heating load among the five study cities, but the 
overall energy-saving effect was not significant because of its lower base cooling and heating load values. The cooling and heating 
loads in the Shenzhen group were most significantly affected by spatial layout, and the range of load fluctuations was also the largest. 
The cooling and heating loads in Shanghai, Beijing and Harbin decreased by about 10 %, and the difference in heating load accounted 
for a larger proportion. Among them, the reduction in heating load in Shanghai showed the most significant difference compared to the 
reduction in cooling load.

Under different climatic conditions, the influence effect of spatial layout on the cooling and heating load of buildings varies. In mild 
regions, such as Kunming, although the percentage reduction of cooling and heating load is the greatest, due to the low base load, the 
energy-saving effect is not obvious. In hot summer and warm winter regions like Shenzhen, spatial layout has the most significant 
impact on cooling and heat load, so special attention should be paid to spatial layout in design. In regions with high heating demand 
such as hot summer and cold winter (Shanghai), cold winter (Beijing), and cold winter (Harbin), spatial layout design has a greater 
impact on heating load than on cooling load.

4.3. Machine learning model validation

To ensure rigorous model validation and prevent overfitting, we implemented multiple validation strategies including independent 
test set evaluation, cross-validation for hyperparameter tuning, and statistical residual analysis. The sample dataset used for the 

Fig. 9. Average annual cooling and heating loads per unit area of the historical solutions for the five cities.
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random forest regression model comprises building spatial layout features and cooling and heating load data from all historical 
optimization solutions. Dataset sizes range from 1707 to 1797 samples per climate zone, providing sufficient data for reliable model 
training and evaluation. Each dataset was randomly partitioned into training (80 %) and independent test sets (20 %) using stratified 

Fig. 10. Annual cooling and heating loads for all historical solutions of the five cities.

Table 7 
Simulation results of automatic optimization of cooling and heating loads for building spatial layout in five thermal zones.

Experiment 
Groups

Historical 
Explanation 
Numbers

Load 
Type

Maximum 
kW ⋅ h/

(
m2)

Minimum 
kW ⋅ h/

(
m2)

Average 
kW ⋅ h/

(
m2)

Median 
kW ⋅ h/

(
m2)

Standard 
deviation

Maximum 
decrease %

Shenzhen 1707 Cooling load 
and heating 
load

68.95 57.06 59.55 59.19 2.43 17.25

Cooling load 68.67 56.83 59.32 58.97 2.43 17.24
Heating load 0.38 0.15 0.23 0.23 0.03 61.71

Kunming 1768 Cooling load 
and heating 
load

5.33 4.01 4.20 4.15 0.19 24.91

Cooling load 2.99 2.48 2.71 2.71 0.06 17.20
Heating load 2.61 1.31 1.49 1.43 0.18 49.92

Shanghai 1796 Cooling load 
and heating 
load

42.64 36.84 37.65 37.47 0.75 13.60

Cooling load 30.57 27.92 28.40 28.36 0.38 8.66
Heating load 12.08 8.53 9.24 9.05 0.45 29.38

Beijing 1797 Cooling load 
and heating 
load

50.65 45.76 46.58 46.22 0.81 9.67

Cooling load 25.37 23.21 24.20 24.13 0.21 8.52
Heating load 26.65 21.72 22.38 22.10 0.71 18.51

Harbin 1770 Cooling load 
and heating 
load

93.62 83.40 85.05 84.57 1.53 10.92

Cooling load 11.07 9.90 10.74 10.76 0.13 10.64
Heating load 83.71 72.58 74.31 73.79 1.61 13.31

* Maximum reduction = (maximum − minimum)/maximum

Table 8 
Sample grouping results for the five cities.

City Sample size of the training set Test set sample size Number of features

Shenzhen 1366 341 30
Kunming 1414 354 30
Shanghai 1437 360 30
Beijing 1438 359 30
Harbin 1416 354 30
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sampling to maintain representative distributions, as shown in Table 8. All reported performance metrics are calculated on the in
dependent test sets that were completely withheld during model training, ensuring unbiased accuracy assessment. Additionally, 5-fold 
cross-validation on the training set was employed for hyperparameter optimization to further mitigate overfitting risks.

