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Abstract

This study explores the impact of future climate change
on energy-efficient building spatial layout and identifies
adaptation strategies under different climate scenarios.
Existing research mainly focuses on optimizing spatial
layouts for current climate conditions, overlooking long-
term energy performance. To address this gap, this study
employs an energy-efficiency-oriented spatial layout
optimization method and a distribution-adjusted temporal
mapping (DATM) technique for future climate prediction.
A standard office building model is analyzed under the
current climate condition and five SSP scenarios (2030—
2059).Results show that future climate change
significantly affects spatial layout energy performance,
with operational energy consumption increasing by at
least 25.84% under SSP126 (energy-efficient building
spatial layout under current climate condition). Layouts
optimized for current conditions decline in efficiency
under future climates, emphasizing the need for adaptive
design. Clustering and statistical analyses reveal that
orientation, division, and adjacency relationships are key
to energy efficiency across climate scenarios. Findings
suggest that flexible zoning, reconfigurable layouts, and
dynamic adjacency strategies are essential for climate-
adaptive design.By providing quantitative insights and
design recommendations, this study establishes a
methodological foundation for integrating future climate
considerations into pre-design phase building design.

Key words : Spatial layout, Climate change, Energy
efficiency, Climate-adaptive design, Optimization

Key Innovations

The study introduces a novel methodology combining
energy-efficiency-oriented spatial layout optimization
with distribution-adjusted temporal mapping for future
climate prediction. Through comprehensive analysis of
building spatial layouts across multiple climate scenarios,
it reveals that current energy-efficient layouts
significantly decline in performance under future climate
conditions, identifying critical adaptation thresholds.

Practical Implications

Building designers must prepare for at least 25% higher
energy consumption in currently optimized buildings
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under future climate scenarios. The study provides
actionable spatial design strategies including orientation
along east-west axes, moderately complex zoning (ZC 3),
and strengthened adjacency relationships (Nei_3-4) to
enhance climate resilience, with specific
recommendations for short, medium, and long-term
adaptation.

Introduction

Reducing building operational energy, which accounts for
over 30% of global consumption, is crucial in the context
of global warming (IEA, 2019). Due to its preemptive
nature and difficulty in modification, the pre-design phase
has a particularly significant impact on operational energy
consumption. According to one study, over 40% of
energy-saving potential originates from the pre-design
phase (Hemsath, 2013). Therefore, investigating building
energy performance during pre-design is essential for
reducing carbon emissions and achieving carbon
neutrality goals.

Current research on energy-efficient design primarily
focuses on building form and fagade performance, with
limited attention to the relationship between spatial layout
and energy performance (Shen, Li, Gao, Chen, et al.,
2025). While studies have shown that spatial layout
impacts energy consumption under fixed building
envelopes (Cheng et al., 2016; Du et al., 2020, 2021;
Latha et al.,, 2023; Musau & Steemers, 2008), their
applicability to multi-story buildings with complex
functions remains limited, and automation in layout
optimization is underdeveloped. Additionally, most
energy-efficient design research relies on current climate
data, failing to account for long-term climate changes that
significantly affect building energy performance.
Currently, research in this field has demonstrated that a
defined energy-efficient spatial layout strategies exists
under a specific climate scenario (Du, 2021). However,
the future adaptability of such strategies has not been
effectively validated. Accordingly, this study aims to
address the following three key questions.

1. Will the energy-efficient spatial layout under current
climate scenario still be efficient in the future?
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2. What is the relationship between the energy-efficient
spatial layout and different future climate scenarios?

3. What are the design strategies for energy-efficient
spatial layout in response to future climate change?

To address these questions, this study explores energy-
efficient spatial layouts under future climate scenarios,
examining their relationship with different climate
scenarios. Using an optimization framework combined
with a distribution-adjusted temporal mapping (DATM)
method for climate prediction, this research provides a
methodological foundation for integrating climate
resilience into building pre-design.

