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Abstract. Optimizing the control of window and HVAC systems for thermal
comfort and energy ef�iciency is a critical challenge in intelligent building
operations and controls. Despite the application of arti�icial intelligence of things
(AIoT) in supporting smart window and HVAC operations, inaccurate forecasting
methods in existing systems hinder their widespread adoption. This study
develops a data-driven smart control method, utilizing EnergyPlus-MATLAB co-
simulation and Long Short-Term Memory (LSTM)-based time-series forecasting,
to clarify the impacts of real-time control of window and HVAC systems on thermal 
comfort and energy ef�iciency in large sports buildings. A two-way EnergyPlus-
MATLAB co-simulation framework is developed leveraging the Building Controls
Virtual Test Bed (BCVTB) platform as the middleware. In addition, a pretrained
LSTM model is deployed to quickly predict occupant thermal comfort across large
sports spaces, which serves as the basis for window and HVAC control decisions.
To demonstrate the feasibility of the proposed approach, a case study of a national
�itness hall (NFH) in Shenzhen, China is conducted. The results reveal that the
proposed method can maintain more stable thermal comfort though it leads to a
12.26% increase in energy consumption due a 27.9% rise in HVAC operation time.
Future work will integrate the proposed method with deep reinforcement learning
to further enhance thermal comfort and energy ef�iciency.

Keywords: Data-driven, Smart control, Sports space, Thermal comfort, Energy 
ef�iciency 

1. Introduction

The building sector is responsible for approximately 40% of global energy consumption and 25% 
of CO2 emissions [1]. Among all building facilities, Heating, Ventilation, and Air Conditioning 
(HVAC) systems are major energy consumers, contributing to 50 % of total building energy usage 
[2, 3], with this �igure expected to triple by 2050 due to climate change impacts [4]. Well-designed 
and ef�icient HVAC controls play an essential role in providing a comfortable and energy-ef�icient 
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building environment. Currently, rule-based control (RBC) and proportional-integral-derivative 
(PID) controllers are commonly used for HVAC systems. These controllers rely on �ixed schedules 
to set temperature setpoints or use setpoint tracking algorithms, such as PID, to adjust system 
operations, thereby maintaining comfortable conditions. However, these methods face challenges 
in adapting to external factors, such as occupancy levels, meteorological conditions, and 
electricity costs [5]. 

As arti�icial intelligence (AI) and digital twins (DT) continue to advance, there has been a 
growing emphasis on intelligent building control algorithms among researchers. In recent years, 
Model predictive control (MPC) has emerged as a promising solution for controlling complex 
systems. MPC, a proven optimal control strategy, leverages physics-based, grey-box, or black-box 
models to ensure strong and reliable performance. However, the widespread application of MPC 
is limited by the high demands for modeling, expertise, data, hardware, usability, and 
computational power [6]. Given the critical role of the building sector in decarbonisation, it is 
essential to develop adaptive approaches that better align control systems with real 
environmental conditions while also accelerating the computation of physics-based MPC. 
Traditional simulation-based control strategies for HVAC systems, which rely on Computational 
Fluid Dynamics (CFD) or Building Energy Simulation (BES), incur signi�icant computational costs, 
making them impractical for real-time applications. As a result, recent research has increasingly 
focused on machine learning methods (ML) for optimal HVAC control. Machine learning enables 
the transition from physics-based MPC to data-driven predictive control. The rise of big data, 
enhanced computing power, and advances in algorithms have made it possible to implement ML-
based HVAC control approaches[7]. 

In large sports spaces, the phenomenon of uneven “thermal strati�ication” presents 
signi�icant challenges in accurately predicting indoor thermal environment and occupant thermal 
comfort [8-10], thereby hindering effective window and HVAC controls. Existing studies have 
employed BES-CFD coupling methods [8, 10, 11] to improve the accuracy of thermal distribution 
predictions and enhance HVAC system control performance. However, the computational burden 
of CFD makes it impractical for real-time control applications. Recently, time-series forecasting 
(TSF) has emerged as a alternative to CFD for estimating occupant thermal comfort, integrating 
window and HVAC control simulations with building energy simulations. Time-series data, 
including window and HVAC operation status, indoor environmental conditions, outdoor weather, 
and occupant behavior, can be extracted to characterize the dynamic environment. Long Short-
Term Memory (LSTM) networks, coupled with convolutional neural networks (CNN) and the 
attention mechanism (AM), are then used for the rapid prediction of future environmental 
changes, enabling real-time coordination of window and HVAC operations. 