The sample dataset used for the random forest regression model is the building spatial layout features and cooling and heating load 
data corresponding to all historical solutions of the cooling and heating load optimization. The building layout features were used as 
influencing factors, and the sum of cooling and heating loads was used as the dependent variable for model training. The cooling and 
heating load data of the five groups were randomly sampled using dataset partitioning method and divided into the training set and the 
test set in an 8:2 ratio. The results of the sample grouping are shown in Table 8.

The 80 %–20 % train-test split ratio was selected based on established machine learning practice and has been validated as effective 
and optimal for the involved algorithms and size of the dataset in this research [55,56]. This ratio ensures sufficient training data for 
model learning while providing adequate independent test data for unbiased performance evaluation. Hyperparameter optimization 
for the random forest models was conducted using grid search with 5-fold cross-validation on the training set [57]. The optimized 
hyperparameters included: number of trees (n_estimators) tested in the range [100, 200, 300, 500], maximum depth (max_depth) 
tested in the range [10, 20, 30, None], minimum samples to split (min_samples_split) tested in Refs. [2,5,10], and minimum samples 
per leaf (min_samples_leaf) tested in Refs. [1,2,4]. The hyperparameter combination that minimized cross-validated RMSE was 
selected for each climate zone’s final model. This optimization process can help ensure that the models achieved optimal predictive 
performance while preventing overfitting [58].

To verify whether the data structure of the grouped samples is consistent with the original total sample, this section statistically 
analyzes the distribution of the total samples of the five cities, as well as the cooling and heating load data in their respective training 
and test sets. These statistics are presented in the form of a bar chart in Table 9. By observing the chart, it demonstrates that the 
parameter distributions of the total sample, training set and test set of the five cities are roughly the same, and the numerical ranges are 
consistent. This validates the reasonableness of the sample division and ensures the feasibility of training the random forest model.

After the partitioning of the sample data was completed, the training sets for each city were used to train the random forest model. 
As shown in Fig. 11, the predicted values fit well in the data-intensive sections, but for climate with higher heating and cooling load 
values, there is a relatively larger deviation due to the sparse distribution of the data. Overall, the prediction results of the five random 
forest models are relatively good.

To further verify the accuracy of the five groups of random forest regression models, the trained random forest models were tested 
using the corresponding test set samples, with RMSE, NRMSE, R2, and MAPE as the performance evaluation indicators of the models. 
The evaluation criteria for the five random forest regression models are shown in Table 10.

To assess the statistical significance of model performance, we have conducted residual analysis including normality tests (Shapiro- 
Wilk test, p > 0.05 for all climate zones) and homoscedasticity tests, confirming that model assumptions were satisfied [59]. The 
performance metrics demonstrate strong predictive capability when benchmarked against established criteria in building energy 
prediction literature. Previous studies have established that NRMSE values below 10 % indicate good model performance for building 
energy prediction, with values below 5 % considered excellent [60,61]. Our models achieved NRMSE values ranging from 4.92 % to 
7.95 %, with three of five climate zones (Kunming: 5.47 %, Shanghai: 5.52 %, Harbin: 4.92 %) demonstrating excellent performance 
and the remaining two (Shenzhen: 7.77 %, Beijing: 7.96 %) showing good performance. The R2 values ranging from 0.801 to 0.874 
indicate strong model fit, exceeding the benchmark of R2 > 0.75 commonly used for acceptable building energy prediction models [62,
63]. Specifically, the Shenzhen (R2 = 0.873) and Harbin (R2 = 0.874) models achieved particularly high explanatory power, while 
Beijing (R2 = 0.801) showed the lowest but still acceptable performance.

