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Abstract 

This study presents RCBldEng, a fast simulation method 

for multi-thermal-zone building energy consumption 

based on Resistance-Capacitance (RC) models. While 

existing building energy simulation tools like EnergyPlus 

provide reliable results, they require substantial 

computational resources and detailed input parameters. 

To address this limitation, we developed and evaluated 

four RC model configurations (4R1C, 6R1C, 7R1C, and 

7R2C) with progressive levels of interzonal thermal 

coupling complexity. The models were validated against 

EnergyPlus simulations using a U.S. Department of 

Energy (DOE) prototype buildings—a medium office 

building—three distinct climate conditions representing 

diverse thermal challenges across China: Shanghai 

(ASHRAE 3A - warm and moist), Guangzhou (ASHRAE 

2A - hot-humid subtropical), and Shenyang (ASHRAE 6A 

- cold continental). The 7R2C model demonstrated 

superior performance across all climate zones, achieving 

r-squared values approaching 99% in office buildings 

under diverse climatic conditions. Cross-climate 

validation results confirm the model's robustness, with 

consistent accuracy maintained across heating-dominated 

(Shenyang), cooling-dominated (Guangzhou), and 

balanced load (Shanghai) thermal environments. Notably, 

the introduction of dual-capacitance mechanisms and 

interzonal thermal coupling significantly improved 

prediction accuracy during transitional seasons. The 

results indicate that while all coupled models showed 

improvement over the baseline 4R1C model, the 7R2C 

configuration offers an optimal balance between accuracy 

and computational efficiency. This research provides 

architects and engineers with a lightweight yet reliable 

tool for rapid comparison of design alternatives during 

early-stage building design and renovation projects. 

Keywords: Building simulation; RC model; Heating 

load; Cooling load; Energy use 

Key Innovations 

The study introduces RCBldEng, a fast multi-thermal-

zone building energy simulation method using RC models 

with progressive interzonal thermal coupling complexity. 

The dual-capacitance 7R2C model achieves high accuracy 

compared to EnergyPlus while significantly reducing 

computational requirements, particularly excelling in 

transitional season predictions. 

Practical Implications 

Our developed RCBldEng provides architects and 

engineers with a lightweight alternative to 

computationally intensive simulation tools. Its optimal 

balance of accuracy and efficiency enables rapid 

comparison of multiple design alternatives during early-

stage building design and renovation projects, supporting 

sustainable design decisions without sacrificing 

prediction reliability. 

Introduction 

As climate change and urbanization are posing challenges 

to curb building sector energy use and carbon emission 

(Shen & Yang, 2020), how to design energy-saving new 

constructions or to effectively renovate existing buildings 

(S. Li et al., 2022) in a more computationally efficient 

manner (Shen, 2024) has become an critical research 

focus considering that emerging parametric optimization 

based on heuristic method entails intensive computation. 

Building thermal load and energy consumption simulation 

calculations are essential for evaluating energy 

consumption and carbon emission levels during building 

operations. While architects and engineers use various 

simulation models throughout different design stages 

(Hong, Chou, & Bong, 2000; Weisberg, 2012; Wittchen, 

Johnsen, & Sørensen, 2007; Yan et al., 2008), there's a 

growing need for efficient simulation tools during 

conceptual design and renovation phases. Currently 

mature energy simulation software like EnergyPlus 

provides reliable results but requires detailed input 

parameters and substantial computational power, 

especially for buildings with multiple zones (USDOE, 

2014). This computational intensity makes it challenging 

to perform rapid comparisons of multiple design schemes 

(Picco, Lollini, & Marengo, 2014). The Resistance-

Capacitance (RC) model, which simulates heat transfer 

processes through circuit component analogies, offers a 

promising alternative due to its lower complexity and 

computational requirements (Hong et al., 2000). Building 

energy simulation models generally fall into three 

categories: white-box, black-box, and gray-box models. 

White-box models, while accurate, require numerous 
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input parameters and lengthy calculation times(Crawley et 

al., 2001). Black-box models, though adaptable, demand 

high-quality training data and lack interpretability. The 

gray-box RC model combines the advantages of both 

approaches, offering clearer physical significance than 

black-box models while maintaining lower computational 

costs than white-box models when dealing with both 

building scale (Y. Li et al., 2021) or regional scale 

building energy modeling (Shen, Wang, & Ji, 2021). 

