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A B S T R A C T

Adopting building-integrated photovoltaics in cities can alleviate energy shortages. Real-time analysis of climate 
and urban morphology impacts improves the accuracy of BIPV energy yield predictions for roofs and facades. 
This study simulated BIPV power generation in 85 realistic local climate zones in Shenzhen, China, including 
10,549 buildings. Using the XGBoost algorithm and the Shapley interpretability method, the importance of 
meteorological parameters and urban morphology on roof and facade PV power generation was evaluated. In the 
generalization performance test, XGBoost achieved R² values of 0.99 in predicting roof and facade PV power 
generation within a 100-meter resolution grid, with RMSE values of 7.5 kW and 13.3 kW, respectively, 
demonstrating excellent performance. Global horizontal irradiance, diffuse horizontal irradiance, and total 
building floor area were found to have the most significant impact on roof PV power generation, accounting for 
89.8 % of its variation. For the facade PV, global horizontal irradiance, direct radiation, diffuse radiation, 
average height, total building surface area, total building area, sky view factor, total building floor area of the 
computation model and height standard deviation of the shading area were the most influential factors, 
collectively accounting for 87.5 % of its variation. Finally, based on Shenzhen’s building data and high temporal 
and spatial resolution NSRDB data, the hourly urban building PV potential of roofs and facades in Shenzhen was 
assessed. When PV systems are installed on roofs, facades, and both combined, the annual power generation 
could reach 45,256.1 GWh, 39,919.2 GWh, and 85,175.3 GWh, respectively, accounting for 49.34 %, 43.52 %, 
and 92.86 % of annual urban electricity consumption. This study ultimately offers a transferable methodological 
framework for dynamic, high-precision mapping of urban-scale PV potential. The framework, following locali
zation and validation, can be applied to other cities with available 3D building data, thereby providing quan
titative recommendations for policymakers and urban planners in developing BIPV cities with high energy 
resilience and sustainability.

1. Introduction

Cities, as epicenters of global economic activity, face severe chal
lenges related to energy consumption and carbon emissions. Cities 
occupy only 3 % of the Earth’s land area but consume 60–80 % of global 
energy and emit 75 % carbon dioxide (United Nations Environment 
Programme, 2011). Adopting renewable energy in cities is the key so
lution to address the challenge of urban energy shortages (Li, Zhang & 

Liu, 2022). Photovoltaics (PV) have unique advantages compared to 
other renewable energy. PV is an important method of harvesting solar 
energy. The sun provides a vast amount of energy. Only a small per
centage of solar energy is needed to meet human energy demands (Hu 
et al., 2015). However, solar energy resources are not as energy-dense as 
traditional fossil fuels. Therefore, large installation areas are needed to 
collect sufficient energy (Liu, Liu, Jiang & Zhang, 2022). The adoption of 
building-integrated photovoltaics (BIPV) in cities has attracted global 
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attention (Pepermans, Driesen & Haeseldonckx, 2005). Studies have 
shown that 40 % of Europe’s electricity demand can be met by installing 
PV systems on 40 % of existing building roofs and 15 % of building fa
cades (Ghosh, 2020). Therefore, adopting BIPV in cities can help alle
viate urban energy shortages.

Current studies on urban-scale BIPV power generation mainly focus 
on two aspects. The first is the use of satellite imagery combined with 
image recognition technology. This approach evaluates the roof area in 
cities to estimate roof BIPV power generation potential. Zhong et al. and 
Lee et al. applied deep learning and satellite image recognition to study 
building roof in specific regions. They assessed the potential for roof 
BIPV power generation in these areas (Zhong, Zhang & Chen, 2021), 
(Lee, Iyengar & Feng, 2019). Zhang et al. used a random forest model to 
extract roof areas from satellite images in 354 cities in China. They 
evaluated the carbon reduction potential of urban PV roof (Zhang, Chen 
& Zhong, 2023). However, there are still limitations in using remote 
sensing technology to assess urban BIPV potential. First, satellite images 
cannot identify building facades. With the development of flexible PV 
modules and the gradual improvement of PV efficiency, facade PV sys
tems are also advancing. BIPV on urban facades is becoming increas
ingly economically viable (Liu, Shen & Wang, 2023). Additionally, 
urban facades often provide more available surface area due to the 
limited roof area in cities. Installing PV systems on facades can generate 
more electricity (Tao, Wang & Xiang, 2024). Second, satellite images 
cannot effectively represent the shading relationships between build
ings. Building shading is a critical factor that affects the power genera
tion potential of facade BIPV systems.

Urban BIPV potential is also assessed through establishing realistic 
3D urban models and integrating building morphology indicators. Liu 
et al. identified nine residential building morphologies and proposed 
urban energy-saving design strategies using Ladybug and multi- 
objective optimization plugins (Liu, Xu & Zhang, 2023), (Liu, Xu & 
Huang, 2023). Xu et al. extracted seven industrial building morphol
ogies and evaluated their radiation, installation, and technical potential 
using Ladybug (Xu, Jiang & Xiong, 2021). Xie et al. analyzed five types 
of university dormitory morphologies, simulating BIPV potential and 
building energy consumption with Ladybug, to explore the influence of 
building morphology indicators on BIPV potential and energy use (M 
Xie, Wang & Zhong, 2023). Zhang et al. studied six urban block mor
phologies and simulated BIPV potential and energy consumption using 
Ladybug (Zhang, Xu & Shabunko, 2019). However, these studies are 
limited to simulations at the district scale, making it difficult to apply 
them to the evaluation of roof and facade PV power generation at the 
urban scale. For shading models, they often rely on idealized shading 
scenarios. Another approach uses parametric methods to generate 
simulated models and shading models for BIPV generation simulations. 
Tian et al. used Rhino-Grasshopper parametric software to generate 
numerous building and shading models, assessing BIPV potential at the 
building scale (Tian & Ooka, 2025), (Tian & Ooka, 2024). Tang et al. 
constructed representative Local Climate Zone (LCZ) areas based on LCZ 
indicator ranges and simulated BIPV generation using idealized shading 
buildings (Tang, Chai & Chen, 2025). Nevertheless, due to their reliance 
on parametric methods to generate simulated buildings and shading 
models these studies fail to capture the complexity of real urban envi
ronments fully.