Methodology

Energy-Efficiency Oriented Spatial Layout
Generation and Optimization Method

This method, based on a reverse workflow in automated
building design, addresses the energy-efficient functional
spatial layout in high-rise office buildings. It consists of
two main components: a 3D functional spatial layout
algorithm module (GSL) implemented through a custom
Python algorithm and an energy performance
optimization module (EPO) using the Octopus tool. By
following predefined rules and parameters, this method
can generate diverse building layout solutions and
iteratively optimize them with an energy-efficiency
objective.

Automatic Generation of Space Layouts(GSL) Method

GSL module first establishes a grid model by drawing on
fundamental  principles  from  digital  image
processing(Jahne, 2005), segmenting the building model
into a three-dimensional spatial grid and assigning
different functional attributes to each unit. Layout
generation is then conducted using a custom algorithm
(Figure 1). The GSL module generates 3D spatial layouts
by applying state transition rules to adjacent spatial units
(Figure 2).

formation |

Figure 2: Algorithm layout generation schematic
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Energy Performance Optimization(EPO) Method

EPO module utilizes the Octopus plugin(Manni,
Lobaccaro, Lolli, & Bohne, 2020; Toutou, Fikry, &
Mohamed, 2018), which is based on a genetic algorithm,
as the iterative optimization tool. Energy simulation is
conducted using the Honeybee plugin(Tabadkani, Shoubi,
Soflaci, & Banihashemi, 2019), which integrates
EnergyPlus as the core engine. This module enables
energy-driven iterative optimization of 3D spatial layout
solutions.

To evaluate the energy performance of spatial layout
solutions, building annual energy load per unit area is
used as the key objective. The annual energy load per unit
area (Annual_Load), measured in kWh/m?*, represents the
total energy consumption of a building over a year divided
by its total floor area. This includes energy consumption
for heating, cooling, lighting, and equipment operation (1).

EannualLoad = Qheating + Qcooling + Qlighting + Qequipment (1)
Workflow of GSL-EPO

Within GSL-EPO framework (Figure 3), the EPO module
first provides genetic parameters, which the GSL module
then uses to generate a spatial layout solution.
Subsequently, the EPO module evaluates the energy
performance of this solution through simulation and
iteratively optimizes it by generating new genetic
parameters.

Through this iterative optimization workflow,
increasingly energy-efficient spatial layout solutions are
continuously generated. Additionally, by analyzing the
iteration process and convergence trends, the method can
approximate the optimal energy performance solution as
closely as possible.

= — .. Generation of '7
"2 - = Spatial Layout(GSL) |
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Optimization (EPO)
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simulation |
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Figure 3: Workflow of GSL-EPO framework
Future Hourly Weather Data Downscaling Method

Building Performance Simulation (BPS) is a critical tool
for predicting a building’ s thermal behavior, energy
consumption, and indoor comfort under future climate
scenarios (Wang & Zhai, 2016). Accurate BPS relies on
precisely predicted future climate data. However, the
spatial resolution of Global Climate Model (GCM)
outputs is too coarse to capture localized climate
variations and specific weather patterns that affect
individual buildings(Laflamme, Linder, & Pan, 2016).
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Therefore, GCM outputs must be downscaled into high-
resolution local climate data to guide architects in
designing resilient and energy-efficient buildings for
future climates (Andri¢, Koc, & Al-Ghamdi, 2019; Shen,
2024; Shen, Li, Gao, Zheng, et al., 2025).

Distribution Adjusted Temporal Mapping(DATM)
Method

In this method, future climate data prediction is based on
a self-made Distribution Adjusted Temporal Mapping
(DATM) method. This method downscales monthly
Global Climate Model (GCM) data into hourly future
climate data, using Typical Meteorological Year (TMY)
data as the baseline (Shen, 2025). The proposed method
involves three key steps: (l)Fitting probability
distributions to each climate variable in the TMY dataset.
(2)Modifying these distributions based on the monthly
changes predicted by GCM. (3)Mapping future hourly
weather data from the adjusted distributions.

