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Abstract 

This study explores the impact of future climate change 

on energy-efficient building spatial layout and identifies 

adaptation strategies under different climate scenarios. 

Existing research mainly focuses on optimizing spatial 

layouts for current climate conditions, overlooking long-

term energy performance. To address this gap, this study 

employs an energy-efficiency-oriented spatial layout 

optimization method and a distribution-adjusted temporal 

mapping (DATM) technique for future climate prediction. 

A standard office building model is analyzed under the 

current climate condition and five SSP scenarios (2030–

2059).Results show that future climate change 

significantly affects spatial layout energy performance, 

with operational energy consumption increasing by at 

least 25.84% under SSP126 (energy-efficient building 

spatial layout under current climate condition). Layouts 

optimized for current conditions decline in efficiency 

under future climates, emphasizing the need for adaptive 

design. Clustering and statistical analyses reveal that 

orientation, division, and adjacency relationships are key 

to energy efficiency across climate scenarios. Findings 

suggest that flexible zoning, reconfigurable layouts, and 

dynamic adjacency strategies are essential for climate-

adaptive design.By providing quantitative insights and 

design recommendations, this study establishes a 

methodological foundation for integrating future climate 

considerations into pre-design phase building design. 

Key words ： Spatial layout, Climate change, Energy 

efficiency, Climate-adaptive design, Optimization 

Key Innovations 

The study introduces a novel methodology combining 

energy-efficiency-oriented spatial layout optimization 

with distribution-adjusted temporal mapping for future 

climate prediction. Through comprehensive analysis of 

building spatial layouts across multiple climate scenarios, 

it reveals that current energy-efficient layouts 

significantly decline in performance under future climate 

conditions, identifying critical adaptation thresholds. 

Practical Implications 

Building designers must prepare for at least 25% higher 

energy consumption in currently optimized buildings 

under future climate scenarios. The study provides 

actionable spatial design strategies including orientation 

along east-west axes, moderately complex zoning (ZC_3), 

and strengthened adjacency relationships (Nei_3-4) to 

enhance climate resilience, with specific 

recommendations for short, medium, and long-term 

adaptation. 

Introduction 

Reducing building operational energy, which accounts for 

over 30% of global consumption, is crucial in the context 

of global warming (IEA, 2019). Due to its preemptive 

nature and difficulty in modification, the pre-design phase 

has a particularly significant impact on operational energy 

consumption. According to one study, over 40% of 

energy-saving potential originates from the pre-design 

phase (Hemsath, 2013). Therefore, investigating building 

energy performance during pre-design is essential for 

reducing carbon emissions and achieving carbon 

neutrality goals. 

Current research on energy-efficient design primarily 

focuses on building form and façade performance, with 

limited attention to the relationship between spatial layout 

and energy performance (Shen, Li, Gao, Chen, et al., 

2025). While studies have shown that spatial layout 

impacts energy consumption under fixed building 

envelopes (Cheng et al., 2016; Du et al., 2020, 2021; 

Latha et al., 2023; Musau & Steemers, 2008), their 

applicability to multi-story buildings with complex 

functions remains limited, and automation in layout 

optimization is underdeveloped. Additionally, most 

energy-efficient design research relies on current climate 

data, failing to account for long-term climate changes that 

significantly affect building energy performance.  

Currently, research in this field has demonstrated that a 

defined energy-efficient spatial layout strategies exists 

under a specific climate scenario (Du, 2021). However, 

the future adaptability of such strategies has not been 

effectively validated. Accordingly, this study aims to 

address the following three key questions. 

1. Will the energy-efficient spatial layout under current 

climate scenario still be efficient in the future? 
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2. What is the relationship between the energy-efficient 

spatial layout and different future climate scenarios? 

3. What are the design strategies for energy-efficient 

spatial layout in response to future climate change? 

To address these questions, this study explores energy-

efficient spatial layouts under future climate scenarios, 

examining their relationship with different climate 

scenarios. Using an optimization framework combined 

with a distribution-adjusted temporal mapping (DATM) 

method for climate prediction, this research provides a 

methodological foundation for integrating climate 

resilience into building pre-design. 

Methodology 

Energy-Efficiency Oriented Spatial Layout 

Generation and Optimization Method 

This method, based on a reverse workflow in automated 

building design, addresses the energy-efficient functional 

spatial layout in high-rise office buildings. It consists of 

two main components: a 3D functional spatial layout 

algorithm module (GSL) implemented through a custom 

Python algorithm and an energy performance 

optimization module (EPO) using the Octopus tool. By 

following predefined rules and parameters, this method 

can generate diverse building layout solutions and 

iteratively optimize them with an energy-efficiency 

objective. 