While current RC model implementations primarily rely 

on inverse methods, requiring historical data for 

parameter identification through various algorithms, the 

forward RC model approach remains relatively 

unexplored, particularly for multi-thermal zone 

applications. The forward method establishes thermal 

balance models using building parameters like envelope 

thickness and heat transfer coefficients (Shen, Braham, & 

Yi, 2018). Although some studies have validated forward 

RC models (Vivian, Zarrella, Emmi, & Carli, 2017), 

research on multi-thermal-zone RC models rarely 

considers coupled heat transfer between zones (Bacher & 

Madsen, 2011). 

This study aims to develop RCBldEng, a fast simulation 

method for multi-thermal-zone building energy 

consumption based on a mixed-forward-inverse RC 

model. The research explores computational costs and 

accuracy across different model orders, solution methods, 

and building types while establishing a comprehensive 

whole-building multi-zone RC energy consumption 

modeling structure. This approach can provide architects 

and engineers with a lightweight algorithm for rapid 

simulation and comparison of building energy 

consumption, supporting both new construction and 

renovation projects in achieving sustainable design goals 

(GhaffarianHoseini et al., 2013).  

Methodology 

The proposed forward-inverse-mixed RC models 

 

Figure 1: The proposed RC models with different 

modeling parameters: a) 4R1C w/o coupling; b) 6R1C; 

c) 7R1C; d) 7R2C 

Interzonal thermal coupling can play a critical role in 

capturing the intricate thermal interactions between 

different zones within a building. Hence, three distinct RC 

models—6R1C, 7R1C, and 7R2C—have been proposed 

to address these complexities. The structures of the three 

models, including the 4R1C model without interzonal 

thermal coupling are plotted together in Figure 1. 

The 6R1C model 

The 6R1C model has two temperature nodes 𝑇a and 𝑇m as 

well. It takes into account the heat fluxes between the 

current zone and all the adjacent zones. 
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Where, 

𝑇az,i: Temperature of ith adjacent zone of the current 

zone (K); 

𝑅if,i : Thermal resistance of internal floor of ith 

adjacent zone (m2K/W); 

𝑅iw,i : Thermal resistance of internal wall of ith 

adjacent zone (m2K/W); 

The 6R1C model employs temperature nodes 𝑇a 

(representing internal air) and 𝑇m  (depicting thermal 

mass) and is adept at integrating heat fluxes between the 

current zone and its adjacent zones. Its structure 

recognizes the importance of the building's internal zones 

in shaping its thermal behavior, which is essential for 

larger structures or those with prominent internal heat 

sources or sinks. By considering both the external 

environment and neighboring zones, this model offers a 

more comprehensive thermal view of single-zone 

behaviors, and their adjacent interactions compared to the 

4R1C model. 

The 7R1C model 

The 7R1C model has three temperature nodes, namely 𝑇a,
𝑇s and 𝑇m, in which 𝑇𝑠 represents the central mass node. 
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where, 

𝑅ia: Thermal resistance of internal air (m2K/W); 

Advancing from the 6R1C configuration, the 7R1C model 

introduces an additional node, 𝑇s , to signify the central 

thermal mass. This central mass is differentiated from the 

peripheral or envelope mass represented by 𝑇m . The 
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introduction of 𝑇s can better represent the temperature of 

interior surfaces within the thermal zone (such as internal 

walls, floors, and ceilings). The resistances related to 

internal walls and floors of neighboring zones further 

detail this interaction. Thus, the 7R1C provides a layered 

approach to capturing both external influences and 

intricate interzonal dynamics. 

