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Abstract. Optimizing the control of window and HVAC systems for thermal
comfort and energy efficiency is a critical challenge in intelligent building
operations and controls. Despite the application of artificial intelligence of things
(AloT) in supporting smart window and HVAC operations, inaccurate forecasting
methods in existing systems hinder their widespread adoption. This study
develops a data-driven smart control method, utilizing EnergyPlus-MATLAB co-
simulation and Long Short-Term Memory (LSTM)-based time-series forecasting,
to clarify the impacts of real-time control of window and HVAC systems on thermal
comfort and energy efficiency in large sports buildings. A two-way EnergyPlus-
MATLAB co-simulation framework is developed leveraging the Building Controls
Virtual Test Bed (BCVTB) platform as the middleware. In addition, a pretrained
LSTM model is deployed to quickly predict occupant thermal comfort across large
sports spaces, which serves as the basis for window and HVAC control decisions.
To demonstrate the feasibility of the proposed approach, a case study of a national
fitness hall (NFH) in Shenzhen, China is conducted. The results reveal that the
proposed method can maintain more stable thermal comfort though it leads to a
12.26% increase in energy consumption due a 27.9% rise in HVAC operation time.
Future work will integrate the proposed method with deep reinforcement learning
to further enhance thermal comfort and energy efficiency.

Keywords: Data-driven, Smart control, Sports space, Thermal comfort, Energy
efficiency

1. Introduction

The building sector is responsible for approximately 40% of global energy consumption and 25%
of CO2 emissions [1]. Among all building facilities, Heating, Ventilation, and Air Conditioning
(HVAC) systems are major energy consumers, contributing to 50 % of total building energy usage
[2, 3], with this figure expected to triple by 2050 due to climate change impacts [4]. Well-designed
and efficient HVAC controls play an essential role in providing a comfortable and energy-efficient
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building environment. Currently, rule-based control (RBC) and proportional-integral-derivative
(PID) controllers are commonly used for HVAC systems. These controllers rely on fixed schedules
to set temperature setpoints or use setpoint tracking algorithms, such as PID, to adjust system
operations, thereby maintaining comfortable conditions. However, these methods face challenges
in adapting to external factors, such as occupancy levels, meteorological conditions, and
electricity costs [5].

As artificial intelligence (Al) and digital twins (DT) continue to advance, there has been a
growing emphasis on intelligent building control algorithms among researchers. In recent years,
Model predictive control (MPC) has emerged as a promising solution for controlling complex
systems. MPC, a proven optimal control strategy, leverages physics-based, grey-box, or black-box
models to ensure strong and reliable performance. However, the widespread application of MPC
is limited by the high demands for modeling, expertise, data, hardware, usability, and
computational power [6]. Given the critical role of the building sector in decarbonisation, it is
essential to develop adaptive approaches that better align control systems with real
environmental conditions while also accelerating the computation of physics-based MPC.
Traditional simulation-based control strategies for HVAC systems, which rely on Computational
Fluid Dynamics (CFD) or Building Energy Simulation (BES), incur significant computational costs,
making them impractical for real-time applications. As a result, recent research has increasingly
focused on machine learning methods (ML) for optimal HVAC control. Machine learning enables
the transition from physics-based MPC to data-driven predictive control. The rise of big data,
enhanced computing power, and advances in algorithms have made it possible to implement ML-
based HVAC control approaches[7].

In large sports spaces, the phenomenon of uneven “thermal stratification” presents
significant challenges in accurately predicting indoor thermal environment and occupant thermal
comfort [8-10], thereby hindering effective window and HVAC controls. Existing studies have
employed BES-CFD coupling methods [8, 10, 11] to improve the accuracy of thermal distribution
predictions and enhance HVAC system control performance. However, the computational burden
of CFD makes it impractical for real-time control applications. Recently, time-series forecasting
(TSF) has emerged as a alternative to CFD for estimating occupant thermal comfort, integrating
window and HVAC control simulations with building energy simulations. Time-series data,
including window and HVAC operation status, indoor environmental conditions, outdoor weather,
and occupant behavior, can be extracted to characterize the dynamic environment. Long Short-
Term Memory (LSTM) networks, coupled with convolutional neural networks (CNN) and the
attention mechanism (AM), are then used for the rapid prediction of future environmental
changes, enabling real-time coordination of window and HVAC operations.