The MAPE values (0.236 %–0.792 %) are notably low compared to typical building energy prediction studies [64,65]. Our results 
outperform these benchmarks, with all climate zones achieving MAPE well below 1 %. Statistical comparison between climate zones 
using analysis of variance (ANOVA) revealed no significant differences in model performance metrics (F = 2.31, p = 0.089 for R2 

comparison), indicating consistent model quality across all climate zones. The smallest RMSE value appeared in the Kunming group 
(0.072 kWh/m2), which is expected given the lower baseline energy consumption in this mild climate zone. Similarly, Harbin achieved 
the lowest MAPE (0.236 %), reflecting the model’s high accuracy relative to that region’s higher energy consumption values. Overall, 
the five groups of random forest regression models demonstrated statistically validated and literature-benchmarked strong perfor
mance in predicting building cooling and heating loads using building spatial layout features, with consistent accuracy across different 
climate zones.

Moreover, we selected Random Forest over alternative machine learning methods including Artificial Neural Networks (ANN) for 
several methodologically justified reasons that align with our research objectives and dataset characteristics. First, randome forest (RF) 
demonstrates superior resistance to overfitting for datasets of our size (approximately 1400–1800 samples per climate zone), whereas 
ANN typically requires substantially larger training datasets (tens of thousands of samples) to achieve stable generalization perfor
mance and avoid overfitting [66,67]. The limited sample size per climate zone, while sufficient for RF, would pose significant chal
lenges for training deep neural networks without extensive regularization and data augmentation strategies. RF requires minimal 
hyperparameter tuning with robust default parameters, while ANN demands extensive architecture design decisions and computa
tionally expensive training procedures involving learning rate scheduling, batch size optimization, dropout rate selection, and acti
vation function choices [68]. This computational efficiency was essential for training separate models across five climate zones with 
iterative hyperparameter optimization. Also, RF can naturally handle the mixed feature types in our dataset (i.e. continuous spatial 
measurements such as facing areas and discrete counts such as number of planar areas) without extensive preprocessing, whereas ANN 
requires careful feature normalization, scaling, and encoding that can introduce additional sources of error. Last but the most 
important, for our research objectives, RF provides direct feature importance measures that seamlessly integrate with SHAP analysis 
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Table 9 
Distribution of heating and cooling load samples of random forest regression models in five cities.

Total sample 
Cooling and heating loads

Training set 
Cooling and heating load distribution

Test set 
Cooling and heating load distribution

Shenzhen
Kunming
Shanghai
Beijing
Harbin
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Table 10 
Performance evaluation metrics for five groups of random forest regression models.

City RMSE NRMSE (%) R2 MAPE (%)

Shenzhen 0.924 7.770 0.873 0.792
Kunming 0.072 5.471 0.858 0.751
Shanghai 0.320 5.520 0.822 0.343
Beijing 0.389 7.955 0.801 0.323
Harbin 0.503 4.918 0.874 0.236

Fig. 11. Prediction situations of five groups of random forest models.
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for interpretability, while ANN’s deep architectures present significant challenges for explainability even with advanced techniques 
[69]. Given that our research focus extends beyond mere prediction accuracy to understanding the mechanistic relationships between 
spatial layout characteristics and energy performance through explainable AI, the interpretability advantage of RF is essential. The 

Fig. 12. Global analysis of SHAP values for each group.
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combination of competitive prediction accuracy (R2 > 0.80), computational efficiency, robustness to our dataset size, and superior 
interpretability makes RF the optimal choice for achieving this study’s dual objectives of accurate prediction and actionable design 
insights.

4.4. Interpretability analysis using explainable AI

The SHAP values are used to interpret five groups of random forest regression models, and global and local driver analyses will be 
conducted on the random forest models of the five cities, respectively. Global interpretation, which describes the expected behavior of 
a machine learning model for the entire distribution of its input variable values, is achieved in SHAP by integrating the SHAP values of 
all sample instances. Global interpretation can effectively reveal the relative importance of each influencing feature, as well as their 
actual relationship to the predicted results. Local interpretation, on the other hand, is an analysis of predictions for specific instances, 
explaining how individual predictions are obtained based on the contribution of each model input variable. This helps us to analyze the 
extent to which influencing features affect the prediction results through local examples. With the help of the methodological 
framework, explore the importance of building spatial layout features in forecasting building cooling and heating loads under different 
climatic conditions, as well as the differences in their effects and mechanisms of influence.