Combining Local Climate Zone (LCZ) classification with real build
ings for BIPV power generation simulation can resolve the aforemen
tioned issues effectively. LCZ classification describes various urban 
characteristics, including building height and urban morphology 
(Stewart & Oke, 2012), (Cao, Liao & Li, 2023), (Yan, Ma & He, 2022). 
Creating 3D models of buildings within LCZs makes it possible to eval
uate BIPV power generation potential through simulation accurately (Li 
et al., 2025, September), (An, Chen & Shi, 2023), (Machete, Falcão & 
Gomes, 2018). However, due to the large scale of urban areas, assessing 
urban-scale BIPV power generation using physical models faces signif
icant challenges. Machine learning methods can be coupled with 3D 

urban building models to estimate urban-scale BIPV power generation 
(Chen, Tu & Yu, 2024). Existing studies have explored the integration of 
LCZs with urban BIPV power generation. Kaleshwarwar et al. used LCZ 
to assess regional BIPV potential. However, the shading effect of sur
rounding buildings was not considered in evaluation of BIPV power 
generation at the city scale (Kaleshwarwar & Bahadure, 2023). Chen 
et al. applied LCZ classification to select representative LCZ areas, 
created 3D models, and assessed the roof and facade solar radiation 
potential of different LCZs in Shenzhen (Machete, Falcão & Gomes, 
2018). However, this study did not investigate the relationship between 
urban morphology and roof, facade solar radiation potential, nor did it 
account for shading from buildings outside the selected areas. Chen et al. 
compared roof types in 26 global cities and used LCZ classification to 
identify LCZ built-up areas with higher solar radiation potential (Chen & 
Gou, 2024). Nevertheless, this study did not evaluate solar radiation 
potential at the urban scale and analyze the impact of urban morphology 
on solar radiation potential. Due to the temporal mismatch between 
BIPV power generation and building energy consumption, building en
ergy resilience has been proposed (Chen, He & Li, 2024). It highlights 
the need for more detailed time-scale and urban-scale BIPV power 
generation predictions (Luo, Peng & Cao, 2022), (Cai & Gou, 2024), 
(Tang, Wang & Li, 2025). However, existing studies primarily focus on 
the simulation and predicting annual BIPV power generation. They lack 
simulations and predictions at an hourly scale, which are essential for 
capturing the temporal variability of BIPV power generation and its 
integration into urban energy systems.

Existing studies explore the relationship between urban morphology 
and roof BIPV power generation. The studies emphasize the relationship 
between building morphology and roof BIPV power generation. How
ever, most of these studies rely on constructing prototypes and simu
lating ideal shading scenarios without the complexity of real urban 
environments. Most studies use typical meteorological year (TMY) data 
for predicting urban-scale BIPV power generation. Nevertheless, this 
approach cannot fully reflect the deviations in BIPV power generation 
caused by varying meteorological conditions in urban areas. In addition, 
as energy strategies become more refined, predicting hourly BIPV power 
generation at the urban scale is becoming increasingly important. To 
address these gaps, this study proposes a novel methodology. First, 
based on real urban 3D buildings, Shenzhen’s built-up LCZ types were 
classified, and randomly selected as computation models. GIS software 
was then used to identify shading areas around these computation 
models. Both computation models and shading areas were modeled in 
Rhino-Grasshopper to simulate hourly roof and facade BIPV power 
generation. Urban morphology in computation models and shading 
areas were quantified, and meteorological parameters (8760 h) were 
incorporated into the XGBoost model for training. The SHAP method 
explained the relationships between variables and the model. Finally, 
hourly-scale, 2-km resolution data from the National Solar Radiation 
Database (NSRDB) was used to evaluate Shenzhen’s hourly roof and 
facade BIPV power generation. The innovations of this study are as 
follows: 

(1) A Novel Framework for Dynamic, High-Resolution Prediction. 
This study proposes a methodology to shift the paradigm from 
traditional static, long-term (e.g., annual or monthly) assess
ments to dynamic, hourly-scale predictions of city-level PV gen
eration. This high temporal resolution is crucial for effective 
integration with modern energy systems, such as smart grids and 
V2G networks.

(2) High-Fidelity Urban Environmental Modeling. Our approach in
troduces a modeling process grounded in real-world urban 
morphology. Unlike studies using idealized or parametric pro
totypes, this research systematically incorporates the shading 
effects from the complex surrounding urban fabric, thereby 
capturing a more realistic and intricate physical environment for 
PV simulation.
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(3) An Integrated Physics-Informed Machine Learning Methodology. 
We propose a hybrid methodology that synergistically combines 
physics-based simulations (derived from high-fidelity 3D models) 
with a powerful machine learning algorithm (XGBoost). This in
tegrated framework leverages the descriptive accuracy of phys
ical modeling with the predictive efficiency and power of 
machine learning to estimate urban-scale PV potential.

(4) Interpretable Modeling for Urban Design Guidance. The study 
moves beyond "black-box" prediction by employing the SHAP 
(SHapley Additive exPlanations) method to deconstruct the 

model’s logic. This allows for a systematic analysis of the complex 
and non-linear relationships between key urban morphological 
indicators, meteorological variables, and hourly PV generation, 
offering nuanced and data-driven insights for urban planning.

While this study uses Shenzhen as a case, its primary contribution is a 
transferable methodological framework. By leveraging the globally 
standardized Local Climate Zone (LCZ) classification (Stewart & Oke, 
2012), a modular workflow, and increasingly accessible global datasets 
like the NSRDB (Rodríguez-Pérez & Bajorath, 2020), this framework 

Fig. 1. Workflow of this study.
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provides a clear pathway for broader regional application. It is impor
tant to note, however, that applying this framework to a new city re
quires localization and further validation. This involves adapting the 
model with local 3D building data and meteorological conditions, and 
subsequently retraining the machine learning model to ensure predic
tive accuracy in the new context.