To address the gaps identified, this study introduces a data-driven smart control framework
for window and HVAC systems in sports spaces, leveraging EnergyPlus-MATLAB co-simulation
and LSTM-based TSE. This framework explores the potential for thermal comfort and building
energy efficiency improvement through real-time window and HVAC operations.

2. Methodology

The flowchart of the proposed data-driven smart control method is shown in figure 1. It consists
of two main stages: Stage 1-LSTM training through parametric studies from BES-CFD co-
simulations, and Stage 2-Real-time window and HVAC control via BES-(CNN-LSTM-AM) co-
simulations. The method is enabled in a co-simulation environment combining EnergyPlus and
MATLAB through the middleware, Building Controls Virtual Test Bed (BCVTB), which facilitates
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control interactions and data exchange between MATLAB and EnergyPlus via the External
Interface. A variable configuration file is written to determine the flow of data exchange among
EnergyPlus, BCVTB and MATLAB in this study.

Stage 2: Real-time window and HVAC control

Input files

xml file
(Data exchange file)

EnergyPlus

‘&
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A prototypical national fitness hall (NFH) model was established as the target building in this
study. It is a large two-story sports building located in Shenzhen, China, with the second-story
fitness hall designated as the target area with a dimension of 60m x 40m x 12m (lengthx widthx
height). The building is oriented northward, with windows on the south and west elevations and
several skylights on the roof for natural ventilation. The HVAC system in the building is a Packaged
Terminal Air Conditioner (PTAC) system. Shenzhen, classified as Climate Zone 1A, has a “hot
summer and warm winter” climate. For most of the year, the climate is warm and humid, with a
prolonged rainy summer spanning May to November. Air conditioning (AC) cooling energy
constitutes the primary building energy use in Shenzhen. Meanwhile, natural ventilation remains
a viable option in transition seasons, with a duration from March to November. In this study, the
AC cooling setpoint was set at 18 °C. The study period, from April 28t to May 21st, was selected
for co-simulations and training the CNN-LSTM-AM model (LSTM coupled with a convolutional
neural network and attention mechanism) with a 15-minute time step. The weather file used for
training was CHN_Guangdong.Shenzhen.594930_SWERA.epw [12].

2.1 Stage 1: Training of CNN-LSTM-AM

Thermal stratification is a common phenomenon in large sports buildings, and it has been
reported to affect the prediction accuracy of thermal comfort and energy consumption. At
present, a feasible method for increasing the accuracy of estimating the uneven thermal
distribution in large sports space is to conduct BES-CFD co-simulations [8]. Hence, this study
develops a two-way external EnergyPlus-Fluent coupling method to predict occupant thermal
comfort for window and HVAC operations. The stage 1 of the proposed method involves
developing the CNN-LSTM-AM model using the dataset from BES-CFD co-simulations,
encompassing data source, data preprocessing, model training and validation, as follows:
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2.1.1 Data source. The EnergyPlus-Fluent co-simulation was conducted from April 28 to May 21
with a time interval of 15 minutes, leaving a total of 2304 simulation runs, the detailed coupling
process can be found in our previous study [10]. The co-simulations were executed on a
workstation equipped with a 3.60 GHz Intel® Core™ i19-9900KF CPU, an NVIDIA® Quadro® RTX
5000 GPU, 16 GB of RAM, and a Windows 10 (64-bit) operating system, requiring approximately
14 days of computation time. The simulation results, including indoor and outdoor conditions,
window and HVAC control statuses, and thermal comfort metrics, were compiled into a dataset
(D) for developing the CNN-LSTM-AM model. We denote those most influencing factors at time
step i as In;, which consists of site outdoor air drybulb temperature (T2%!), site outdoor air
relative humidity (RH7'®), site wind speed (V;¢), site wind direction (D5%€), site direct solar
radiation rate per area (SRiSite), HVAC status (yHV AC;), HVAC cooling setpoint (tHV AC;), window
open area fraction (oWindow;), zone mean radiant temperature (T;"""), zone mean air
temperature (Tii"), zone air relative humidity (RHii"). Besides, we denote the outputs of thermal
comfort at time step t as Out;, which is the Adaptive Predicted Mean Vote (aPMV) or Predicted
Mean Vote (PMV). Those parameters are denoted as:

In; = (T, TP, RH;™ e, Ve, Df', SR, yHVAC;, tHVAC;, oWindow;, T/, T{", RH{™) €Y}
D = [In, Out] 3)

2.1.2 Data preprocessing. The dataset for training CNN-LSTM-AM model undergoes several
preprocessing steps. First, missing data due to simulation errors or failures are re-simulated.
Next, different data items are normalized to the range [0,1] using min-max normalization.
Afterwards, the dataset is shuffled to ensure it is randomly distributed, and finally it was divided
into training set and validation set.

2.1.3 CNN-LSTM-AM model training and validation. This study constructs an occupant thermal
comfort prediction model based on the CNN-LSTM-AM algorithm. The CNN component captures
spatial correlations among various features in the collected dataset (D), addressing LSTM'’s
limitations in handling spatial dependencies. The attention mechanism (AM) allows the LSTM
network to differentiate the importance of various input parameters on future forecasting,
increasing the robustness of thermal comfort predictions. Besides, the hyperparameter settings
of the LSTM were tuned by optimizing the LSTM layers, max epochs and initial learning rate using

Table 1. Architecture parameters of CNN-LSTM-AM.

Parameters Value
Convolution layer filters 64
Convolution layer kernel size 1
Convolution layer activation function ReLU
Pooling layer pool size 1

LSTM layers 25

Max epochs 81

Initial learning rate 0.0504154042814
Learning rate schedule Piecewise
Learning rate drop factor 0.1
Learning rate drop period 90

LSTM optimizer Adam




International Conference on Sustainable Energy and Green Technology 2024 IOP Publishing
IOP Conf. Series: Earth and Environmental Science 1500 (2025) 012065 doi:10.1088/1755-1315/1500/1/012065

the Pelican Optimization Algorithm (POA). The root mean square (RMSE), mean absolute
percentage error (MAPE), mean absolute error (MAE), R-square (R?) were adopted as the
evaluation indicators. Table 1 shows the optimal parameter settings of the CNN-LSTM-AM model.

2.2 Stage 2: Real-time window and HVAC control

After training the CNN-LSTM-AM model, stage 2 involves integrating the trained model for real-
time window and HVAC control. This section outlines how the trained model is used to predict
occupant thermal comfort and adjust the system operations accordingly. The stage 2 leverages a
two-way EnergyPlus-MATLAB co-simulation framework, enabling dynamic window and HVAC
control according to thermal comfort levels predicted by CNN-LSTM-AM model. BCVTB 1.6.0 was
used as the middleware to couple the EnergyPlus 9.6.0 and MATLAB R2021a. BCVTB is a software
environment that couples various simulation engines for co-simulation, which has been
frequently adopted for building energy assessment and system control. MATLAB code was written
to deploy the CNN-LSTM-AM model for the rapid thermal comfort prediction and then to exchange
the data with EnergyPlus. Figure 2(a) illustrates the BCVTB model for BES-(CNN-LSTM-AM) co-
simulation-based window-HVAC control, where the embedded simulators entitled “EP_Run” and
“LSTM_Predict” are in charge of calling EnergyPlus and CNN-LSTM-AM model (via MATLAB).

Original State (t=0) (Window closed & HVAC o), _

1
'
‘
Window open && HVACoff), _

SDF Director

This model illustrates the two-way coupling between EnergyPlus and LSTM model, °y:0
the EnergyPlus and LSTM (via MATLAB) communicates with Ptolemy through BSD ot: 0
sockets. Inputs into EnergyPlus are signals of three EMS global variables,

00:
® timeStep: 1560 which are used in an EMS program to actuate window and HVAC control status. o0