Among the results of Shenzhen, the east-facing area of office space (OE), the east-facing area of apartment space (AE), and the west- 
facing area of office space (OW) had the most significant effects on cooling and heating loads and had higher mean absolute SHAP 
values(Fig. 12(a)). The pooled graph in Fig. 13 further reveals the nonlinear relationship between the eigenvalues and the predicted 
cooling and heating loads through a scatter distribution. The larger east-facing area (OE) of office spaces corresponds to a positive 
SHAP value, indicating that arranging more east-facing spaces significantly increases the building’s cooling and heating load. This may 
be due to increased energy consumption caused by east-facing daylighting and morning heat gain. While a smaller office area on the 
east side can reduce the cooling and heating load, the impact is relatively small, showing an asymmetry in the effect. Fig. 14 validates 
the above trend through a partial case study combined with Fig. 13. In the scheme with the highest load, the 432 m2 office east-facing 
area leads to a significant increase in energy consumption. This suggests that optimizing the orientation and area distribution of space, 
such as placing more cafeteria and apartment spaces on the east side, is an effective strategy for reducing energy consumption.

In subtropical climates, the orientations of buildings have a particularly crucial impact on energy consumption. An east orientation 

Fig. 13. Relationship graph of SHAP values for east-facing area of Shenzhen office space.

Fig. 14. Map of the SHAP values of each floor plan of the scheme with the highest predicted cooling and heating load values in Shenzhen.
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leads to morning heat gain and improved daylighting, thereby increasing the building’s cooling and heating loads. When optimizing 
the spatial layout, the rational distribution of these orientations, especially placing more dining and apartment spaces on the east side, 
helps to reduce energy consumption. In subtropical climate, radiative heat gain and heat conduction from the building’s outer surface 
are the main influencing factors. An increase in the area facing east will increase the heat load in the morning, while optimizing the 
orientation distribution can reduce energy consumption by reducing the solar radiation heat load.

Fig. 15. Global analysis of SHAP values for Shanghai.

Fig. 16. Map of each floor and SHAP value map of the scheme with the lowest predicted cooling and heating load values for Shanghai.
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The results of Kunming that is indicated in Fig. 12(b) show that a larger east-facing area (OE) of office spaces can significantly 
reduce the cooling and heating load, especially in the mild climate of Kunming, where the east-facing arrangement of office spaces 
plays an important energy-saving role. However, the effects of other features were smaller, reflecting the relatively stable energy 
consumption characteristics in the Kunming area. The climate in Kunming is relatively mild, with moderate temperatures in summer 
and colder winters. Increasing the area facing east can enhance the collection of sunlight in winter, effectively improve daylighting and 
natural heating, thereby reducing the demand for heating. The overall energy consumption in the Kunming area is relatively low, so 
the impact of energy-saving design is relatively weak.

In the analysis of the Shanghai group, the planar adjacent area (O-A) of office and apartment spaces had the most significant impact 
on cooling and heating loads (Fig. 12(c)). Larger adjacent areas increase energy consumption, while smaller adjacent areas help reduce 
the load. When the number of cafeteria spaces is small, cooling and heating loads can be effectively reduced, while a dispersed layout 
will significantly increase energy consumption. The local analysis results, which are visualized in Figs. 15 and 16 further validate the 
global trends: in the scheme with the lowest cooling and heating load, the cafeteria space is divided into only two areas (CC = 2), the 
apartment and meeting spaces are closely arranged (A-M = 576), and the office and apartment spaces are adjacent to A smaller area (O- 
A = 259.2), all contributing to the energy-saving effect. Shanghai has a hot summer and cold winter climate. High temperatures in 
summer increase the air conditioning load, while cold winters increase the heating load. By reducing the area adjacent to office and 
apartment spaces in the design, the efficiency of air heat exchange can be reduced, thereby reducing the cooling and heating load. At 
the same time, the centralized cafeteria space helps to optimize the spatial layout and reduce unnecessary energy consumption.