To address the gaps identi�ied, this study introduces a data-driven smart control framework 
for window and HVAC systems in sports spaces, leveraging EnergyPlus-MATLAB co-simulation 
and LSTM-based TSF. This framework explores the potential for thermal comfort and building 
energy ef�iciency improvement through real-time window and HVAC operations. 

2. Methodology

The �lowchart of the proposed data-driven smart control method is shown in �igure 1. It consists 
of two main stages: Stage 1-LSTM training through parametric studies from BES-CFD co-
simulations, and Stage 2-Real-time window and HVAC control via BES-(CNN-LSTM-AM) co-
simulations. The method is enabled in a co-simulation environment combining EnergyPlus and 
MATLAB through the middleware, Building Controls Virtual Test Bed (BCVTB), which facilitates 
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control interactions and data exchange between MATLAB and EnergyPlus via the External 
Interface. A variable con�iguration �ile is written to determine the �low of data exchange among 
EnergyPlus, BCVTB and MATLAB in this study. 

A prototypical national �itness hall (NFH) model was established as the target building in this 
study. It is a large two-story sports building located in Shenzhen, China, with the second-story 
�itness hall designated as the target area with a dimension of 60m × 40m × 12m (length× width× 
height). The building is oriented northward, with windows on the south and west elevations and 
several skylights on the roof for natural ventilation. The HVAC system in the building is a Packaged 
Terminal Air Conditioner (PTAC) system. Shenzhen, classi�ied as Climate Zone 1A, has a “hot 
summer and warm winter” climate. For most of the year, the climate is warm and humid, with a 
prolonged rainy summer spanning May to November. Air conditioning (AC) cooling energy 
constitutes the primary building energy use in Shenzhen. Meanwhile, natural ventilation remains 
a viable option in transition seasons, with a duration from March to November. In this study, the 
AC cooling setpoint was set at 18 ℃. The study period, from April 28th to May 21st, was selected 
for co-simulations and training the CNN-LSTM-AM model (LSTM coupled with a convolutional 
neural network and attention mechanism) with a 15-minute time step. The weather �ile used for 
training was CHN_Guangdong.Shenzhen.594930_SWERA.epw [12]. 

2.1 Stage 1: Training of CNN-LSTM-AM 
Thermal strati�ication is a common phenomenon in large sports buildings, and it has been 
reported to affect the prediction accuracy of thermal comfort and energy consumption. At 
present, a feasible method for increasing the accuracy of estimating the uneven thermal 
distribution in large sports space is to conduct BES-CFD co-simulations [8]. Hence, this study 
develops a two-way external EnergyPlus-Fluent coupling method to predict occupant thermal 
comfort for window and HVAC operations. The stage 1 of the proposed method involves 
developing the CNN-LSTM-AM model using the dataset from BES-CFD co-simulations, 
encompassing data source, data preprocessing, model training and validation, as follows: 

Figure 1. The flowchart of 
the data-driven smart 
window and HVAC control 
method. 



International Conference on Sustainable Energy and Green Technology 2024
IOP Conf. Series: Earth and Environmental Science 1500 (2025) 012065

IOP Publishing
doi:10.1088/1755-1315/1500/1/012065

4

2.1.1 Data source. The EnergyPlus-Fluent co-simulation was conducted from April 28 to May 21 
with a time interval of 15 minutes, leaving a total of 2304 simulation runs, the detailed coupling 
process can be found in our previous study [10]. The co-simulations were executed on a 
workstation equipped with a 3.60 GHz Intel® Core™ i9-9900KF CPU, an NVIDIA® Quadro® RTX 
5000 GPU, 16 GB of RAM, and a Windows 10 (64-bit) operating system, requiring approximately 
14 days of computation time. The simulation results, including indoor and outdoor conditions, 
window and HVAC control statuses, and thermal comfort metrics, were compiled into a dataset 
(D) for developing the CNN-LSTM-AM model. We denote those most in�luencing factors at time 
step 𝑖𝑖  as 𝐼𝐼𝐼𝐼𝑖𝑖 , which consists of site outdoor air drybulb temperature (𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ), site outdoor air
relative humidity (𝑅𝑅𝑅𝑅𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), site wind speed (𝑉𝑉𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠),  site wind direction (𝐷𝐷𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), site direct solar
radiation rate per area (𝑆𝑆𝑆𝑆𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), HVAC status (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖), HVAC cooling setpoint (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖), window
open area fraction ( 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ), zone mean radiant temperature ( 𝑇𝑇𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ), zone mean air
temperature (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖), zone air relative humidity (𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖). Besides, we denote the outputs of thermal
comfort at time step 𝑡𝑡 as 𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖, which is the Adaptive Predicted Mean Vote (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) or Predicted 
Mean Vote (𝑃𝑃𝑃𝑃𝑃𝑃). Those parameters are denoted as: 