Automatic Generation of Space Layouts(GSL) Method 

GSL module first establishes a grid model by drawing on 

fundamental principles from digital image 

processing(Jähne, 2005), segmenting the building model 

into a three-dimensional spatial grid and assigning 

different functional attributes to each unit. Layout 

generation is then conducted using a custom algorithm 

(Figure 1). The GSL module generates 3D spatial layouts 

by applying state transition rules to adjacent spatial units 

(Figure 2).  

 

Figure 1: 3D space generation algorithm 

 

Figure 2: Algorithm layout generation schematic 

Energy Performance Optimization(EPO) Method 

EPO module utilizes the Octopus plugin(Manni, 

Lobaccaro, Lolli, & Bohne, 2020; Toutou, Fikry, & 

Mohamed, 2018), which is based on a genetic algorithm, 

as the iterative optimization tool. Energy simulation is 

conducted using the Honeybee plugin(Tabadkani, Shoubi, 

Soflaei, & Banihashemi, 2019), which integrates 

EnergyPlus as the core engine. This module enables 

energy-driven iterative optimization of 3D spatial layout 

solutions. 

To evaluate the energy performance of spatial layout 

solutions, building annual energy load per unit area is 

used as the key objective. The annual energy load per unit 

area (Annual_Load), measured in kWh/m², represents the 

total energy consumption of a building over a year divided 

by its total floor area. This includes energy consumption 

for heating, cooling, lighting, and equipment operation (1). 

EannualLoad = Qheating + Qcooling + Qlighting + Qequipment (1) 

Workflow of GSL-EPO 

Within GSL-EPO framework (Figure 3), the EPO module 

first provides genetic parameters, which the GSL module 

then uses to generate a spatial layout solution. 

Subsequently, the EPO module evaluates the energy 

performance of this solution through simulation and 

iteratively optimizes it by generating new genetic 

parameters. 

Through this iterative optimization workflow, 

increasingly energy-efficient spatial layout solutions are 

continuously generated. Additionally, by analyzing the 

iteration process and convergence trends, the method can 

approximate the optimal energy performance solution as 

closely as possible.  

 

Figure 3: Workflow of GSL-EPO framework  

Future Hourly Weather Data Downscaling Method 

Building Performance Simulation (BPS) is a critical tool 

for predicting a building’s thermal behavior, energy 

consumption, and indoor comfort under future climate 

scenarios (Wang & Zhai, 2016). Accurate BPS relies on 

precisely predicted future climate data. However, the 

spatial resolution of Global Climate Model (GCM) 

outputs is too coarse to capture localized climate 

variations and specific weather patterns that affect 

individual buildings(Laflamme, Linder, & Pan, 2016). 
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Therefore, GCM outputs must be downscaled into high-

resolution local climate data to guide architects in 

designing resilient and energy-efficient buildings for 

future climates (Andrić, Koc, & Al-Ghamdi, 2019; Shen, 

2024; Shen, Li, Gao, Zheng, et al., 2025). 

Distribution Adjusted Temporal Mapping(DATM) 

Method 

In this method, future climate data prediction is based on 

a self-made Distribution Adjusted Temporal Mapping 

(DATM) method. This method downscales monthly 

Global Climate Model (GCM) data into hourly future 

climate data, using Typical Meteorological Year (TMY) 

data as the baseline (Shen, 2025). The proposed method 

involves three key steps: (1)Fitting probability 

distributions to each climate variable in the TMY dataset. 

(2)Modifying these distributions based on the monthly 

changes predicted by GCM. (3)Mapping future hourly 

weather data from the adjusted distributions. 

Advantages of DATM method in the field of Building 

Performance Simulation(BPS) 

In the field of BPS, existing statistical downscaling 

methods such as the Super Resolution Deep Residual 

Network(Laflamme et al., 2016) and weather generators 

(Laflamme et al., 2016) have shown promising accuracy 

but often require specific long-term datasets and 

computational resources that exceed the typical capacity 

of BPS workflows. As a result, approximately 33% of 

studies in this domain continue to rely on the morphing 

method due to its simplicity and compatibility with 

widely available TMY data. 