The structure of this paper is as follows: Section 2 introduces the 
workflow of the study, the division of LCZ in Shenzhen, the selection of 
real LCZ areas and shading areas, the machine learning model, and the 
NSRDB data. Section 3 discusses the simulation of BIPV power genera
tion in computation models and the SHAP analysis. Section 4 summa
rizes the impact of meteorological parameters and urban morphology on 
roof and facade BIPV power generation. It also provides limitations and 
future work. Section 5 concludes the main findings.

2. Methodology and materials

2.1. Workflow

Fig. 1 illustrates the workflow of this study. The assessment of urban- 
scale BIPV power generation potential using the LCZ classification 
method involves the following steps: 

1. Firstly, a 100-meter resolution grid of Shenzhen City was created. 
Based on Shenzhen’s building data, ArcGIS Pro 3.1.0 was used to 
calculate the main parameter indicators of the built-up areas. A 
distribution map of Shenzhen’s built-up LCZ areas was then gener
ated based on the calculated parameters.

2. For each LCZ type, 10 real models were randomly selected as 
calculation models. Additionally, a 100-meter buffer zone around 
each calculation model was selected as the shadow area. Both the 
calculation models and the shading areas were imported into Rhino- 
Grasshopper to build 3D models. The Ladybug tool was used to 
calculate hourly solar radiation on roofs and facades, which was then 
converted into hourly roof and facade PV power generation.

3. The building morphology indicators of both the computation models 
and shading areas were calculated. The urban morphology parame
ters of both the computation models and shading areas, along with 
the 8760◦ h of meteorological data, were collectively treated as in
dependent variables, while the total BIPV power generation of the 
computation models were taken as the dependent variable to 
construct a comprehensive dataset.

4. Among the selected computation models, one computation model 
was randomly chosen for each LCZ type to validate the generaliza
tion capability of the model. The remaining computation models 
were included in the training set for model training. Three models, 
Multiple Linear Regression (MLR), Random Forest (RF), and Extreme 
Gradient Boosting (XGBoost) were used for training. Based on the 
evaluation metrics of the training data, testing data, and general
ization ability, XGBoost demonstrates the best performance among 
the three models. Meanwhile, the SHAP method is used for inter
pretability analysis.

5. Based on all 100-meter grids in Shenzhen, the morphological in
dicators of the calculation model and shading model, as well as the 
NSRDB 2 km hourly meteorological data, were used. The BIPV power 
generation for 8760◦ h in Shenzhen was estimated using the trained 
XGBoost model.

2.2. BIPV power calculation of selected LCZ models

Shenzhen locates in the Pearl River Delta region, and has a sub
tropical monsoon climate, with an average annual temperature of 24.0 ◦
C and precipitation of 1933 mm (Li, Yu & Jiang, 2019). Since the 1970s, 
the city has been designated as a special economic zone, and was 
developed with a rapid urbanization process (Hao, Sliuzas & Geertman, 
2011), (Liu, He & Wu, 2010). In 2022, the urbanization rate of Shenzhen 

reached 99.79 %. Shenzhen was chosen as the study area because it has 
abundant solar energy resources and a significant demand for cooling 
energy.

LCZ is considered for defining urban landscapes, offering a 
comprehensive classification strategy considering land cover and phys
ical features (Demuzere, Kittner & Bechtel, 2021). Notably, LCZ is uni
versal for any city, allowing for the division of a city into combinations 
of different LCZs (Hashemi, Mills & Poerschke, 2024). And also, each 
LCZ type has its specific range of parameters that can be used for 
physically based modelling (Ching, Aliaga & Mills, 2019), (Demuzere, 
Hankey & Mills, 2020). As shown in Fig. 2, LCZ have 10 categories for 
building types. These areas have consistent surface cover, structure, 
materials, and human activities. Based on Shenzhen’s boundary data, 
this study used ArcGIS Pro 3.1.0 to create a 100-meter grid dataset for 
Shenzhen as the basic analysis unit. Using Shenzhen’s building data, the 
average building height, building surface fraction, and sky view factor 
within each grid were calculated to classify Shenzhen’s Local Climate 
Zones. After completing the LCZ classification (Fig. 3), the "Random 
Selection Within Subset" tool in QGIS was used to randomly select 10 
models for each LCZ type. Due to the absence of LCZ7 in the classified 
areas and LCZ3 only containing 5 models, 85 computation models, 
comprising 1778 buildings, were selected as computation models. Sub
sequently, ArcGIS Pro 3.1.0 was used to create a 100-meter radius buffer 
zone for each computation model. These buffer zones were intersected 
with Shenzhen’s building vector data to obtain 85 shading areas 
comprising 8771 buildings.

This study evaluated the BIPV power generation potential of 
different LCZs while considering the factors that limit BIPV power 
generation. According to previous research (Li et al., 2025, September), 
solar energy potential is primarily considered from three aspects: radi
ation potential, installation potential, and technical potential. Radiation 
potentialrefers to the distribution of solar radiation on building surfaces. 
Local solar radiation resources and the morphology of urban blocks in
fluence it. Fig. 4 visualizes roof and facade solar radiation simulations. 
Installation potential refers to the distribution of solar radiation on PV 
panels installed on building surfaces. It is affected by the PV installation 
coefficient. Technical potential refers to the overall power generation 
efficiency of the PV system, which is primarily influenced by the pho
toelectric conversion rate and system efficiency coefficient (Campbell, 
Aschenbrenner & Blunden, 2008).

This study imported 85 computation models and shading area into 
Rhino and distinguished between roofs and facades. Then, using the 
Ladybug plugin on the Grasshopper platform, the hourly solar radiation 
potential of roofs and facades were calculated separately. This tool can 
calculate the solar radiation on different building surfaces while taking 
into account the obstructions caused by shading area. The accuracy of 
solar radiation simulation using Ladybug has been validated in many 
studies. The simulation settings are shown in Table 1. 

Epv = Hrad × Apv × K × η (1) 

Where Epv is the PV power generation, kW; Hrad is the cumulative 
solar radiation on the building surface, kW; Apv is the area where PV 
modules can be installed, m2; K is the comprehensive efficiency factor, 
which is set at 86 % (Kumar & Ku mar 2017); η is the PV module effi
ciency, which is set at 17.87 % (M Xie, Wang & Zhong, 2023).