 𝐼𝐼𝐼𝐼𝑖𝑖 = (𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑇𝑇𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑅𝑅𝑅𝑅𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑉𝑉𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝐷𝐷𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑆𝑆𝑆𝑆𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑖𝑖 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 ,𝑇𝑇𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖)   (1) 
𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 = ((𝑎𝑎)𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖)        (2) 
𝐷𝐷 = [𝐼𝐼𝐼𝐼,𝑂𝑂𝑂𝑂𝑂𝑂]         (3) 

2.1.2 Data preprocessing. The dataset for training CNN-LSTM-AM model undergoes several 
preprocessing steps. First, missing data due to simulation errors or failures are re-simulated. 
Next, different data items are normalized to the range [0,1] using min-max normalization. 
Afterwards, the dataset is shuf�led to ensure it is randomly distributed, and �inally it was divided 
into training set and validation set. 

2.1.3 CNN-LSTM-AM model training and validation. This study constructs an occupant thermal 
comfort prediction model based on the CNN-LSTM-AM algorithm. The CNN component captures 
spatial correlations among various features in the collected dataset (D), addressing LSTM’s 
limitations in handling spatial dependencies. The attention mechanism (AM) allows the LSTM 
network to differentiate the importance of various input parameters on future forecasting, 
increasing the robustness of thermal comfort predictions. Besides, the hyperparameter settings 
of the LSTM were tuned by optimizing the LSTM layers, max epochs and initial learning rate using 

Table 1. Architecture parameters of CNN-LSTM-AM. 
Parameters Value 

Convolution layer filters 64 
Convolution layer kernel size 1 
Convolution layer activation function ReLU 
Pooling layer pool size 1 
LSTM layers 25 
Max epochs 81 
Initial learning rate 0.0504154042814 
Learning rate schedule Piecewise 
Learning rate drop factor 0.1 
Learning rate drop period 90 
LSTM optimizer Adam 
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the Pelican Optimization Algorithm (POA). The root mean square (RMSE), mean absolute 
percentage error (MAPE), mean absolute error (MAE), R-square (R2) were adopted as the 
evaluation indicators. Table 1 shows the optimal parameter settings of the CNN-LSTM-AM model. 

2.2 Stage 2: Real-time window and HVAC control 
After training the CNN-LSTM-AM model, stage 2 involves integrating the trained model for real-
time window and HVAC control. This section outlines how the trained model is used to predict 
occupant thermal comfort and adjust the system operations accordingly. The stage 2 leverages a 
two-way EnergyPlus-MATLAB co-simulation framework, enabling dynamic window and HVAC 
control according to thermal comfort levels predicted by CNN-LSTM-AM model. BCVTB 1.6.0 was 
used as the middleware to couple the EnergyPlus 9.6.0 and MATLAB R2021a. BCVTB is a software 
environment that couples various simulation engines for co-simulation, which has been 
frequently adopted for building energy assessment and system control. MATLAB code was written 
to deploy the CNN-LSTM-AM model for the rapid thermal comfort prediction and then to exchange 
the data with EnergyPlus. Figure 2(a) illustrates the BCVTB model for BES-(CNN-LSTM-AM) co-
simulation-based window-HVAC control, where the embedded simulators entitled “EP_Run” and 
“LSTM_Predict” are in charge of calling EnergyPlus and CNN-LSTM-AM model (via MATLAB). 