For Beijing, the planar proximity area (O-A) of the office and apartment spaces had the greatest impact on the cooling and heating 
load(Fig. 12(d)). In particular, when O-A is greater than 100 m2 (Fig. 17), energy consumption increases significantly. Meanwhile, the 
east-facing area (CE) of the cafeteria space has a significant negative impact on load forecasting, and a larger east-facing area can 
effectively reduce the cooling and heating load. The cold climate in Beijing means a greater demand for heating in winter, and 
increasing the east-facing area of the cafeteria can effectively utilize sunlight to reduce the heating load. At the same time, reducing the 
area adjacent to office and apartment spaces can reduce indoor heat exchange, optimize the thermal environment of the building and 
lower energy consumption.

For Harbin, the number of planar regions (MC) of the conference space had the most significant effect on cooling and heating loads 
(Fig. 12(e)). A smaller number of meeting areas helped to reduce the cooling and heating load. When the floor area adjacent to the 
office and apartment spaces (O-M) is larger, the load forecast decreases; otherwise, it increases. The extremely cold climate in Harbin 
means extremely high heating load in winter. Under such climatic conditions, the centralized arrangement of conference spaces can 
reduce the building’s voids and heat loss, thereby reducing the load. Reasonable adjacent arrangement of office and apartment spaces 
helps to reduce energy consumption and avoid unnecessary heat exchange and temperature fluctuations.

By combining the SHAP analysis results of five cities, the following key strategies for energy conservation in building spatial layouts 
can be identified: (1) Climate-adaptive design: The orientation of buildings, the spatial layouts, and the configuration of adjacent areas 
should vary under different climatic conditions. In subtropical climates (Shenzhen), eastward orientation and reduced westward 
lighting are key to energy conservation, while in cold climates (such as Harbin), the centralized arrangement of conference spaces and 
reasonable spatial layout can significantly reduce energy load. (2) Space layout distribution and layout optimization: In hot summer 
and cold winter or temperate climate, the rational allocation of the orientation and adjacent area of spaces, especially the layout of 
canteens, offices and meeting spaces, will play a significant role in energy conservation. Avoiding excessive adjacent areas and 
scattered layouts is an important means to reduce the building’s cooling and heating load. (3) Heat load regulation and control: By 
optimizing the heat load on the exterior surface of the building and rationally designing the orientation, window surfaces and spatial 
distribution of the building, the heat exchange between the interior and exterior of the building can be effectively regulated, the energy 
efficiency of the building can be improved, and the heat load can be reduced.

Fig. 17. Global analysis of SHAP values for Beijing.
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4.5. Practical design guidelines for climate-adaptive spatial layout

The findings from optimization and SHAP analysis can be translated into actionable design strategies for practitioners working in 
different climate zones. This section provides specific guidelines for applying the identified principles during early-stage architectural 
design:

For subtropical climates (represented by Shenzhen): The dominant factor affecting energy performance is orientation area dis
tribution, particularly east-facing exposure. Architects should minimize office spaces on east-facing facades where morning solar heat 
gain significantly increases cooling loads. Instead, allocate dining halls, circulation spaces, or service areas to east orientations, as these 
have lower sensitivity to solar heat gain. West-facing areas should also be minimized for high-occupancy spaces. For a typical rect
angular building, this translates to: (1) positioning primary office zones on north and south facades where window-to-wall ratios can be 
optimized for daylighting without excessive heat gain, (2) locating cafeterias and meeting rooms on east and west sides where 
intermittent occupancy patterns better tolerate thermal fluctuations, and (3) using serviced apartments (with lower daytime occu
pancy) as thermal buffers on problematic orientations.

For heating-dominated climates (Beijing, Harbin, Shanghai): Space centralization and adjacency optimization become critical. 
Architects should consolidate spaces with similar thermal requirements to reduce heat loss through internal partitions. Practical 
strategies include: (1) concentrating meeting rooms in fewer, larger zones rather than dispersing them across multiple floors (reducing 
the number of planar areas), (2) minimizing adjacent areas between office and apartment spaces by introducing buffer zones or 
separating these functions vertically, (3) locating cafeterias to maximize east-facing exposure for passive solar heating during winter 
while maintaining centralized configurations. For Shanghai specifically, reducing office-apartment adjacency from >400 m2 to <260 
m2 per floor can achieve substantial energy savings.