Advantages of DATM method in the field of Building
Performance Simulation(BPS)

In the field of BPS, existing statistical downscaling
methods such as the Super Resolution Deep Residual
Network(Laflamme et al., 2016) and weather generators
(Laflamme et al., 2016) have shown promising accuracy
but often require specific long-term datasets and
computational resources that exceed the typical capacity
of BPS workflows. As a result, approximately 33% of
studies in this domain continue to rely on the morphing
method due to its simplicity and compatibility with
widely available TMY data.

Compared to these methods, the proposed DATM method
achieves a balance between high accuracy and
implementation feasibility (Shen, 2025). Through
comparison with the morphing method, DATM
demonstrates superior performance in capturing
temperature extremes, accurately modeling the tails of
relative humidity distributions, and maintaining the
physical constraints of solar radiation. Validation using
onsite hourly weather data from 2015 to 2024 confirms
that DATM offers higher statistical consistency and
distributional fidelity across most climate variables (Shen,
2025). Figure 4 illustrates the improved reliability of the
DATM method over the morphing method in predicting
extreme climate events.

Yearly Number of Heatwaves Comparison (Shenzhen)
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Figure 4: Yearly number of heatwaves comparison in
Shenzhen
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Materials
Future Climate Scenarios

The future climate scenario data used in this study were
obtained through the DATM method described above.
The Global Climate Model (GCM) employed is MRI-
ESM2-0, developed by the Meteorological Research
Institute of Japan (Shen, Ji, et al., 2025; Yukimoto et al.,
2019). Additionally, the study utilizes GCM outputs
based on the latest Shared Socioeconomic Pathways
(SSPs) (O’ Neill et al., 2014).

SSPs are a collection of five narrative-based, globally
applicable, and coherent storylines of possible future
developments in greenhouse gas emissions, land use, and
economic growth, among other factors(Riahi et al., 2017) .
The SSPs considered in this study include:

e SSP1-2.6: Low emissions, strong climate action,
warming kept below 2°C.

e SSP2-4.5: Moderate emissions, current development
trends with some mitigation.

e SSP3-7.0: High emissions, limited development,
ineffective climate policies.

e SSP4-3.4: Moderate emissions, some mitigation and
adaptation measures.

e SSP5-8.5: Very high emissions, fossil fuel reliance,
severe climate impact.

Hereafter, the five future climate scenarios are
abbreviated as SSP126, SSP434, SSP245, SSP370, and
SSP585, while the current climate condition is
abbreviated as TMY.

Experiment Model: Standard Office Building Model

A standard office building model is selected as the
experimental subject. The model is based on the
Commercial Reference Buildings developed by the U.S.
Department of Energy. The office building consists of
eight floors, each with a floor height of 3.6 m, a footprint
of 1,536 m*, and a total area of 12,288 m* (Figure 5). The
standard floor has a length-to-width ratio of 3:2, with the
building oriented due south and the site located in
Shenzhen, Guangdong, China.

Following the method described before, the building is
divided into 24 grid units per floor, totaling 192 grid units
across eight floors. The floor plan and grid division are
shown in Figure 5. The central area is designated for
vertical circulation and auxiliary functions, and is
therefore excluded from the functional layout
arrangement.

Vertical Traffic

0001
https://doi.org/10.26868/25222708.2025.1958



BUILDING =
SlMULﬂ]LlPE
2029w

International
Building
Performance
Simulation

b Association

Figure 5: Standard office building model
Experiment Parameters

The office building is divided into five functional zones
and one circulation zone. The area proportions and

parameter details for each zone are summarized in Table
1. For ease of expression, the abbreviations for each
functional zone hereafter are listed.