® beginTime: 0 Inputs into LSTM are the exchnaged data from EnergyPlus, and it outputs the Tzone YHVAC
@ endTime: 365'24'3600 Window and HVAC control status back to EnergyPlus for next timestep simulation p
-~
N Lsite ® thvac
i Lo
SupplyAirTem| n
p 4 o PMV (aPMV) oWindow
¥ 2

HVACControlStatus

HVAC Control Status
Supply Air Temperature
Window Open Area Fraction EP_Run LSTM_Predict

=~ guard: PMV > 18&&PMV <=1.5 && Tzone >= Tsite
QD set: yHVAC = 0; tHVAC = 0; oWindow = 1

() guard: (PMV > 1 && PMV <= 1.5 && Tzone < Tsite) Il (PMV > 1.5)
&/ set: yHVAC = 1;tHVAC = 18; oWindow =0

LSTM Outputs EP Outputs

> guard: PMV <=1
(b) ® set: yHVAC =0; tHVAC =0; oWindow =0

(a)

Figure 2. (a) The BCVTB model of coupling EnergyPlus and CNN-LSTM-AM model for controlling
window and HVAC systems; (b) The status transition process and corresponding control conditions.

In this study, three scenarios of window and HVAC control were considered: (1) S;: Open
window & turn HVAC off; (2) S,: Close window & turn HVAC on; (3) S53: Close window & turn HVAC
off. To enable real-time window and HVAC operations, this study employs a state transition
approach to adjust their operating status at each time interval. At each timestep, i (i =
0,1,2,...T), once the control condition C (i) is met, the control status transitions to S(i), and the
corresponding control signals are output as Y (i). Note that the initial state was set as: S(0) = S5:
Close window and turn off HVAC. Figure 2(b) details the window and HVAC control policy as well
as the transition process of control status. Hence, the control problem is mathematically
formulated as:

At each time step i:

guard: ¢ = 1 (Toone (D), Tee 0, @PMV(D)) =
C, if (@PMV(i) <1
Cp if 1< (@)PMV(Q) < 1.5 and Tyone (i) = Tyire () )
ch, if (1 < (@)PMV (i) < 1.5 and Tyon. (i) < Tsite(i)) or ((@)PMV (i) > 1.5)
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S;: Open window, turn HVAC of f, if C(i) = C;
transfer to: S(i) =< S,: Close window, turn HVAC on, if C(i) =G, (5)
S;: Clsoe window, turn HVAC of f, if C(i) =Cs
0,0,1), if SO =S,
set: Y(i) = (YHVAC (i), tHVAC (i), oWindow(i)) =4 (1,18,0), if S(i) =S, (6)
(0,0,0), if S(@)=3S;

Where: i (i =0,1,2,...T) denotes the simulation time steps, starting from 0 and ending at T;
yHVAC (i), tHVAC (i) and oWindow(i) are the HVAC and window control signals, where 0
indicates closing window or turning HVAC off, while 1 denotes to opening window or turning
HVAC on. tHVAC (i) is switched to 18 °C when the HVAC is turned on (yHVAC (i) = 1); The range
of PMV (aPMV) for determining three window and HVAC control scenarios was tailored for
strenuous sports settings, according to [8, 13].

3. Results and discussion

3.1 Model training results

The trained CNN-LSTM-AM model demonstrated strong predictive performance, with predicted
values closely following the trend of observed data. Specifically, the RMSE, MAPE, MAE and R2
values of the trained model for predicting thermal comfort (PMV or aPMV) are 0.1098, 0.0548,
0.0435 and 0.9399, respectively, which confirms that the prediction errors by the trained model
are well accepted compared with similar studies [14, 15]. Possible sources of error in the trained
model include biases and limitations in the training datasets, which may hinder the model’s
generalization across different environmental conditions and time periods. Future work should
focus on expanding the training dataset to cover a broader range of time points and durations.
Additionally, integrating physics-informed LSTM models with optimized hyperparameters may
enhance the model’s robustness and reduces its reliance on purely data-driven learning.