The 7R2C model 

𝑄ℎ𝑣𝑎𝑐 + 𝑄𝑎𝑖𝑟   =  
𝑇𝑎−𝑇𝑜

𝑅𝑣
+

𝑇𝑎−𝑇𝑠

𝑅𝑖𝑎
 (8) 

𝐶𝑠
𝑑𝑇𝑠

𝑑𝑡
=

𝑇𝑚−𝑇𝑠

𝑅𝑖𝑚
+

𝑇𝑜−𝑇𝑠

𝑅𝑤𝑖𝑛
+ ∑

𝑇𝑎𝑧,𝑖−𝑇𝑠

𝑅𝑖𝑤,𝑖
𝑖 +

𝑇𝑜−𝑇𝑠+(𝑄ℎ𝑣𝑎𝑐+𝑄𝑎𝑖𝑟)𝑅𝑣

𝑅𝑖𝑎+𝑅𝑣
+ 𝑄𝑖𝑛𝑡 (9) 

𝐶𝑚
𝑑𝑇𝑚

𝑑𝑡
+

𝑇𝑚
1

1
𝑅𝑖𝑎+𝑅𝑣

+
1

𝑅𝑤𝑖𝑛
+

1
𝑅𝑖𝑤

+𝑅𝑖𝑚
=

𝑇𝑜−𝑇𝑚

𝑅𝑒𝑥
+

𝑇𝑠−𝑇𝑚

𝑅𝑖𝑚
+

∑
𝑇𝑎𝑧,𝑖−𝑇𝑚

𝑅𝑖𝑓,𝑖
𝑖 + ∑

𝑇𝑎𝑧,𝑖

𝑅𝑖𝑤,𝑖
𝑖 + 𝑄𝑠𝑜𝑙 + 𝑄𝑖𝑛𝑡 (10) 

where, 

𝐶s: thermal capacity of central thermal mass node per 

building area (J/m2K) 

Building upon the foundation of the 7R1C, the 7R2C 

model introduces the 𝐶s  term, capturing the thermal 

storage capability of the central thermal mass mode 𝑇s. 

This distinction in capacitance—𝐶m for peripheral mass 

and 𝐶s for central mass—gives the 7R2C model a refined 

representation of energy storage and discharge dynamics. 

This dual-capacitance mechanism can ensure a more 

detailed portrayal of how heat ebbs and flows within 

different building components compared with the 7R1C 

model, making it especially useful for buildings 

undergoing pronounced day-night thermal variations. 

Parameter Determination in RCBldEng 

The RC model parameters in RCBldEng are determined 

through a systematic approach that distinguishes between 

new building design applications and existing building 

analysis. For new building design scenarios, which 

represent the primary application of this study, all 

parameters are calculated using forward modeling 

approaches based on standard building design inputs 

including geometry, construction assemblies, thermal 

properties, and operational schedules. The aggregated 

internal parameters including Rim (internal mass 

resistance), Rif (internal floor resistance), Riw (internal 

wall resistance), and thermal capacitances represent 

complex interzonal thermal interactions that cannot be 

directly calculated from individual building components. 

These parameters can be established through physical 

relationships and typical ranges documented in building 

thermal modeling literature or building codes, ensuring 

that users need only provide conventional building design 

parameters rather than estimating specialized RC circuit 

values. 

For existing buildings, external thermal resistances such 

as Rex and Rwin can be directly input from documented 

wall and window U-values, while ventilation resistance Rv 

can be determined from specified air change rates and 

building volume. For existing building applications where 

some building properties may be unknown or uncertain, 

RCBldEng incorporates an inverse modeling capability 

that employs a non-dominated sorting evolution algorithm 

to optimize hard-to-determine parameters such as 

effective thermal capacitance and interior wall thermal 

properties. This optimization process uses measured 

building performance data to calibrate parameters while 

maintaining physical constraints and relationships 

between thermal circuit elements. 

The developed tool, now publicly available at 

https://github.com/andersonspy/RCBIdEng, automates 

the parameter determination process and includes sample 

building models in the Projects folder that are more 

complicated in terms of geometry and thermal zoning, 

together with their complete model input specifications. 

In short, users are needed to provide standard architectural 

and engineering design inputs, and the tool calculates 

appropriate RC parameters without requiring specialized 

knowledge of thermal circuit modeling. 