Compared to these methods, the proposed DATM method 

achieves a balance between high accuracy and 

implementation feasibility (Shen, 2025). Through 

comparison with the morphing method, DATM 

demonstrates superior performance in capturing 

temperature extremes, accurately modeling the tails of 

relative humidity distributions, and maintaining the 

physical constraints of solar radiation. Validation using 

onsite hourly weather data from 2015 to 2024 confirms 

that DATM offers higher statistical consistency and 

distributional fidelity across most climate variables (Shen, 

2025). Figure 4 illustrates the improved reliability of the 

DATM method over the morphing method in predicting 

extreme climate events. 

 

Figure 4: Yearly number of heatwaves comparison in 

Shenzhen 

Materials 

Future Climate Scenarios 

The future climate scenario data used in this study were 

obtained through the DATM method described above. 

The Global Climate Model (GCM) employed is MRI-

ESM2-0, developed by the Meteorological Research 

Institute of Japan (Shen, Ji, et al., 2025; Yukimoto et al., 

2019). Additionally, the study utilizes GCM outputs 

based on the latest Shared Socioeconomic Pathways 

(SSPs) (O’Neill et al., 2014). 

SSPs are a collection of five narrative-based, globally 

applicable, and coherent storylines of possible future 

developments in greenhouse gas emissions, land use, and 

economic growth, among other factors(Riahi et al., 2017) . 

The SSPs considered in this study include: 

• SSP1-2.6: Low emissions, strong climate action, 

warming kept below 2°C. 

• SSP2-4.5: Moderate emissions, current development 

trends with some mitigation. 

• SSP3-7.0: High emissions, limited development, 

ineffective climate policies. 

• SSP4-3.4: Moderate emissions, some mitigation and 

adaptation measures. 

• SSP5-8.5: Very high emissions, fossil fuel reliance, 

severe climate impact. 

Hereafter, the five future climate scenarios are 

abbreviated as SSP126, SSP434, SSP245, SSP370, and 

SSP585, while the current climate condition is 

abbreviated as TMY. 

Experiment Model: Standard Office Building Model 

A standard office building model is selected as the 

experimental subject. The model is based on the 

Commercial Reference Buildings developed by the U.S. 

Department of Energy. The office building consists of 

eight floors, each with a floor height of 3.6 m, a footprint 

of 1,536 m², and a total area of 12,288 m²(Figure 5). The 

standard floor has a length-to-width ratio of 3:2, with the 

building oriented due south and the site located in 

Shenzhen, Guangdong, China.  

Following the method described before, the building is 

divided into 24 grid units per floor, totaling 192 grid units 

across eight floors. The floor plan and grid division are 

shown in Figure 5. The central area is designated for 

vertical circulation and auxiliary functions, and is 

therefore excluded from the functional layout 

arrangement. 
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Figure 5: Standard office building model 

Experiment Parameters 

The office building is divided into five functional zones 

and one circulation zone. The area proportions and 

parameter details for each zone are summarized in Table 

1. For ease of expression, the abbreviations for each 

functional zone hereafter are listed. 

Table 1: Energy consumption simulation parameters for each functional zone 

Function Name Area（m²） Area 

（m²/person） 

Electrical equipment 

power density（W/ m²） 

Lighting power 

density（W/ m²） 

Open Office(Zone 1) 4608  10 15 8 

Closed Office(Zone 2) 2560 15 15 8 

Serviced Apartment(Zone 3) 1536  25 15 6 

Sessions(Zone 4) 1280 10 12 12 

Cafeteria(Zone 5) 1280 8 13 12 

Vertical Traffic 1024 8 5 6 

The experiment assumes traditional lighting design, 

making lighting and equipment loads dependent only on 

building area. Envelope materials are listed in Table 2. 

The window-to-wall ratio is 40% for north and south 

façades and 20% for east and west, modeled using 

Honeybee's "HB Apertures by Ratio" module. Shenzhen's 

heating and cooling periods follow relevant standards 

(Table 3), while occupancy, equipment, lighting, and 

HVAC schedules adhere to common parameters. 