For mild climates (Kunming): Although absolute energy savings are modest, orientation optimization remains beneficial. East- 
facing office areas should be maximized to capture morning sunlight for winter heating while avoiding overheating during mild 
weather. The relatively low energy intensity in mild climates provides design flexibility, allowing greater emphasis on other perfor
mance criteria such as daylighting and spatial quality.

Sensitivity analysis across climate zones reveals that the relative importance of spatial variables shifts with climate intensity. In 
extreme climates (severely cold or hot-humid), spatial layout decisions have amplified impact—errors in space allocation result in 
proportionally greater energy penalties. Conversely, mild climates exhibit greater tolerance to layout variations. This climate- 
dependent sensitivity suggests that computational optimization investment yields highest returns in extreme climate zones where 
design precision matters most. During schematic design, architects can apply these guidelines by: (1) conducting preliminary zoning 
studies that test orientation distribution and space concentration patterns based on climate zone, (2) using the 26 quantified spatial 
features indicated in Table 2 as evaluation metrics to assess alternative layouts, (3) prioritizing the top-ranked SHAP features identified 
for their specific climate zone during iterative refinement, and (4) validating final schemes through simplified energy simulation 
focusing on cooling and heating loads. The automated generation method developed in this research can be adapted as a design 
exploration tool, with architects adjusting the priority weights of different spatial features based on climate-specific importance 
rankings revealed by SHAP analysis.

5. Conclusion

This study investigated the impact of spatial layout optimization on energy consumption in medium-rise office buildings across five 
Chinese cities with diverse climatic conditions. Using building spatial layout generation tools, evolutionary algorithms, and machine 
learning methods including random forest and SHAP analysis, we examined how different building layouts affect cooling and heating 
loads in various thermal zones. The research demonstrates that spatial layout plays a crucial role in energy-efficient building design, 
with the proposed optimization tool achieving approximately 10 % energy savings in cooling and heating loads. The most significant 
results were observed in Shenzhen’s subtropical climate, where energy savings reached 17.25 %, highlighting the substantial potential 
for climate-adaptive design strategies.

Climate-specific patterns emerged from this study. In mild climates like Kunming, while percentage reductions in loads were 
notable, overall energy savings remained modest due to lower baseline consumption. Subtropical regions (Shenzhen) showed the most 
dramatic load fluctuations, indicating that spatial optimization is particularly critical in such climates. In heating-dominated regions 
including Shanghai, Beijing, and Harbin, spatial layout optimization primarily influenced heating loads, with substantial reductions 
achieved through strategic planning. Through quantitative analysis of layout concentration, dispersion, orientation, and spatial 
proximity, several climate-specific strategies were identified. 

• Subtropical climates: East-facing orientations and reduced west-facing windows are essential for energy conservation
• Cold climates: Concentrating similar spaces and implementing rational spatial arrangements significantly reduce energy loads
• Temperate and hot summer/cold winter climates: Strategic space orientation and adjacent area allocation provide substantial 

energy benefits, while avoiding excessive adjacencies and dispersed layouts reduces cooling and heating demands

This automation-based spatial optimization methodology provides a widely adaptable framework for energy-efficient design of 
medium-rise office buildings across different climatic conditions. The quantitative analysis mechanisms offer targeted, climate-specific 
strategies that advance computational green building design practices. However, this study’s scope is limited to one building type and 
five Chinese climate zones, potentially restricting global applicability. The geometric constraints of the spatial generation algorithm 
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may not capture all design variations, and the focus on cooling and heating loads excludes other energy considerations like lighting and 
equipment optimization. Future research should expand to include diverse building types, international climate regions, compre
hensive energy requirements, and integration with renewable energy systems to develop more holistic energy-efficient design 
solutions.
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Appendix 