Load Calculation 

While RC models typically solve for indoor temperature 

given heating and cooling power inputs, RCBldEng is 

formulated to calculate the required heating and cooling 

loads needed to maintain specified indoor temperature 

setpoints. This is achieved by rearranging the thermal 

balance equations to solve for Qhvac as the dependent 

variable rather than Ta. The models enforce indoor 

temperature constraints by setting Ta equal to the 

thermostat setpoint temperatures and calculating the 

necessary HVAC power to satisfy the thermal balance 

under given outdoor conditions and internal loads. This 

approach enables direct comparison with EnergyPlus load 

calculations, which similarly determine the energy 

required to maintain thermal comfort conditions rather 

than predicting free-floating temperatures. 

Simulation of DOE prototype buildings 

Prototype building models 

The validation and performance assessment of the 

developed RC-based simulation engine are grounded on 

two prototype buildings: a detached house and a medium 

office building as shown in Figure 2. The case study 

building is derived from the U.S. Department of Energy 

(DOE) models, specifically from the commercial 

prototype model series, ensuring the representation of 

climate-dominant and internal-load dominant building 

types (Shen & Wang, 2024). The prototype building 

adheres to the ASHRAE 90.1-2013 standard, underlining 

their commitment to energy efficiency and sustainable 

design. ASHRAE 90.1-2013 is a well-established 

standard in the building industry, widely adopted for its 

benchmarks and guidelines on energy-efficient design and 

practices (Halverson et al., 2014). The occupancy and 

building use schedule, and the indoor cooling and heating 

setpoint schedule can be found in ref (Shen et al., 2018). 
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Adherence to this standard ensures that the case study 

buildings reflect contemporary building design practices, 

especially in the context of energy efficiency. 

 

Figure 2: The EnergyPlus model of the DOE prototype 

medium office building 

To comprehensively evaluate the robustness and 

generalizability of the proposed RC models across diverse 

climatic conditions, the weather data utilized for building 

simulations are sourced from typical meteorological year 

(TMY) datasets for three Chinese cities that have 

representative climate conditions: Shanghai, Guangzhou, 

and Shenyang. The locations of the three cities have been 

plotted in Figure 3. 

 

Figure 3: Cities for RC building energy model validation 

across different climate zones in China 

These locations were strategically selected to encompass 

various thermal challenges and seasonal variations. 

Shanghai falls under ASHRAE climate zone 3A, 

characterized by a warm and moist climate with hot 

summers and mild winters. Guangzhou represents 

ASHRAE climate zone 2A, featuring a hot-humid 

subtropical climate with extended cooling seasons and 

minimal heating requirements. Shenyang corresponds to 

ASHRAE climate zone 6A, characterized by a cold 

continental climate with severe winters and significant 

heating demands. This multi-climate validation approach 

ensures that the developed RC model simulation engine is 

tested across heating-dominated, cooling-dominated, and 

balanced thermal load conditions, providing a 

comprehensive assessment of model performance under 

diverse environmental contexts. For the sake of 

comparison and to establish a performance baseline, 

EnergyPlus, a renowned and widely accepted building 

energy simulation software, is employed as the 

"benchmark" reference simulation engine. The specific 

version of EnergyPlus used in this study is 9.5. It serves 

as a robust yardstick against which the outcomes of the 

RC-based simulation engine can be gauged. This 

comparative approach offers a comprehensive 

understanding of the fidelity and reliability of the 

developed RC-based engine. For a comprehensive 

comparison, the proposed four RC model configurations, 

namely 4R1C, 6R1C, 7R1C, and 7R2C, are considered. 

These configurations represent different complexities and 

granularity in modeling, hence providing a spectrum of 

results. This structured assessment across three distinct 

climate zones allows for a thorough evaluation of the 

developed engine's accuracy, robustness, computational 

cost, and versatility across a range of modeling intricacies 

and climatic conditions. 