2.3. Data process

Table 2 shows the urban morphology indicators calculated in this 
study. In previous research, these indicators have been identified as 
being related to roof and facade PV power generation (Machete, Falcão 
& Gomes, 2018). Meteorological parameters were sourced from 
Shenzhen’s TMY data (https://climate.onebuilding. 
org/WMO_Region_2_Asia/CHN_China/index.html#IDGD_Guangdong-). 
From the TMY data, 8760 h of temperature (T), dew point temperature 
(Td), relative humidity (RHU), wind speed (V), global horizontal 
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irradiance (GHI), direct normal irradiance (DNI), diffuse horizontal 
irradiance (DHI), and sky cover (SC) were extracted. Urban morphology 
indicators for both computation models and shading areas were calcu
lated, and a PV power generation dataset was constructed using the 
building morphology parameters and meteorological parameters of the 
computation models and shading areas. To distinguish between the 
urban morphology indicators of computation models and shading areas, 
the suffix "_sm" was added to the indicators of computation models. The 
suffix "_sd" was added to the indicators of shading areas. For example, 
"TH_sm" represents the morphology indicator of a computation model, 
while "TH_sd" represents the morphology indicator of a shading area. 
Spearman correlation analysis was used for feature selection, and 

multicollinearity analysis was conducted to avoid overfitting in the 
model. Variables with a variance inflation factor greater than 10 were 
removed. Additionally, all independent variables in the model were 
required to pass a significance test ( p < 0.05) (Wheeler & Tiefelsdorf, 
2005). Appendix 1 presents the correlation matrix between the inde
pendent variables and BIPV power generation. After preprocessing the 
data, one computation model was randomly selected for each LCZ type, 
resulting in 9 computation models and 78,840 rows of data for testing 
the model’s generalization ability. From the remaining 76 computation 
models (665,760 rows of data), 80 % of the total sample (532,608 rows) 
was used as the training dataset. The remaining 20 % (133,152 rows) 
was used for model validation and comparison.

Fig. 2. Abridged definitions for LCZ built types (Stewart & Oke, 2012).
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2.4. Model

This study used MLR, RF, and XGBoost models to quantify building 
morphology and meteorological parameters’ impact on roof and facade 
PV power generation. MLR, a widely used algorithm in BIPV power 
generation studies (Oukawa, Krecl & Targino, 2022), evaluates the 
linear relationship between independent and dependent variables. 
However, due to the nonlinear relationships between building 
morphology, meteorological parameters, and BIPV power generation, 
RF and XGBoost were also employed to model these complex in
teractions. The SHAP (SHapley Additive explanations) method was 
applied to interpret the models further, providing insights into the 
contributions of building morphology and meteorological parameters to 
BIPV power generation.

Assuming there are n variables in the MLR model, denoted as x1, x2, 
x3, …, xn, the regression model can be expressed as shown in Eq. (2): 

yi = β0 + β1X1 + β2X2 + ⋯ + βnXn + εi (2) 

In the Equation, yi represents the dependent variable value for in
dividual i (i = 1, 2, …, n), β0 denotes the total coefficient of the intercept, 
β1, β2, …, βn represent the total coefficients of the slopes, and εi is the 
random error term.

Random Forest is a powerful machine learning technique that com
bines multiple decision trees to predict values, offering robustness 
against overfitting and improving accuracy by averaging predictions 
from individual trees (Guo, Wu & Schlink, 2021). The Random Forest 
model was trained in Python, with the optimal hyperparameters deter
mined using grid search and 10-fold cross-validation. During training, 
the optimal parameter values for rooftop and facade PV power genera
tion were: max_depth = 7, max_features = 0.8, min_samples_split = 10, 
and n_estimators = 500.

Extreme Gradient Boosting (XGBoost) is an advanced boosting al
gorithm developed by improving Gradient Boosting Decision Trees 
(GBDT). XGBoost is designed to achieve maximum speed and efficiency 
(Zamani Joharestani, Cao & Ni, 2019). The XGBoost algorithm, 
composed of multiple regression trees, integrates homogeneous weak 
learners to create a more powerful learner (Chen & Guestrin, 2016). This 
can be represented by Eq. (3): 

Ŷ =
∑M

m=1
fm(X) (3) 

In the equations, Ŷ represents this study’s predicted BIPV power 

Fig. 3. Shenzhen 100-m grid LCZ classification.

Fig. 4. Visualization of roof and facade solar radiation simulation of computation models.

Table 1 
Settings of simulation parameters.

Simulation parameters Value

Weather data Shenzhen TMY data
Simulation period 00:00 on Jan 1st to 24:00 on December 31st
Measurement point 1 mm above the grid
Grid size 1 m × 1 m

The PV power generation potential was calculated with Eq (1).
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generation, X denotes the explanatory variables, and M is the number of 
trees. fm refers to the CART tree constructed to reduce the residuals of 
the (m − 1) tree. The XGBoost model was trained with the optimal 
hyperparameters determined using grid search and 10-fold cross- 
validation. The optimal parameter values for rooftop and facade PV 
power generation are: max_depth = 7, learning_rate = 0.1, n_estimators 
= 1000, colsample_bytree = 1.0, and subsample = 0.8.

To evaluate the model’s performance, the Coefficient of Determi
nation (R²), Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), Coefficient of Variation of the Root Mean Square Error 
(CVRMSE) were used as metrics. Eqs. (4), (5, 6), and (7) represent the 
calculation formulas for R², RMSE, and MAE, respectively. 