Appendix 1 3D spatial layout generation algorithm pseudocode

Algorithm 1. 3D Space Layout Generation Algorithm

Input:program, gene_data, info_data 
Output:result_program

1: Generate the layout for vertical circulation.
2: vt_plan = creat_transport_plan(program, gene_data, info_data)
3: Execute vertical growth of the vertical circulation.
4: program = creat_vertical_mass(program, vt_plan)
5: Perform synchronous growth for multiple connected regions.
6: result_program = grow_program (program, gene_data, info_data)
7: If any spatial units remain unfilled, continue growth until all units are filled.
8: if len(program.get_attri_unit_seq(0)) > 0 do
9: result_program = fill_program(result_program, gene_data, info_data)
10: end

Appendix 2 Iterative growth algorithm pseudocode

Algorithm 2. grow_program

Input:program, gene_data, info_data 
Output:program

1: Set the starting point according to the gene_data.

2: program = set_start_point(program, gene_data.start_unit)

3: Grow the zones according to the gene_data until all zones have completed growth.

4: while bool(finish_check) = True do

5: stop_check = [True] * info.zone_count

6: Grow according to the direction sequence in the gene_data.

(continued on next page)
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(continued )

Input:program, gene_data, info_data 
Output:program

1: Set the starting point according to the gene_data.

2: program = set_start_point(program, gene_data.start_unit)

3: Grow the zones according to the gene_data until all zones have completed growth.

4: while bool(finish_check) = True do

5: stop_check = [True] * info.zone_count

6: Grow according to the direction sequence in the gene_data.

7: for dir in gene_data.direction do

8: for zone in info_data.zone do

9: Grow according to the step length in the gene_data.

10: for step in gene_data.step_len[zone][dir] do

11: Iterate through the spatial units in this zone.

12: for unit in program[zone] do

13: If the neighboring spatial unit in the growth direction is vacant, grow into that unit

as part of the zone.

14: grow_unit = get_neighbor_unit (program, unit, dir)

15: if grow_unit.attri = = 0 do

16: program[grow_unit].attri = zone

17: stop_check[zone] = False

18: Check if the zone meets the required area; if so, mark the zone as completed.

19: if info_data.area_demand[zone](1-info_data.area_tolerance)≤cal_area(zone)≤info_data.area_demand[zone](1+info_data.area_tolerance) do

20: finish_check[zone] = True

7: for dir in gene_data.direction do

8: for zone in info_data.zone do

9: Grow according to the step length in the gene_data.

10: for step in gene_data.step_len[zone][dir] do

11: Iterate through the spatial units in this zone.

12: for unit in program[zone] do

13: If the neighboring spatial unit in the growth direction is vacant, grow into that unit

as part of the zone.

14: grow_unit = get_neighbor_unit (program, unit, dir)

15: if grow_unit.attri = = 0 do

16: program[grow_unit].attri = zone

17: stop_check[zone] = False

18: Check if the zone meets the required area; if so, mark the zone as completed.

19: if info_data.area_demand[zone](1-info_data.area_tolerance)≤cal_area(zone)≤info_data.area_demand[zone](1+info_data.area_tolerance) do

20: finish_check[zone] = True

21: If a zone cannot continue growing and has not met the area requirement, select a vacant
​ unit as the new starting point.
22: for zone in info_data.zone do
23: if finish_check[zone] = = False and stop_check[zone] = = Ture do
24: new_start_unit = get_ vacant_unit(program)
25: program[new_start_unit].attri = zone
26 end
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Appendix 3 Schedule of personnel activity and electrical equipment usage for each spatial plan in the cooling and heating load optimization 
of typical medium-rise office building under different building thermal zones

Time

Area ​ 1 2 3 4 5 6 7 8 9 10 11 12
Office Weekdays 0 0 0 0 0 0 10 50 95 95 95 80

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Meetings Weekdays 0 0 0 0 0 0 0 50 50 50 50 0

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Cafeteria Weekdays 0 0 0 0 0 0 0 20 20 20 20 90

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Serviced apartment All year round 70 70 70 70 70 70 70 70 50 50 50 50
Traffic All year round 0 0 0 0 0 0 10 70 70 70 70 70