Results and Discussions 

In Figure 8, the hourly simulation results for the office 

building using EnergyPlus and the RC models (6R1C, 

7R1C, and 7R2C) in Shanghai are plotted. The 7R2C 

model, with its intricate structure, emerges as the top 

contender in terms of minimizing biases relative to 

EnergyPlus. Its prowess in predicting heating and cooling 

loads is especially conspicuous during transitional 

seasons. Complementing this observation, Figure 9, the 

scatter plot reflecting the simulation accuracy of the 

models for the office buildings in Shanghai, demonstrates 

hierarchical performance. While both the 4R1C and 6R1C 

models exhibit less persuasive performance relative to the 

7R models for hourly heating and cooling load 

predictions, the 7R2C model comfortably takes the lead 

over the 7R1C. 
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Summer and winter 

 

Transitional season 

Figure 4: Hourly simulation results of EnergyPlus and the 6R1C, 7R1C, and 7R2C model for the office buildings in 

Shanghai 

4R1C 

 

6R1C 
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7R1C 

 

7R2C 

 

Figure 5: Scatter plot of simulation accuracy of the 4R1C, 6R1C, 7R1C, and 7R2C model for the office buildings in 

Shanghai (True value: EnergyPlus, Predicted value: RC model) 

The cross-climate validation results presented in Table 1 

demonstrate the consistent superior performance of the 

7R2C model across all three climate zones, reinforcing its 

robustness under diverse thermal conditions. Notably, the 

model accuracy remains remarkably stable across 

different climates, with the 7R2C model achieving 

cooling load R-squared values of 0.988, 0.989, and 0.981 

for Shanghai, Guangzhou, and Shenyang respectively, 

and heating load R-squared values of 0.983, 0.964, and 

0.983. 

Interesting climate-specific patterns emerge from this 

analysis. The Guangzhou results show slightly higher 

cooling load accuracy (r² = 0.989) compared to other 

locations, reflecting the model's effectiveness in capturing 

the predominantly cooling-dominated thermal behavior 

characteristic of hot-humid climates. Conversely, 

Shenyang demonstrates the highest heating load accuracy 

(r² = 0.983) and lowest heating NRMSE (1.06%), 

indicating the model's proficiency in cold climate heating 

load predictions. Shanghai, with its transitional climate 

characteristics, shows balanced performance across both 

heating and cooling predictions. 

The NRMSE values for daily peak load predictions show 

remarkable consistency across climates, with the 7R2C 

model maintaining peak cooling load errors between 

3.61% and 3.75% and peak heating load errors between 

1.94% and 2.24% across all three locations. This 

consistency in peak load prediction accuracy is 

particularly significant for HVAC system sizing and 

energy demand planning applications. The progressive 

improvement from 4R1C to 7R2C models is consistently 

observed across all climate zones, with the 4R1C model 

showing notably higher errors in peak load predictions 

(ranging from 12.95% to 14.62% for cooling peaks and 

13.93% to 14.62% for heating peaks), emphasizing the 

importance of interzonal thermal coupling regardless of 

climate conditions. 

These cross-climate validation results establish the 7R2C 

model as a reliable tool for building energy simulation 

across diverse geographic and climatic contexts, 

supporting its potential for widespread adoption in 

international building design and energy analysis 

applications. 

The validation presented in this study represents a forward 

modeling assessment where RC model predictions are 

compared against EnergyPlus simulations serving as 

reference benchmarks. EnergyPlus results were not used 

to train or calibrate the RC model parameters, ensuring 

that the accuracy comparisons reflect genuine predictive 

capability rather than curve-fitting performance. The 

progressive improvement observed from 4R1C to 7R2C 

configurations demonstrates the effectiveness of 

increased thermal coupling complexity in capturing 

building thermal behavior, with each model using 

identical parameter determination methodologies but 

different thermal network structures. 

The progression from 4R1C to 7R2C models involves 

increasing thermal network complexity while maintaining 

consistent input data requirements from users. All RC 

model configurations utilize the same fundamental 

building design inputs including geometry, construction 

assemblies, thermal properties, HVAC schedules, and 

occupancy patterns. The key difference lies in the internal 

thermal coupling complexity rather than additional user-

specified parameters. The 4R1C model requires basic 

zone-level inputs, while the 6R1C, 7R1C, and 7R2C 
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models automatically incorporate interzonal thermal 

relationships using the same building geometry and 

adjacency information already provided. 

This represents simplification in model inputs compared 

to EnergyPlus, which requires detailed specifications for 

numerous individual building components, surface-by-

surface thermal properties, detailed HVAC system 

configurations, and extensive modeling parameters that 

can exceed several hundred inputs for complex buildings. 