R2 = 1 −

∑n
1(Ai − Pi)

2

∑n
1(A − Ai)

2 (4) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

1
(Ai − Pi)

2

√

(5) 

MAE =
1
n
∑n

1
|Ai − Pi| (6) 

CVRMSE =

(
RMSE

mean(roof or facade PV power generation)

)

× 100% (7) 

2.5. SHAP model

To explain the XGBoost model, SHAP values are used to visualize the 
relative importance of each variable, known as the additive feature 
attribution method (Han, Zhao & Gao, 2022). The most significant 
advantage of SHAP values is their ability to represent the influence of 
features on each sample. The model generates a prediction value for 
every prediction sample, and SHAP values are assigned to each feature 
in the sample, indicating both positive and negative influences. The 
SHAP package provides functionalities such as feature importance 
ranking for all samples, where the X-axis represents SHAP values (ab
solute values, regardless of positive or negative), and feature density 
scatter plots, where each point represents a sample. In these scatter 
plots, the X-axis shows SHAP values (negative SHAP values indicate 
negative influence, and positive SHAP values indicate positive influ
ence). At the same time, the Y-axis represents the magnitude of the 
feature variable (Parsa, Movahedi & Taghipour, 2020), (García & 
Aznarte, 2020), (Rodríguez-Pérez & Bajorath, 2020). This method 
effectively addresses the issue of multicollinearity and considers the 
synergistic effects of different variables. The function of SHAP values for 
tree-based models is described as follows. 

ϕi =
∑

S⊆N\{i}

|S|!(M − |S| − 1)!
M!

[fx(S ∪ {i}) − fx(S)] (7a) 

where ϕi is the SHAP value of the feature i, N is the set of all features for 
the training set, the dimension is M; S is a permutation subset of N, the 
dimension is |S|, fx(S) is the average predicted value of samples using the 
feature set S; fx(S ∪ {i}) is the average predicted value of samples with 
feature i using the feature set S, |S|!(M− |S|− 1)!

M!
is the weight of the difference 

between samples with feature i and without feature i using the feature 
set s.

2.6. Evaluation of shenzhen’s BIPV potential based on nsrdb data

The NSRDB provides continuous and comprehensive solar and 
meteorological data, including the three most common solar radiation 
measurement methods: GHI, DNI, and DHI. These data are collected in 
the United States and an increasing number of international locations, 
with high temporal (10-minute) and spatial (2-km) resolution, accu
rately representing global and regional solar radiation climates 
(Sengupta, Xie & Lopez, 2018). The current NSRDB uses the National 
Renewable Energy Laboratory’s Physical Solar Model (PSM). PSM is a 
two-step physical modeling process: In the first step, cloud and aerosol 
properties are acquired, collected, and resampled, and in the subsequent 
step, these properties are input into a radiative transfer model. This 
model includes the Fast All-Sky Radiation Model for Solar Applications 
and the FARMS-NIT (Narrowband Irradiance on Tilted Surfaces) for 
tilted surface irradiance (Y Xie, Sengupta & Dooraghi, 2018), (Xie, 
Sengupta & Wang, 2019), (Y Xie, Sengupta & Dooraghi, 2018). In this 
study, meteorological parameters for 2018, with a temporal resolution 
of 60 min and a spatial resolution of 2 km , were downloaded from the 
NSRDB website. These data were combined with the building 
morphology indicators of 92,785 simulated shading areas in Shenzhen. 
This integration enabled the accurate estimation of hourly roof and 
facade PV power generation at the urban scale.

3. Results

3.1. Roof and facade BIPV power generation of different LCZ types

Fig. 5a shows the cumulative roof PV power generation for different 

Table 2 
Urban Morphology Indicators and Calculation Methods.

Urban Morphology 
Indicators

Calculation Methods

Total height (TH)
∑n

i=1
hi

Average height (AH) 1
n
∑n

i=1
hi

Height standard deviation 
(HSD)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(hi − AH)
2

n

√

Total building surface 
area (TBSA)

∑n
i=1

Si

Average building surface 
area (ABSA)

1
n
∑n

i=1
Si

Total building area (TBA)
∑n

i=1
Ai

Average building area 
(ABA)

1
n
∑n

i=1
Ai

Total building volume 
(TBV)

∑n
i=1

hi ∗ Ai

Average building volume 
(ABV)

1
n
∑n

i=1
hi ∗ Ai

Total building floor area 
(TBFA)

∑n
i=1

Ai ∗ fi

Total building perimeter 
(TBP)

∑n
i=1

Pi

Surface area density (SAD) TBSA
TBV

Building count density 
(BCD)

n
Stotal

Floor area ratio (FAR) TBFA
Stotal

Sky view factor (SVF) Calculated by saga-gis (Böhner & Antonić, 2009), 
(Häntzschel, Goldberg & Bernhofer, 2005)

Building surface fraction 
(BSF)

∑n
i=1si

Stotal

Degree of enclosure (DE) DE =

∑
CB

CN

Note: hi is the height of the building i; n is the number of buildings within the 
unit block; Si is the surface area of building i; Ai is the base area of building i; fi is 
the number of building floors;.
Pi is the perimeter of building i; Stotal is the area of unit block; RWi is the width of 
road i. CB is the perimeter of an individual building. CN is the total perimeter of a 
computation model.
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LCZ types across months. The roof PV power generation for each LCZ 
type has been averaged. From the figure, it can be seen that LCZ3 has the 
highest roof PV power generation. LCZ3 is primarily composed of dense 
low-rise buildings, which results in a large amount of roof area, thus, 
higher roof PV power generation. The LCZ type with the lowest roof PV 
power generation is LCZ9. LCZ9 mainly consists of sparsely arranged 
small- to medium-sized buildings. Due to the smaller number of build
ings and limited roof area, its roof PV power generation is relatively low. 
Compact building types (LCZ1, LCZ2, LCZ3) have the highest roof PV 
power generation, while sparse building types (LCZ4, LCZ5, LCZ6) have 
lower roof PV power generation. The primary reason for this phenom
enon is that compact building types have a more significant amount of 
roof area due to their higher density, contributing to higher BIPV power 
generation.