In this study, three scenarios of window and HVAC control were considered: (1) 𝑆𝑆1 : Open 
window & turn HVAC off; (2) 𝑆𝑆2: Close window & turn HVAC on; (3) 𝑆𝑆3: Close window & turn HVAC 
off. To enable real-time window and HVAC operations, this study employs a state transition 
approach to adjust their operating status at each time interval. At each timestep, 𝑖𝑖  ( 𝑖𝑖 =
0, 1, 2, …𝑇𝑇), once the control condition 𝐶𝐶(𝑖𝑖) is met, the control status transitions to 𝑆𝑆(𝑖𝑖), and the 
corresponding control signals are output as 𝑌𝑌(𝑖𝑖). Note that the initial state was set as: 𝑆𝑆(0) = 𝑆𝑆3: 
Close window and turn off HVAC. Figure 2(b) details the window and HVAC control policy as well 
as the transition process of control status. Hence, the control problem is mathematically 
formulated as: 

At each time step i: 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔:  𝐶𝐶(𝑖𝑖) = 𝑓𝑓 �𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧(𝑖𝑖),𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖), (𝑎𝑎)𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖)� = 

⎩
⎪
⎨

⎪
⎧𝐶𝐶1,     𝑖𝑖𝑖𝑖   (𝑎𝑎)𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖) ≤ 1
𝐶𝐶2,     𝑖𝑖𝑖𝑖   1 < (𝑎𝑎)𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖) ≤ 1.5 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧(𝑖𝑖) ≥ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖)          

𝐶𝐶3,     𝑖𝑖𝑖𝑖  �1 < (𝑎𝑎)𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖) ≤ 1.5 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧(𝑖𝑖) < 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖)� 𝑜𝑜𝑜𝑜 �(𝑎𝑎)𝑃𝑃𝑃𝑃𝑃𝑃(𝑖𝑖) > 1.5� 
  (4) 

(a)  (b)

Figure 2. (a) The BCVTB model of coupling EnergyPlus and CNN-LSTM-AM model for controlling 
window and HVAC systems; (b) The status transition process and corresponding control conditions. 
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡:  𝑆𝑆(𝑖𝑖) = � 
𝑆𝑆1: 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜𝑜𝑜,     𝑖𝑖𝑖𝑖  𝐶𝐶(𝑖𝑖) = 𝐶𝐶1
𝑆𝑆2: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜,       𝑖𝑖𝑖𝑖  𝐶𝐶(𝑖𝑖) = 𝐶𝐶2
𝑆𝑆3: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑜𝑜𝑜𝑜𝑜𝑜,     𝑖𝑖𝑖𝑖  𝐶𝐶(𝑖𝑖) = 𝐶𝐶3

                      (5) 

𝑠𝑠𝑠𝑠𝑠𝑠:  𝑌𝑌(𝑖𝑖) = �𝑦𝑦𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑖𝑖), 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖)� = �
(0, 0, 1),        𝑖𝑖𝑖𝑖   𝑆𝑆(𝑖𝑖) = 𝑆𝑆1 
(1, 18, 0),     𝑖𝑖𝑖𝑖   𝑆𝑆(𝑖𝑖) = 𝑆𝑆2   
(0, 0, 0),        𝑖𝑖𝑖𝑖  𝑆𝑆(𝑖𝑖) = 𝑆𝑆3 

                   (6) 

Where: 𝑖𝑖 (𝑖𝑖 = 0, 1, 2, …𝑇𝑇) denotes the simulation time steps, starting from 0 and ending at 𝑇𝑇; 
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑖𝑖), 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖)  and 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖)  are the HVAC and window control signals, where 0 
indicates closing window or turning HVAC off, while 1 denotes to opening window or turning 
HVAC on. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑖𝑖) is switched to 18 ℃ when the HVAC is turned on (𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑖𝑖) = 1); The range 
of 𝑃𝑃𝑃𝑃𝑃𝑃  (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)  for determining three window and HVAC control scenarios was tailored for 
strenuous sports settings, according to [8, 13]. 

3. Results and discussion

3.1 Model training results 
The trained CNN-LSTM-AM model demonstrated strong predictive performance, with predicted 
values closely following the trend of observed data. Speci�ically, the RMSE, MAPE, MAE and R2 
values of the trained model for predicting thermal comfort (𝑃𝑃𝑃𝑃𝑃𝑃 or 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) are 0.1098, 0.0548, 
0.0435 and 0.9399, respectively, which con�irms that the prediction errors by the trained model 
are well accepted compared with similar studies [14, 15]. Possible sources of error in the trained 
model include biases and limitations in the training datasets, which may hinder the model’s 
generalization across different environmental conditions and time periods. Future work should 
focus on expanding the training dataset to cover a broader range of time points and durations. 
Additionally, integrating physics-informed LSTM models with optimized hyperparameters may 
enhance the model’s robustness and reduces its reliance on purely data-driven learning. 