Table 1: Energy consumption simulation parameters for each functional zone

Function Name Area (m?) Area Electrical equipment Lighting power

(m?/person) power density (W/ m?) density (W/ m?)
Open Office(Zone 1) 4608 10 15 8
Closed Office(Zone 2) 2560 15 15 8
Serviced Apartment(Zone 3) 1536 25 15 6
Sessions(Zone 4) 1280 10 12 12
Cafeteria(Zone 5) 1280 8 13 12
Vertical Traffic 1024 8 5 6

The experiment assumes traditional lighting design,
making lighting and equipment loads dependent only on
building area. Envelope materials are listed in Table 2.
The window-to-wall ratio is 40% for north and south
facades and 20% for east and west, modeled using
Honeybee's "HB Apertures by Ratio" module. Shenzhen's
heating and cooling periods follow relevant standards
(Table 3), while occupancy, equipment, lighting, and
HVAC schedules adhere to common parameters.

Table 2: Material parameters of the envelope

. . K
Building Material
envelope (W/m™K)

Pure gypsum board 10mm + Ex
truded polystyrene board 60mm

E 1
x\fg}a + Pure gypsum board 8mm +H 0.45
eavy mortar clay
240mm
Bituminous mineral wool felt 2
Smm + extruded polystyrene bo
Roof ard 50mm + bituminous mineral 0.53
wool felt 30mm
Interior Cement mortar 20mm + cerami
ero ¢ concrete 180mm + cement mo 3.57
wall
rtar 20mm
6 High Transmittance Low-
Windows  E+12 Airt+6 Transparent Therm 2.70

al insulated metal profiles

Table 3: Heating/Cooling period of Shenzhen)

. . . The heating
City The cooling period period
Shenzhen 6.1-9.31 11.15-3.15

In this experiment, the areas of each functional zone,
building envelope materials, window-to-wall ratios, and
other key parameters are kept constant. Only the spatial
layout of the functional zones is adjusted and changed to
rigorously evaluate the impact of spatial layout —
considered as an independent variable — on building
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energy performance. Therefore, only the Annual Load is
selected as the single-objective optimization metric, and
the feasibility of the generated spatial layout solutions is
not overly considered at this stage.

The experiment includes six climate scenarios:
Shenzhen’s current climate (TMY) and five future
scenarios (SSP126, SSP434, SSP245, SSP370, SSP585).
Each scenario generates 1,800 optimized solutions
through 30 generations of 60 solutions each (Figure 6).
Hyper-parameters of the genetic algorithm are adjusted,
and the final dataset is selected when the Annual Load
difference among the top three solutions is under 1%,
minimizing local optima risk.

AUAR gy
L R [ O 1]

Genetic Diversity

-141.61

65.96 annualloads: 74.41

Figure 6: GSL-EPO experiment
Post-optimization Analysis

The six spatial layout solution sets are processed by
removing duplicates from optimization convergence.
Each climate scenario retains 800—900 valid solutions.

For the spatial layout solution sets, their 3D models
(Figure 7) are difficult to observe and directly compare to
derive convincing data-driven conclusions. Therefore,
spatial layout features are needed to quantify the
architectural properties of spatial layouts into numerically
measurable data indicators.
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Figure 7: Spatial layout solution set
Spatial Layouts Features Extraction

The properties of spatial layouts include layout
dimensions, interior partitions, and the locations of
different functions. In this study, we focus the analysis of
spatial layout features on three key aspects: the
orientation of different function zones, the segmentation
of different function zones, and the adjacency between
different function zones. These aspects are quantified into
the following three types of data indicators:

e Orientation Feature represents the distribution of a
functional zone in a specific direction. For example,
Ori_1N indicates the distribution of Function Zone 1
in the north direction. Its value is calculated as the
proportion of Function Zone 1’ s grid that are
adjacent to the northern boundary. A higher value
means that the function is more concentrated toward
that orientation.

o Division Feature represents the segmentation of a
functional zone. For example, ZC 1 represents the
number of separate, non-adjacent parts into which
Function Zone 1 is divided. A higher value indicates
that the function is more fragmented.

o Neighbor Feature represents the adjacency between
different functional zones. For example, Nei 1-2
indicates the adjacency between Function Zone 1 and
Function Zone 2. Its value is calculated as the total
length of adjacent grid edges between these two zones.
A higher value suggests that the two functional areas
are more closely positioned.