Fig. 5b shows the cumulative facade PV power generation for 
different LCZ types across various months. The facade PV power gen
eration for each LCZ type has been averaged. From the figure, it can be 
observed that LCZ1 has the highest facade PV power generation. LCZ1 is 
primarily composed of dense high-rise buildings. Due to the high 
building density and height, LCZ1 has a large facade area. Although 
shading is significant in these areas, the large facade area compensates 
for this, generating higher facade PV power. The LCZ type with the 
lowest facade PV power generation is LCZ9. LCZ9 mainly consists of 
sparsely arranged small- to medium-sized buildings. Due to the smaller 
number of buildings and limited facade area, its facade PV power gen
eration is relatively low. The taller the buildings, the higher the facade 
PV power generation. The primary reason for this phenomenon is that 
taller buildings have larger facade areas, which leads to higher facade 

Fig. 5. Roof and facade PV power generation for different LCZ types.
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PV power generation.

3.2. Model comparisons

Table 3 illustrates the performance of roof PV power generation in 
the MLR, RF, and XGBoost models across the training data, testing data, 
and generalization evaluation. From the Table3, it can be observed that 
XGBoost performs the best in roof PV training. Regardless of the training 
set, testing data or generalization evaluation, XGBoost achieves an R² of 
0.99. Additionally, its MAE, RMSE and CVRMSE remain consistently low 
across all evaluations, demonstrating the excellent performance of the 
XGBoost model. Although the RF model achieves an R² of 0.98 in the 
training set, testing data, and generalization evaluation, its MAE, RMSE 
and CVRMSE are higher than those of the XGBoost model. The MLR 
model shows the most significant deviation, with an R² of 0.86 across the 
training set, testing data, and generalization evaluation. Furthermore, 
its MAE, RMSE and CVRMSE are higher than those of the RF and 
XGBoost models. Fig. 6 and appendix 2 compares the predicted results 
and actual values for different models. The MLR model exhibits greater 
fitting differences in training, test, and generalization evaluation. In 
contrast, the linear fit lines of the XGBoost and RF models align more 
closely with the 1:1 line, particularly for the XGBoost model, where the 
predicted values for both the training and testing data are distributed on 
both sides of the 1:1 line.

Table 4 illustrates the performance of facade PV power generation in 
the MLR, RF, and XGBoost models across the training data, testing data, 
and generalization evaluation. From Table 4, it can be observed that 
XGBoost performs the best. Regardless of the training data, testing data, 
or generalization evaluation, XGBoost achieves an R² of 0.99. Addi
tionally, its MAE, RMSE and CVRMSE remain consistently low across all 
evaluations, demonstrating the excellent performance of the XGBoost 
model. The RF model achieves an R² of 0.94 in the training and testing 
data, and an R² of 0.95 in the generalization evaluation. However, its 
MAE, RMSE and CVRMSE are higher than those of the XGBoost model 
across all evaluations. The MLR model shows the poorest fitting per
formance, with an R² of 0.71 in the training and testing data, and an R² 
of 0.75 in the generalization evaluation. Moreover, its MAE, RMSE and 
CVRMSE are higher than those of both the RF and XGBoost models 
across all evaluations. A comparison of the predicted results and actual 
values for different models is shown in Fig. 7 and appendix 3. The MLR 
model exhibits greater fitting differences in the training data, testing 
data, and generalization evaluation. In contrast, the linear fit lines of the 
XGBoost and RF models align more closely with the 1:1 line, particularly 
for the XGBoost model, where the predicted values for both the training 
and test sets are distributed on both sides of the 1:1 line.

Fig. 8 illustrates the hourly differences between MLR, RF, XGBoost, 
and actual values over a week. It is clear that for both roof and facade PV 
power generation, XGBoost shows the smallest differences compared to 
the actual values. XGBoost achieves the best performance in predicting 
roof and facade PV power generation across all evaluation metrics, with 
R2 values of 0.995 and 0.998, RMSE values of 4.9 kW and 6.6 kW, and 
MAE values of 2.4 kW and 3.5 kW, respectively. RF follows with R2 

values of 0.938 and 0.982, RMSE values of 18.2 kW and 27.1 kW, and 
MAE values of 9.9 kW and 13.0 kW. MLR demonstrates the poorest 
performance.

3.3. Contribution of impact factors to urban PV

The summary plot of meteorological parameters, computation 
models, and shading area characteristics for roof PV power generation is 
shown in Fig. 9. The left side of Fig. 9 displays the global importance 
ranking of each factor on roof PV power generation, ordered from the 
most significant to the least. The right side of Fig. 9 provides a local 
explanation of the changes in roof PV power generation influenced by 
each factor. The visualization illustrates the SHAP values and their di
rections, where red and blue points represent high and low feature 
values, respectively. The figure shows that the total contributions of 
meteorological parameters, computation models and shading areas 
characteristics are 76 %, 22.6 %, and 1.3 %, respectively. This indicates 
that meteorological parameters significantly impact roof PV power 
generation. GHI has the most significant influence among the meteo
rological parameters, positively correlating with roof PV power gener
ation. As GHI increases, roof PV power generation rises significantly. 
The computation models characteristic of TBFA also shows a positive 
correlation with roof PV power generation. Similarly, the meteorolog
ical parameter DHI positively correlates with roof PV power generation.

The summary plot of meteorological parameters, computation 
models, and shading area characteristics for facade PV power generation 
is shown in Fig. 10. The left side of Fig. 10 displays the global impor
tance ranking of each factor on facade PV power generation, ordered 
from the most significant to the least. The right side of Fig. 10 provides a 
local explanation of the changes in facade PV power generation influ
enced by each factor. The visualization illustrates the SHAP values and 
their directions, where red and blue points represent high and low 
feature values, respectively. The figure shows that the total contribu
tions of meteorological parameters, computation models, and shading 
area characteristics are 65.2 %, 30.7 %, and 4.1 %, respectively. Similar 
to roof PV, meteorological parameters have the most significant impact 
on facade PV power generation. However, the influence of computation 
models, and shading area characteristics on facade PV power generation 
is greater than on roof PV power generation. Among the meteorological 
parameters, GHI, DNI, and DHI have the most significant impact on 
facade PV power generation. These three meteorological variables 
positively correlate with facade PV power generation, indicating that as 
GHI, DNI, and DHI increase, facade PV power generation also increases. 
For computation models characteristics, AH, TBSA, and TBA are posi
tively correlated with facade PV power generation. In contrast, SVF is 
negatively correlated. For shading area characteristics, HSD positively 
correlates with facade PV power generation.