3.2 Zone mean air temperature 
By applying the trained CNN-LSTM-AM model in the stage 2, the proposed data-driven smart 
control framework across a whole year in Shenzhen, China was implemented. The zone mean air 
temperature ( 𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 ) under BES-(CNN-LSTM-AM) co-simulation and standalone EnergyPlus 
simulation are depicted in �igure 3. It indicates that the proposed framework achieved a lower 
𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 compared with the traditional method throughout the whole year. The discrepancy of the 
𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 between the proposed framework and traditional method is signi�icant during winter and 
part of the transition seasons when the 𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  of proposed framework is approaching to the 
outdoor air temperature (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠), while the 𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 of traditional method is higher than 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 . Another 
interesting phenomenon is that the daily �luctuations of the 𝑇𝑇𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 under proposed framework are 
less than that under the traditional method, indicating more stable thermal environment, which 

Figure 3. Zone mean air temperature under the BES-(CNN-LSTM-AM) co-simulation and standalone 
EnergyPlus simulation. 
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can be explained by the frequent operations of the AC for the former while the frequent operations 
of windows for the latter (see �igure 4(c)). 

3.3 Effects of real-time window and HVAC control on thermal comfort 
The continuous changing of thermal comfort at each timestep for the proposed framework and 
traditional method is illustrated in �igure 4(a), it can be observed that the proposed framework 
can achieve more stable thermal comfort, manifested as slighter 𝑃𝑃𝑃𝑃𝑃𝑃  or 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  �luctuations 
across the analysis period. Speci�ically, the interquartile range of 𝑃𝑃𝑃𝑃𝑃𝑃 or 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 for the proposed 
framework is [0.69, 1.33] with less outliers, while the traditional method achieved an 
interquartile range of [0.61, 1.0] with more outliers (�igure 4(b)). To better understand the 
reasons contributing to this phenomenon, we compared the system control status for each 
timestep between two approaches, as shown in �igure 4(c). It can be witnessed that obvious 
discrepancies existed in the HVAC operation time between the proposed framework and 
traditional method. The former had a much higher frequency of turning the AC on (36.3%) than 
the latter (8.4%), while both exhibited similar window operation times.  

3.4 Effects of real-time window and HVAC control on cooling energy 
Monthly AC cooling energy consumption (total, sensible and latent) of the proposed framework 
and traditional method is illustrated in �igure 5, in which the absolute deviation of the two is 
depicted in the line chart. It can be noted that the proposed framework achieved less energy 
consumption in summer while more in other seasons, indicating the energy saving potential by 

(a) (b) 

(c) 

Figure 4. (a-b) 𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)  under 
the BES-(CNN-LSTM-AM) co-
simulation and standalone 
EnergyPlus simulation; (c) Control 
status at each timestep and total 
window and HVAC operation time. 
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Figure 5. Comparison of monthly cooling 
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simulation and standalone EnergyPlus 
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effective control of window and HVAC systems in hot summer. However, the annual total cooling 
energy of the proposed framework (5.76×105 kWh) is higher than that of the traditional method 
(5.13×105 kWh), reaching by approximately 12.26%, which can be explained by the HVAC 
operation time in �igure 4(c). Moreover, signi�icant absolute deviations between the proposed 
framework and traditional method are witnessed in summer, late spring and early autumn. In 
winter, absolute deviation is not obvious. As the traditional method does not account for uneven 
thermal strati�ication in large sports spaces, its cooling estimates may be less reliable.  

4. Conclusion and future work

This study presents a data-driven smart window and HVAC control method for maintaining 
occupant thermal comfort and optimizing building energy ef�iciency in large sports spaces. By 
integrating EnergyPlus-MATLAB co-simulation with a pre-trained CNN-LSTM-AM model, the 
proposed method enables real-time prediction of occupant thermal comfort and dynamic 
adjustment of window and HVAC operations. Implemented in a case study of a prototype national 
�itness hall on a full-year time scale, the effects of real-time window and HVAC control on occupant 
thermal comfort and building energy ef�iciency were elucidated. Case study results indicated that 
the proposed control framework could maintain more stable thermal comfort while consuming 
12.26% more cooling energy. Notably, the proposed framework offers a promising solution for 
energy-ef�icient and occupant-centric control in large sports buildings. Furthermore, it can be 
extended to other large spaces across various climates, such as exhibition centers and high-speed 
railway stations. Future work will investigate the integration of time series forecasting with deep 
reinforcement learning algorithms to develop more advanced control strategies, with the goal of 
achieving signi�icant energy savings in real-world building applications. 
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