Table 2: Material parameters of the envelope  

Building 

envelope 
Material 

K 

(W/m²·K) 

External 

wall 

Pure gypsum board 10mm + Ex

truded polystyrene board 60mm

 + Pure gypsum board 8mm +H

eavy mortar clay  

240mm 

0.45 

Roof 

Bituminous mineral wool felt 2

5mm + extruded polystyrene bo

ard 50mm + bituminous mineral

 wool felt 30mm 

0.53 

Interior  

wall 

Cement mortar 20mm + cerami

c concrete 180mm + cement mo

rtar 20mm 

3.57 

Windows 

6 High Transmittance Low-

E+12 Air+6 Transparent Therm

al insulated metal profiles 

2.70 

Table 3: Heating/Cooling period of Shenzhen) 

City The cooling period 
The heating 

period 

Shenzhen 6.1 -9.31 11.15 -3.15 

In this experiment, the areas of each functional zone, 

building envelope materials, window-to-wall ratios, and 

other key parameters are kept constant. Only the spatial 

layout of the functional zones is adjusted and changed to 

rigorously evaluate the impact of spatial layout —

considered as an independent variable — on building 

energy performance. Therefore, only the Annual_Load is 

selected as the single-objective optimization metric, and 

the feasibility of the generated spatial layout solutions is 

not overly considered at this stage. 

The experiment includes six climate scenarios: 

Shenzhen’s current climate (TMY) and five future 

scenarios (SSP126, SSP434, SSP245, SSP370, SSP585). 

Each scenario generates 1,800 optimized solutions 

through 30 generations of 60 solutions each (Figure 6). 

Hyper-parameters of the genetic algorithm are adjusted, 

and the final dataset is selected when the Annual_Load 

difference among the top three solutions is under 1%, 

minimizing local optima risk. 

 

Figure 6: GSL-EPO experiment 

Post-optimization Analysis 

The six spatial layout solution sets are processed by 

removing duplicates from optimization convergence. 

Each climate scenario retains 800–900 valid solutions. 

For the spatial layout solution sets, their 3D models 

(Figure 7) are difficult to observe and directly compare to 

derive convincing data-driven conclusions. Therefore, 

spatial layout features are needed to quantify the 

architectural properties of spatial layouts into numerically 

measurable data indicators. 
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Figure 7: Spatial layout solution set 

Spatial Layouts Features Extraction 

The properties of spatial layouts include layout 

dimensions, interior partitions, and the locations of 

different functions. In this study, we focus the analysis of 

spatial layout features on three key aspects: the 

orientation of different function zones, the segmentation 

of different function zones, and the adjacency between 

different function zones. These aspects are quantified into 

the following three types of data indicators: 

• Orientation Feature represents the distribution of a 

functional zone in a specific direction. For example, 

Ori_1N indicates the distribution of Function Zone 1 

in the north direction. Its value is calculated as the 

proportion of Function Zone 1’ s grid  that are 

adjacent to the northern boundary. A higher value 

means that the function is more concentrated toward 

that orientation. 

• Division Feature represents the segmentation of a 

functional zone. For example, ZC_1 represents the 

number of separate, non-adjacent parts into which 

Function Zone 1 is divided. A higher value indicates 

that the function is more fragmented. 

• Neighbor Feature represents the adjacency between 

different functional zones. For example, Nei_1-2 

indicates the adjacency between Function Zone 1 and 

Function Zone 2. Its value is calculated as the total 

length of adjacent grid edges between these two zones. 

A higher value suggests that the two functional areas 

are more closely positioned. 

Analysis Method 

This section explains the analysis methods for the solution 

data sets. Due to the complexity and high dimensionality 

of the data related to different functional zones and their 

corresponding three types of spatial layout features, it is 

difficult to form a concise representation of the spatial 

layout feature for a given solution. Therefore, the data 

analysis method follows the following three steps. 

(1) Principcal Component Analysis (PCA) is applied to 

condense the three spatial layout feature types into a 

lower-dimensional representation, facilitating 

comparison between solutions. (2) To account for 

randomness in individual solutions, K-means clustering 

groups solutions into high- and low-energy-consumption 

clusters based on Annual_Load, with the optimal cluster 

count determined by the elbow method. (3) Analysis of 

Variance (ANOVA) for Heterogeneity Analysis: 

ANOVA (p < 0.01) assesses variations in spatial layout 

features across clusters, identifying statistically 

significant differences. These steps collectively reveal 

spatial layout distinctions under different climate 

scenarios. 

Results 

Energy Use in Future Climate Scenarios 

From the K-means clustering analysis under a single 

climate scenario(Figure 8) (taking SSP370 as an example), 

it can be observed that different Annual_load clusters 

exhibit a clear stratification in PCA component—which 

represents spatial layout features. This also confirms the 

existing research conclusion that a defined energy-

efficient spatial layout strategy exists under a specific 

climate scenario. 