Analysis Method

This section explains the analysis methods for the solution
data sets. Due to the complexity and high dimensionality
of the data related to different functional zones and their
corresponding three types of spatial layout features, it is
difficult to form a concise representation of the spatial
layout feature for a given solution. Therefore, the data
analysis method follows the following three steps.

(1) Principcal Component Analysis (PCA) is applied to
condense the three spatial layout feature types into a
lower-dimensional representation, facilitating
comparison between solutions. (2) To account for
randomness in individual solutions, K-means clustering
groups solutions into high- and low-energy-consumption
clusters based on Annual Load, with the optimal cluster
count determined by the elbow method. (3) Analysis of
Variance (ANOVA) for Heterogeneity Analysis:
ANOVA (p < 0.01) assesses variations in spatial layout
features across clusters, identifying statistically
significant differences. These steps collectively reveal
spatial layout distinctions under different climate
scenarios.

Results
Energy Use in Future Climate Scenarios

From the K-means clustering analysis under a single
climate scenario(Figure 8) (taking SSP370 as an example),
it can be observed that different Annual load clusters
exhibit a clear stratification in PCA component—which
represents spatial layout features. This also confirms the
existing research conclusion that a defined energy-
efficient spatial layout strategy exists under a specific
climate scenario.

al Load

Annu.

Figure 8: Solutions clustering (SSP370)

Analyzing the relationship between energy-efficient
spatial layout and different climate scenarios, it is evident
from the Annual Load values of the energy-efficient
spatial layouts under various climate scenarios that
climate change has a significant impact on building
operational energy consumption(Table 4). The energy-
efficient spatial layout under TMY will experience a
substantial increase in operational energy consumption
under future climate conditions. Even under the mildest
SSP126, the annual load will rise by 25.84%.

Table 4: Energy-efficient spatial layout(EESL) Annual load rise

Annual load(kWh/m?) TMY SSP126 SSP 245 SSP 370 SSP 434 SSP 585

EESL of TMY 72.96 91.81 89.64 90.26 89.39 93.38

EESL / 84.14 82.35 83.45 81.08 85.43
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Also taking SSP126 as an example, the Annual Load of Relationship between Spatial Layout and Future

the energy-efficient spatial layout under TMY is 91.81 Climate Scenarios

kWh/m?, while under SSP126, it is 84.14 kWh/m” . This To further analyzes this heterogeneity, we compared the
difference initially reveals that energy-efficient spatial lowest Annual Load clusters’ spatial layout features
layout varies significantly across future climate scenarios. between different SSP scenarios and TMY scenarios, as
To verify whether there is a consistent difference, well as among different SSP scenarios, the following
ANOVA check of the lowest Annual Load clusters patterns can be summarized.

across climate scenarios results show significant
heterogeneity in most indicators.