3.4. Nonlinear correlation analysis of impact factors

To study the nonlinear relationships between roof PV power gener
ation and its influencing factors, scatter plots were created for GHI, 
TBFA, and DHI, which together account for 89.8 % of the variation in 
roof PV power generation, indicating their crucial role. As shown in 
Fig. 11, GHI is positively correlated with roof PV power generation, 
meaning that roof PV power generation increases significantly as GHI 
increases. Similarly, TBFA from computation models positively corre
lates with roof PV power generation, with larger TBFA values leading to 
higher energy output. DHI also shows a positive correlation overall, but 
when DHI exceeds approximately 100 W/m², its impact on roof PV 

Table 3 
shows the parameter metrics of MLR, RF, and XGBoost models in the evaluation of roof PV power generation across the training data, testing data, and generalization 
ability evaluation.

PV_roof Training data Testing data Generalization ability evaluation

Model R2 MAE(kWh) RMSE(kWh) CVRMSE( %) R2 MAE(kWh) RMSE(kWh) CVRMSE( %) R2 MAE(kWh) RMSE(kWh) CVRMSE( %)

MLR 0.86 32.9 47.3 59.92 0.86 32.8 47.2 60.23 0.86 30.6 47.5 58.92
RF 0.98 9.4 18.6 23.56 0.98 7.2 15.6 19.91 0.98 12.4 26.2 32.50
XGBoost 0.99 1.1 2.2 2.79 0.99 1.4 3.2 4.08 0.99 3.5 7.5 9.30
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power generation gradually diminishes.
To study the nonlinear relationships between facade PV power 

generation and its influencing factors, this study selected nine key in
dicators: GHI, DNI, DHI from meteorological parameters, AH, TBSA, 
TBA, SVF, TBFA from computation models morphology, and HSD from 
shading area morphology. These nine indicators account for 87.5 % of 
the variation in facade PV power generation, indicating their critical 
importance. As shown in Fig. 12, GHI is positively correlated with facade 
PV power generation when below 500 W/m², but its effect stabilizes 
when GHI exceeds this value. DNI maintains a positive correlation with 
facade PV power generation, with higher DNI resulting in greater energy 
output. Similarly, DHI is positively correlated; however, its influence is 

not significant below 150 W/m², becoming more apparent when DHI 
exceeds this value. Among the representative area building morphology 
indicators, AH positively correlates with facade PV power generation, 
but its growth impact diminishes when AH exceeds 40 m TBSA exhibits a 
similar trend, with a positive impact below 20,000 m², after which its 
influence stabilizes. TBA generally shows a positive correlation, but this 
relationship becomes steady when TBA is below 28,000 m², showing no 
significant growth. TBFA demonstrates a stable relationship with facade 
PV power generation below 5000 m² but turns inversely correlated when 
exceeding this value. SVF displays an inverse correlation with facade PV 
power generation, but this relationship stabilizes when SVF ranges be
tween 0.6 and 0.75. For the shading area building morphology indicator, 

Fig. 6. The Prediction Results of MLR, RF, and XGBoost Models for Roof PV Power Generation.

Table 4 
shows the parameter metrics of MLR, RF, and XGBoost models in the evaluation of facade PV power generation across the training data, testing data, and generalization 
ability evaluation.

PV_facade Training data Testing data Generalization ability evaluation

Model R2 MAE 
(kWh)

RMSE 
(kWh)

CVRMSE( %) R2 MAE 
(kWh)

RMSE 
(kWh)

CVRMSE( %) R2 MAE 
(kWh)

RMSE 
(kWh)

CVRMSE( %)

MLR 0.71 45.0 69.5 89.29 0.71 45.0 69.5 90.01 0.75 40.5 59.1 78.21
RF 0.94 13.0 30.3 38.93 0.94 13.1 30.5 39.50 0.95 12.4 26.2 34.67
XGBoost 0.99 3.9 8.2 10.53 0.99 5.0 11.9 15.41 0.99 6.1 13.3 17.60

Fig. 7. The Prediction Results of MLR, RF, and XGBoost Models for facade PV Power generation.
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HSD shows a positive correlation with facade PV power generation when 
greater than 25 m However, its impact remains stable when HSD is 
below 25 m

3.5. Calculation of roof and facade PV power generation in shenzhen

Based on NSRDB high temporal and spatial resolution data (1 h and 2 
km), Fig. 13 (c - h) visualized roof and facade PV power generation data 
for 10:00, 13:00, and 16:00 on June 22, 2018. Spatially, BIPV power 
generation in Shenzhen shows significant regional differences, with the 
majority concentrated in the northwestern and southern areas of the 
city. Fig. 13a and 13b show that these regions have a higher density of 
buildings, providing more roof and facade areas, which leads to higher 
PV power generation. Temporally, PV power generation in Shenzhen 
also varies significantly across different times of the day. At 10:00, roof 
and facade PV power generation peaked at 17.14 GWh and 10.31 GWh, 
respectively. At 13:00, roof and facade PV power generation decreased 
to 5.01 GWh and 4.72 GWh, respectively. By 16:00, PV power genera
tion was at its lowest, with roof and facade generation at only 1.46 GWh 
and 1.53 GWh, respectively.