 

Figure 8:  Solutions clustering (SSP370)  

Analyzing the relationship between energy-efficient 

spatial layout and different climate scenarios, it is evident 

from the Annual_Load values of the energy-efficient 

spatial layouts under various climate scenarios that 

climate change has a significant impact on building 

operational energy consumption(Table 4). The energy-

efficient spatial layout under TMY will experience a 

substantial increase in operational energy consumption 

under future climate conditions. Even under the mildest 

SSP126, the annual_load will rise by 25.84%.

Table 4: Energy-efficient spatial layout(EESL) Annual_load rise 

Annual_load(kWh/m²) TMY SSP126 SSP 245 SSP 370 SSP 434 SSP 585 

EESL of TMY 72.96 91.81 89.64 90.26 89.39 93.38 

EESL / 84.14 82.35 83.45 81.08 85.43 
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Also taking SSP126 as an example, the Annual_Load of 

the energy-efficient spatial layout under TMY is 91.81 

kWh/m², while under SSP126, it is 84.14 kWh/m². This 

difference initially reveals that energy-efficient spatial 

layout varies significantly across future climate scenarios. 

To verify whether there is a consistent difference, 

ANOVA check of the lowest Annual_Load clusters 

across climate scenarios results show significant 

heterogeneity in most indicators. 

Relationship between Spatial Layout and Future 

Climate Scenarios 

To further analyzes this heterogeneity, we compared the 

lowest Annual_Load clusters’  spatial layout features 

between different SSP scenarios and TMY scenarios, as 

well as among different SSP scenarios, the following 

patterns can be summarized.

 

Figure 9: Comparison of TMY and SSP126/ SSP245/ SSP370/ SSP434/ SSP585 in orientation feature

For Orientation Features, under the current climate 

condition(TMY), the orientation distribution remains 

relatively balanced, predominantly aligned along the 

northeast-southwest (ORI_NE to ORI_SW) axis. This 

distribution likely results from the need to balance solar 

gain and thermal control under present climatic conditions. 

In the low-emission scenario (SSP126), the optimized 

orientation begins to shift towards the east-west axis 

(ORI_E and ORI_W) while still maintaining some degree 

of dispersion. This pattern suggests that only minor 

adjustments to the orientation strategy are necessary 

under mild climate change conditions. For moderate-

emission scenarios (SSP245 and SSP370), the optimized 

orientation becomes significantly concentrated along both 

the northeast-southwest and east-west axes, exhibiting a 

stronger directional preference. This shift is likely a 

response to increasing cooling demands associated with 

rising temperatures. In the high-emission scenario 

(SSP585), the orientation is almost entirely concentrated 

along the east-west axis (ORI_E), with a near-complete 

abandonment of the north-south orientation. This trend 

may be attributed to the need to minimize summer 

overheating risks while simultaneously maximizing 

passive solar gain during winter months. 

Across all future climate scenarios, a clear trend emerges: 

as emission levels increase, the optimal orientation 

becomes progressively more concentrated, with a 

narrowing distribution range. This suggests that under 

intensified climate warming, the flexibility in 

architectural orientation selection decreases, necessitating 

more precise and deliberate design strategies.

 

 Figure 10: Comparison of TMY and SSP126/ SSP245/ SSP370/ SSP434/ SSP585 in division feature

For Division Features, under the current climate 

condition(TMY), the zoning distribution is relatively 

balanced, ranging between ZC_2 and ZC_4, reflecting the 

diverse spatial requirements under existing climatic 

conditions. In the low-emission scenario (SSP126), 

zoning begins to concentrate around ZC_3, indicating that 

integrating certain functional areas is more advantageous 

for energy optimization under mild climate changes. For 

moderate-emission scenarios (SSP245 and SSP370), the 

proportion of ZC_3 and ZC_4 increases, while ZC_1 and 

ZC_2 decrease. This trend suggests that as climate 

warming intensifies, more refined zoning strategies are 

required to effectively manage varying thermal loads.   

In the high-emission scenario (SSP585), zoning becomes 

highly concentrated in ZC_3, with ZC_1 nearly 

disappearing. This pattern implies that under extreme 

climate warming, a moderately complex zoning strategy 

is the most effective for energy management. 