ori_ag 94 o 55 - ori 48 94 o 55 ori_ag 914 o 55 o 0ri g O o 55 ori_ag 914 o 55
Oni_3w Ori_5€ On_3w Ori_5€ Ori_3w Ori_5€ Oni_3w Ori_5€ Ori_3w Ori_SE
On_):t ofi_IN Onj:l: U*x_lN Orl_):t Ofi_IN On_):t u*n_w Orw_]jt ofi_IN
Figure 9: Comparison of TMY and SSP126/ SSP245/ SSP370/ SSP434/ SSP585 in orientation feature
For Orientation Features, under the current climate response to increasing cooling demands associated with
condition(TMY), the orientation distribution remains rising temperatures. In the high-emission scenario
relatively balanced, predominantly aligned along the (SSP585), the orientation is almost entirely concentrated
northeast-southwest (ORI _NE to ORI _SW) axis. This along the east-west axis (ORI_E), with a near-complete
distribution likely results from the need to balance solar abandonment of the north-south orientation. This trend
gain and thermal control under present climatic conditions. may be attributed to the need to minimize summer
In the low-emission scenario (SSP126), the optimized overheating risks while simultaneously maximizing
orientation begins to shift towards the east-west axis passive solar gain during winter months.
(ORL_E and ORI_W) while still maintaining some degree Across all future climate scenarios, a clear trend emerges:
of dispersion. This pattern suggests that only minor as emission levels increase, the optimal orientation
adjustments to the orientation strategy are necessary becomes progressively more concentrated, with a
under‘ mild Cllmate change conditions. For mogier.ate- narrowing distribution range. This suggests that under
emission scenarios (SSP245 and SSP370), the optimized intensified climate warming, the flexibility in
orientation becomes significantly concentrated al(.)n.g.both architectural orientation selection decreases, necessitating
the northeast-southwest and east-west axes, exhibiting a more precise and deliberate design strategies.

stronger directional preference. This shift is likely a

— 5 2 — 265 25 = — 5 —-.2¢5

dca | dca | | e | 4ca

~ia > 22 = ~&i2 > 22 = 22

Figure 10: Comparison of TMY and SSP126/ SSP245/ SSP370/ SSP434/ SSP585 in division feature

For Division Features, under the current climate In the high-emission scenario (SSP585), zoning becomes
condition(TMY), the zoning distribution is relatively highly concentrated in ZC 3, with ZC 1 nearly
balanced, ranging between ZC 2 and ZC 4, reflecting the disappearing. This pattern implies that under extreme
diverse spatial requirements under existing climatic climate warming, a moderately complex zoning strategy
conditions. In the low-emission scenario (SSP126), is the most effective for energy management.

zoning begins to concentrate around ZC 3, indicating that Across all future climate scenarios, zoning transitions
integrating certain functional areas is more advantageous from a dispersed distribution under TMY to a more
for energy optimization under mild climate changes. For concentrated configuration under SSP585. However, this
moderate-emission scenarios (SSP245 and SSP370), the shift does not follow a strictly linear progression but
proportion of ZC_3 and ZC_4 increases, while ZC_1 and rather exhibits a “first dispersed, then concentrated”
ZC 2 decrease. This trend suggests that as climate pattern. This suggests that a medium level of zoning
warming intensifies, more refined zoning strategies are complexity provides the greatest adaptability to future
required to effectively manage varying thermal loads. climate conditions.
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Nei_3-4 Nei3s Nei_3:-4 Nei3S Nei_3-4

Nei_25 Nei_d-5 Nei_25 Nej_a-5 Nei_25
Nei_2-4 Nei_1-2 Nei 24

Nei 12 Nei_2-4

Nei_2:3 Nei 1.3 Nei_2:3 Nei 1.3 Nei_2:3

Nei_ 15— —Néi_1-4 Nei 15— —Neéi_1-4 Nei 175~

Nei_3:-4 Nei3S Nei 34 Nei_3-5

Nei_4-5 Nei_25 Nei_d-5 Nei_25 Nej_a-5
Nei_1-2 Nei 24

Nei 12 Nei_2-4 Nei_1-2

Nei 1.3 Nei_2:3 Nei 1.3 Nei_2:3 Nei_1-3

Nei_ 15— —Néi_1-4 Nei_I5——Neéi_1-4

Figure 11: Comparison of TMY and SSP126/ SSP245/ SSP370/ SSP434/ SSP585 in neighbor feature