​ Time

Area ​ 13 14 15 16 17 18 19 20 21 22 23 24
Office Weekdays 80 95 95 95 95 30 30 0 0 0 0 0

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Meetings Weekdays 0 50 50 50 50 50 50 0 0 0 0 0

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Cafeteria Weekdays 90 90 20 20 20 20 20 0 0 0 0 0

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Serviced apartment All year round 50 50 50 50 50 50 70 70 70 70 70 70
Transportation All year round 70 70 70 70 70 70 70 70 50 0 0 0

Appendix 4 Lighting schedule for each spatial plan in the cooling and heating load optimization of typical medium-rise office building under 
different building thermal zones

Time

Area ​ 1 2 3 4 5 6 7 8 9 10 11 12
Office Weekdays 0 0 0 0 0 0 10 50 95 95 95 80

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Meetings Weekdays 0 0 0 0 0 0 0 50 50 50 50 0

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Cafeteria Weekdays 0 0 0 0 0 0 0 20 20 20 20 90

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Serviced apartment All year round 10 10 10 10 10 10 30 30 30 30 30 30
Transportation All year round 10 10 10 10 10 10 30 30 30 30 30 30

​ Time

Area ​ 13 14 15 16 17 18 19 20 21 22 23 24
Office Weekdays 80 95 95 95 95 30 30 0 0 0 0 0

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Meetings Weekdays 0 50 50 50 50 50 50 0 0 0 0 0

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Cafeteria Weekdays 90 90 20 20 20 20 20 0 0 0 0 0

Holidays 0 0 0 0 0 0 0 0 0 0 0 0
Serviced apartment All year round 30 30 50 50 60 90 90 90 90 80 10 10
Traffic All year round 30 30 30 30 50 50 50 50 50 10 10 10
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Appendix 5 Schedule of heating and cooling for each spatial plan in the cooling and heating load optimization of typical medium-rise office 
building under different building thermal

Time

Area ​ ​ 1 2 3 4 5 6 7 8 9 10 11 12
Office 

Meetings
Weekdays air conditioner – – – – – – 28 26 26 26 26 26

Heating 5 5 5 5 5 12 18 20 20 20 20 20
Holidays air conditioner – – – – – – – – – – – –

Heating 5 5 5 5 5 5 5 5 5 5 5 5
Cafeteria Weekdays air conditioner – – – – – – – – – – 26 26

Heating 5 5 5 5 5 5 5 5 5 5 18 18
Holidays air conditioner – – – – – – – – – – – –

Heating 5 5 5 5 5 5 5 5 5 5 5 5
Serviced apartment Year round air conditioner 26 26 26 26 26 26 26 26 26 26 26 26

Heating 22 22 22 22 22 22 22 22 22 22 22 22
Transportation Year round air conditioner – – – – – – 28 26 26 26 26 26

Heating 5 5 5 5 5 12 18 20 20 20 20 20

​ ​ Time

Area ​ ​ 13 14 15 16 17 18 19 20 21 22 23 24
Office 

Meetings
Weekdays air conditioner 26 26 26 26 26 26 – – – – – –

Heating 20 20 20 20 20 20 18 12 5 5 5 5
Holidays air conditioner – – – – – – – – – – – –

Heating 5 5 5 5 5 5 5 5 5 5 5 5
Cafeteria Weekdays air conditioner 26 26 – – – – – – – – – –

Heating 18 18 5 5 5 5 5 5 5 5 5 5
Holidays air conditioner – – – – – – – – – – – –

Heating 5 5 5 5 5 5 5 5 5 5 5 5
Serviced apartment Year round air conditioner 26 26 26 26 26 26 26 26 26 26 26 26

Heating 22 22 22 22 22 22 22 22 22 22 22 22
Transportation Year round air conditioner 26 26 26 26 26 26 – – – – – –

Heating 20 20 20 20 20 20 18 12 5 5 5 5

Appendix 6. The worst-case scenarios and the optimal spatial layout during the iterative process in Shenzhen, Kunming, Shanghai, and 
Harbin
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Data availability

Data will be made available on request.
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