Across all future climate scenarios, zoning transitions 

from a dispersed distribution under TMY to a more 

concentrated configuration under SSP585. However, this 

shift does not follow a strictly linear progression but 

rather exhibits a “first dispersed, then concentrated” 

pattern. This suggests that a medium level of zoning 

complexity provides the greatest adaptability to future 

climate conditions.
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Figure 11: Comparison of TMY and SSP126/ SSP245/ SSP370/ SSP434/ SSP585 in neighbor feature

For Neighbor Features, under the current climate 

condition(TMY), adjacency relationships are relatively 

balanced, with Nei_1-2, Nei_2-3, and Nei_3-4 exhibiting 

similar distributions. This reflects the diverse spatial 

connectivity needs under existing climate conditions. In 

the low-emission scenario (SSP126), adjacency 

relationships begin to shift towards Nei_2-3 and Nei_3-4, 

suggesting an increased emphasis on heat buffering and 

transfer efficiency between functional zones under mild 

climate changes. For moderate-emission scenarios 

(SSP245 and SSP370), the Nei_3-4 relationship becomes 

significantly stronger, emerging as the dominant 

adjacency pattern, while Nei_1-2 weakens. This shift 

indicates that heat transfer pathways between functional 

zones play a more critical role as climate warming 

intensifies. In the high-emission scenario (SSP585), 

adjacency relationships become highly concentrated on 

Nei_3-4, with other adjacency connections weakening 

considerably. This pattern suggests that under extreme 

climate warming, deep connections between specific 

functional zones are essential for controlling energy 

consumption. 

Across all future climate scenarios, adjacency 

relationships transition from a balanced and distributed 

model under TMY to a more specialized and concentrated 

configuration under SSP585. This trend implies that as 

climate change intensifies, buildings may require more 

precise control over inter-zone interactions to optimize 

energy efficiency. Regarding overall coordination and 

adaptation, the optimization results show a clear gradient 

shift from TMY to SSP585, indicating the need for 

gradual layout adjustments as climate change intensifies. 

A significant optimization strategy turning point in 

SSP245 suggests that moderate climate change may be a 

critical threshold for layout adaptation.  

Conclusion 

Under future climate scenarios, the evolution of energy 

efficient spatial layouts exhibits a nonlinear pattern, as 

reflected in the trends shown in Figures 9–11. While the 

orientation, division, and neighbor features remain 

broadly consistent across scenarios, the most notable 

transformations occur between SSP370 and SSP585. 

These inflection points highlight the nonlinear 

responsiveness of optimal building layouts to escalating 

climate pressures. Consequently, it becomes essential for 

architects to adopt phased and adaptive design strategies 

that accommodate both short-term fluctuations and long-

term shifts, thereby enhancing buildings' climate 

resilience across a spectrum of future conditions. 

Design Recommendation 

For short-term adaptation (TMY to SSP126), maintaining 

the advantage of the northeast-southwest orientation is 

recommended, along with a moderate increase in the 

proportion of the ZC_3 region and strengthened Nei_2-3 

and Nei_3-4 connections. For mid-term adaptation 

(SSP245/SSP370), a significant increase in the proportion 

of east-west orientation should be implemented, 

accompanied by an expansion of the ZC_3 and ZC_4 

regions and substantial reinforcement of the Nei_3-4 

connection. For long-term adaptation (SSP585), east-west 

orientation should be established as the dominant strategy, 

with ZC_3 serving as the core zoning approach and a 

near-complete reliance on the Nei_3-4 adjacency 

relationship. For flexible design strategies, provisions 

should be made for potential orientation adjustments, 

reconfigurable zoning, and adaptable adjacency 

relationships to accommodate different climate scenarios.   

As the climate scenario shifts from the TMY baseline to 

the SSP585 high-emission scenario, the optimal layout 

transitions from a diversified and balanced configuration 

to a specialized and concentrated strategy, underscoring 

the increasing need for precise spatial organization in 

response to intensifying climate change. 

Outlook 

This study explores the impact of different climate change 

scenarios on energy-efficient spatial layout in the context 

of climate change, summarizes the characteristics and 

variation patterns of energy-efficient spatial layout 

strategies under different climate scenarios, and provides 

comprehensive recommendations for achieving climate-

adaptive building design. There are certain limitations in 

the current study. Including whether the three selected 

spatial layout features fully capture all characteristics, the 

effectiveness of interpretability methods for energy-

efficient layouts, and the potential coincidence of results 

from a single building and city sample.  Since this study 

uses operational energy consumption as the single 

evaluation metric, further research is needed to generalize 

the findings to urban samples in different regions or under 

varying socioeconomic contexts. Future work should take 

into account local climatic conditions, construction costs, 

land use constraints, and occupant comfort.
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