For Neighbor Features, under the current climate
condition(TMY), adjacency relationships are relatively
balanced, with Nei_1-2, Nei_2-3, and Nei_3-4 exhibiting
similar distributions. This reflects the diverse spatial
connectivity needs under existing climate conditions. In
the low-emission scenario (SSP126), adjacency
relationships begin to shift towards Nei 2-3 and Nei 3-4,
suggesting an increased emphasis on heat buffering and
transfer efficiency between functional zones under mild
climate changes. For moderate-emission scenarios
(SSP245 and SSP370), the Nei_3-4 relationship becomes
significantly stronger, emerging as the dominant
adjacency pattern, while Nei_1-2 weakens. This shift
indicates that heat transfer pathways between functional
zones play a more critical role as climate warming
intensifies. In the high-emission scenario (SSP585),
adjacency relationships become highly concentrated on
Nei_3-4, with other adjacency connections weakening
considerably. This pattern suggests that under extreme
climate warming, deep connections between specific
functional zones are essential for controlling energy
consumption.

Across all future climate scenarios, adjacency
relationships transition from a balanced and distributed
model under TMY to a more specialized and concentrated
configuration under SSP585. This trend implies that as
climate change intensifies, buildings may require more
precise control over inter-zone interactions to optimize
energy efficiency. Regarding overall coordination and
adaptation, the optimization results show a clear gradient
shift from TMY to SSP585, indicating the need for
gradual layout adjustments as climate change intensifies.
A significant optimization strategy turning point in
SSP245 suggests that moderate climate change may be a
critical threshold for layout adaptation.

Conclusion

Under future climate scenarios, the evolution of energy
efficient spatial layouts exhibits a nonlinear pattern, as
reflected in the trends shown in Figures 9—11. While the
orientation, division, and neighbor features remain
broadly consistent across scenarios, the most notable
transformations occur between SSP370 and SSP585.
These inflection points highlight the nonlinear
responsiveness of optimal building layouts to escalating
climate pressures. Consequently, it becomes essential for
architects to adopt phased and adaptive design strategies
that accommodate both short-term fluctuations and long-
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term shifts, thereby enhancing buildings' climate
resilience across a spectrum of future conditions.

Design Recommendation

For short-term adaptation (TMY to SSP126), maintaining
the advantage of the northeast-southwest orientation is
recommended, along with a moderate increase in the
proportion of the ZC 3 region and strengthened Nei 2-3
and Nei 3-4 connections. For mid-term adaptation
(SSP245/SSP370), a significant increase in the proportion
of ecast-west orientation should be implemented,
accompanied by an expansion of the ZC 3 and ZC 4
regions and substantial reinforcement of the Nei 3-4
connection. For long-term adaptation (SSP585), east-west
orientation should be established as the dominant strategy,
with ZC 3 serving as the core zoning approach and a
near-complete reliance on the Nei 3-4 adjacency
relationship. For flexible design strategies, provisions
should be made for potential orientation adjustments,
reconfigurable zoning, and adaptable adjacency
relationships to accommodate different climate scenarios.

As the climate scenario shifts from the TMY baseline to
the SSP585 high-emission scenario, the optimal layout
transitions from a diversified and balanced configuration
to a specialized and concentrated strategy, underscoring
the increasing need for precise spatial organization in
response to intensifying climate change.

Outlook

This study explores the impact of different climate change
scenarios on energy-efficient spatial layout in the context
of climate change, summarizes the characteristics and
variation patterns of energy-efficient spatial layout
strategies under different climate scenarios, and provides
comprehensive recommendations for achieving climate-
adaptive building design. There are certain limitations in
the current study. Including whether the three selected
spatial layout features fully capture all characteristics, the
effectiveness of interpretability methods for energy-
efficient layouts, and the potential coincidence of results
from a single building and city sample. Since this study
uses operational energy consumption as the single
evaluation metric, further research is needed to generalize
the findings to urban samples in different regions or under
varying socioeconomic contexts. Future work should take
into account local climatic conditions, construction costs,
land use constraints, and occupant comfort.
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