RCBldEng maintains relatively constant input 

requirements across all model complexities, with the tool 

automatically determining the appropriate level of thermal 

coupling based on building geometry and adjacency 

relationships. The accuracy improvements demonstrated 

by higher-order models are achieved through enhanced 

internal thermal network structures rather than increased 

input burden on users, preserving the tool's objective of 

providing simplified yet accurate building energy 

simulation for early design applications. 

Table 1: Overall simulation performance of the RC based office building models compared to EnergyPlus 

Climate 

Zone 
Model 

R² of 

CL 

R² of 

HL 

NRMSE of 

CL 

NRMSE of 

HL 

NRMSE of daily 

peak CL 

NRMSE of daily 

peak HL 

Shanghai 4R1C 0.925 0.869 8.41% 3.75% 13.40% 14.20% 

 6R1C 0.955 0.893 4.73% 3.21% 4.42% 3.69% 

 7R1C 0.985 0.969 2.84% 1.56% 3.92% 3.36% 

 7R2C 0.988 0.983 2.48% 1.17% 3.63% 2.09% 

Guangzhou 4R1C 0.931 0.852 8.21% 3.82% 12.95% 14.62% 

 6R1C 0.962 0.882 4.63% 3.25% 4.36% 3.73% 

 7R1C 0.987 0.951 2.75% 1.67% 3.87% 3.45% 

 7R2C 0.989 0.964 2.42% 1.39% 3.61% 2.24% 

Shenyang 4R1C 0.907 0.883 8.78% 3.84% 14.51% 13.93% 

 6R1C 0.943 0.904 4.95% 3.19% 4.62% 3.57% 

 7R1C 0.978 0.974 3.02% 1.45% 4.12% 3.21% 

 7R2C 0.981 0.983 2.57% 1.06% 3.75% 1.94% 

Conclusions 

The multi-thermal zone RC models with interzonal 

thermal coupling evaluated in this study included a 

comprehensive evaluation across three representative 

climate zones in China: Shanghai (ASHRAE 3A), 

Guangzhou (ASHRAE 2A), and Shenyang (ASHRAE 

6A), demonstrating their robustness under diverse thermal 

conditions. The systematic parameter determination 

methodology enables RCBldEng to serve as an accessible 

building energy simulation tool that requires only 

conventional design inputs while maintaining physical 

interpretability. The publicly available toolkit in Windows 

platform at https://github.com/andersonspy/RCBIdEng 

provides the building simulation community with both the 

tool and comprehensive documentation for further 

application across diverse building types and design 

scenarios. We demonstrated through comprehensive 

cross-climate comparison of four RC model 

configurations (4R1C, 6R1C, 7R1C, and 7R2C) against 

EnergyPlus simulations that the prediction accuracy 

progressively improves as the model complexity increases 

across all three climate zones. The office building 

prototype validation across Shanghai, Guangzhou, and 

Shenyang showed that the 7R2C model consistently 

outperformed simpler configurations regardless of 

climatic conditions. The model exhibited remarkably 

stable performance across diverse thermal environments, 

with cooling load r-squared values of 0.988, 0.989, and 

0.981 for Shanghai, Guangzhou, and Shenyang 

respectively, and heating load r-squared values of 0.983, 

0.964, and 0.983. Cross-climate analysis revealed climate-

specific strengths: superior cooling load prediction in hot-

humid Guangzhou, excellent heating load accuracy in 

cold Shenyang, and balanced performance in transitional 

Shanghai climate. It is shown in this research that the 

interzonal thermal coupling and the addition of additional 

thermal mass nodes were critical to achieving accurate 

load predictions especially during the transitional seasons. 

All interzonal thermally coupled models outperformed the 

baseline 4R1C model consistently across the three 

validation climates, but the 7R2C model had the best 

tradeoff between accuracy and computational efficiency. 

Through this comprehensive multi-climate validation, we 

established a valid lightweight alternative to detailed 

energy simulation software that maintains consistent 

accuracy in diverse geographic and climatic contexts, 

providing architects and engineers with a practical fast 

comparative analysis tool for early design stages suitable 

for international applications. 

https://github.com/andersonspy/RCBIdEng
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