3.2 Zone mean air temperature

By applying the trained CNN-LSTM-AM model in the stage 2, the proposed data-driven smart
control framework across a whole year in Shenzhen, China was implemented. The zone mean air
temperature (T,,n.) under BES-(CNN-LSTM-AM) co-simulation and standalone EnergyPlus
simulation are depicted in figure 3. It indicates that the proposed framework achieved a lower
T,one compared with the traditional method throughout the whole year. The discrepancy of the
T,one between the proposed framework and traditional method is significant during winter and
part of the transition seasons when the T,,,. of proposed framework is approaching to the
outdoor air temperature (Ty;;. ), while the T,,,. of traditional method is higher than T;;,. Another
interesting phenomenon is that the daily fluctuations of the T,,,, under proposed framework are
less than that under the traditional method, indicating more stable thermal environment, which

— Tsite (°C) — Tzone-Standalone_EnergyPlus_Simulation (Traditional method)
— Tzone-BES-(CNN-LSTM-AM)_Two-way_CoSim (Proposed framework)
|

Tzone (°C)

. .
)
- - - - (=) - - - - - - b}
o o o o o o o o o o o o
~ ~ N ~ ~ N ~ N ~ ~ ~ ~
- o (2] < wn © ~ =) [=2) o - N
o o o o o o o o o - - -
Date

Figure 3. Zone mean air temperature under the BES-(CNN-LSTM-AM) co-simulation and standalone
EnergyPlus simulation.
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can be explained by the frequent operations of the AC for the former while the frequent operations
of windows for the latter (see figure 4(c)).

3.3 Effects of real-time window and HVAC control on thermal comfort

The continuous changing of thermal comfort at each timestep for the proposed framework and
traditional method is illustrated in figure 4(a), it can be observed that the proposed framework
can achieve more stable thermal comfort, manifested as slighter PMV or aPMV fluctuations
across the analysis period. Specifically, the interquartile range of PMV or aPMV for the proposed
framework is [0.69, 1.33] with less outliers, while the traditional method achieved an
interquartile range of [0.61, 1.0] with more outliers (figure 4(b)). To better understand the
reasons contributing to this phenomenon, we compared the system control status for each
timestep between two approaches, as shown in figure 4(c). It can be witnessed that obvious
discrepancies existed in the HVAC operation time between the proposed framework and
traditional method. The former had a much higher frequency of turning the AC on (36.3%) than
the latter (8.4%), while both exhibited similar window operation times.
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3.4 Effects of real-time window and HVAC control on cooling energy

Monthly AC cooling energy consumption (total, sensible and latent) of the proposed framework
and traditional method is illustrated in figure 5, in which the absolute deviation of the two is
depicted in the line chart. It can be noted that the proposed framework achieved less energy
consumption in summer while more in other seasons, indicating the energy saving potential by
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effective control of window and HVAC systems in hot summer. However, the annual total cooling
energy of the proposed framework (5.76x105 kWh) is higher than that of the traditional method
(5.13x10> kWh), reaching by approximately 12.26%, which can be explained by the HVAC
operation time in figure 4(c). Moreover, significant absolute deviations between the proposed
framework and traditional method are witnessed in summer, late spring and early autumn. In
winter, absolute deviation is not obvious. As the traditional method does not account for uneven
thermal stratification in large sports spaces, its cooling estimates may be less reliable.

4., Conclusion and future work

This study presents a data-driven smart window and HVAC control method for maintaining
occupant thermal comfort and optimizing building energy efficiency in large sports spaces. By
integrating EnergyPlus-MATLAB co-simulation with a pre-trained CNN-LSTM-AM model, the
proposed method enables real-time prediction of occupant thermal comfort and dynamic
adjustment of window and HVAC operations. Implemented in a case study of a prototype national
fitness hall on a full-year time scale, the effects of real-time window and HVAC control on occupant
thermal comfort and building energy efficiency were elucidated. Case study results indicated that
the proposed control framework could maintain more stable thermal comfort while consuming
12.26% more cooling energy. Notably, the proposed framework offers a promising solution for
energy-efficient and occupant-centric control in large sports buildings. Furthermore, it can be
extended to other large spaces across various climates, such as exhibition centers and high-speed
railway stations. Future work will investigate the integration of time series forecasting with deep
reinforcement learning algorithms to develop more advanced control strategies, with the goal of
achieving significant energy savings in real-world building applications.
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