This study analyzes the relationship between BIPV power generation 
and electricity consumption data on monthly and annual scales based on 
2018 electricity consumption data (Yan, Huang & Ren, 2024). First, a 1 
km grid for Shenzhen was created as the basic analysis unit. The elec
tricity consumption and BIPV power generation data for January, July, 
and the entire year of 2018 were selected to explore the proportion of 
roof, facade, and combined roof and facade PV power generation in 
electricity consumption. Specifically, in the visualization, the PV power 
generation of roofs, facades, and their combination was divided by the 

electricity consumption data of the 1 km grid, resulting in the percent
age of BIPV power generation relative to electricity consumption, which 
was used to calculate the PV consumption rate (Fig. 14). The roof and 
facade PV power generation data were calculated hourly based on 
NSRDB data, and the spatial join tool in GIS was used to summarize the 
roof, facade, and combined PV power generation for January, July, and 
the entire year. Overall, there is significant spatial and temporal 
inequality in BIPV consumption rates. If only roof PV were considered, 
the areas where roof PV power generation can meet electricity con
sumption in January would be mainly concentrated in the northwest, 
south, and northeast of Shenzhen. In July, while the areas remain 
limited to these regions, more grids can meet electricity demand. When 
facade PV is considered, in January, most areas in the northwest, south, 
and northeast of Shenzhen can meet electricity consumption through 
facade PV. However, the self-sufficiency rate of facade PV decreased in 
July due to increased electricity consumption. From an annual 
perspective, if only roof PV is used, most areas in Shenzhen’s northwest, 
south, and northeast can meet energy demand. If only facade PV were 
used, it would mainly meet the demand in the southern part of Shenz
hen. However, if roof and facade PV are combined, electricity demand 
can be well met in January, July, and throughout the year. Overall, if 
only roof PV is considered, it can meet 38.29 %, 74.17 %, and 49.34 % of 
electricity consumption in January, July, and the entire year, respec
tively. If only facade PV is considered, it can meet 48.39 %, 53.93 %, and 
43.52 % of electricity consumption in January, July, and the entire year, 
respectively. If roof and facade PV are combined, they can meet 86.68 
%, 128.09 %, and 92.86 % of electricity consumption in January, July, 
and the entire year.

Fig. 8. Comparison of roof and facade hourly BIPV power generation prediction.
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4. Discussion

This study introduced an integrated physics-machine learning 
framework to map urban BIPV generation at an hourly scale. The 
exceptionally high accuracy achieved (R²=0.99 for both roof and facade 
predictions) is not merely a statistical achievement but a direct outcome 
of our methodological innovations. Unlike previous models that re
ported lower accuracies—such as Chen et al. (R² of 0.85 and 0.70), Tang 
et al. (R² of 0.93), and Tao et al. (R² of 0.696)—our approach succeeded 
through a synergistic combination of critical elements. First, we con
ducted high-fidelity physical simulations based on real 3D building 
models instead of idealized prototypes. Second, we systematically 
included the surrounding shading area’s morphology, a factor often 
overlooked. And third, we used the XGBoost algorithm, which is adept at 
capturing complex, non-linear interactions that simpler models like 
linear regression or even standard Random Forest might miss. This 
section critically discusses the novel insights derived from this robust 
model and their implications for urban energy planning.

4.1. Novel insights into the drivers of BIPV generation

A key contribution of this work is the deconstruction of how mete
orological and morphological factors influence BIPV generation, 
revealing several novel, non-linear relationships that challenge or refine 
previous understanding.

For roofs, our findings confirm that Global Horizontal Irradiance 
(GHI) is the dominant driver, and that Total Building Floor Area 
(TBFA_sm) serves as a strong proxy for generation capacity, which aligns 
with previous research (Song, Cao & Yang, 2023 ; Lee, Lee & Lee, 2016). 
However, our model provides a more nuanced insight into the role of 
Diffuse Horizontal Irradiance (DHI). While DHI shows a positive corre
lation, its impact exhibits a clear non-linear saturation effect, 

diminishing significantly beyond approximately 100 W/m² (Fig. 11b). 
This quantifiable threshold suggests that at high levels of diffuse radi
ation, unfavorable incident angles limit further gains in power genera
tion, a phenomenon that simpler linear models often fail to capture (Pan, 
Bai & Chang, 2022). Furthermore, our analysis quantitatively confirms 
that the impact of surrounding building shading on roofs is minimal 
(contributing only 1.3 % of the variation, Fig. 9), providing a strong 
evidence base for prioritizing building-intrinsic factors in rooftop PV 
planning.

For facades, our study offers the most significant new insights by 
moving beyond generalized correlations to identify specific, previously 
unquantified thresholds and non-linearities. For instance, while prior 
studies correctly identified building height as positively correlated with 
facade potential (Brito, Redweik & Catita, 2019 ; Chatzipoulka, Com
pagnon & Nikolopoulou, 2016), our model reveals a critical perfor
mance plateau for Average Height (AH_sm) around 40 m (Fig. 12d). 
Beyond this height, the gains from increased facade area are progres
sively negated by inter-building shading, yielding diminishing returns 
and providing a novel, quantifiable guideline for urban planners. Our 
analysis also refines the conventional understanding of the Sky View 
Factor (SVF_sm), which is typically held to be inversely correlated with 
facade generation (Mirkovic & Alawadi, 2017 ; Heng, Malone-Lee & 
Zhang, 2017 ; Arboit, Diblasi & Llano, 2008). We identified a range of 
relative insensitivity between 0.6 and 0.75 (Fig. 12g), where changes in 
SVF have a minimal impact, suggesting a "sweet spot" in urban form 
where planners can achieve balance. Critically, our study is one of the 
first to systematically quantify the impact of the surrounding urban 
fabric’s morphology. The Height Standard Deviation of the shading area 
(HSD_sd) was identified as a key factor whose negative impact becomes 
pronounced only when it exceeds 25 m (Fig. 12i). This reveals that 
height uniformity in the surrounding area is highly beneficial for a target 
building’s facade PV generation. This insight transcends single-building 

Fig. 9. Importance ranking diagram of feature variables and density scatter diagram of feature variables for hourly roof BIPV power generation.
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analysis and underscores the necessity of considering the broader 
neighborhood context in 3D, a key advantage of our methodology.

4.2. Implications to urban energy planning

The granular and non-linear insights from our model translate into 
more sophisticated and data-driven urban planning strategies than 
previously possible, moving beyond generic recommendations.

For roof PV, planning remains relatively straightforward: strategies 
should prioritize maximizing installable area (TBFA) in zones with high 
solar radiation (GHI), as our model confirms these linear drivers are 
dominant. For facade PV, however, our findings provide a basis for more 
nuanced zoning and design regulations. The discovery of a 40-meter 
threshold for Average Height (AH_sm) suggests that policies 

promoting endlessly tall, slender buildings for facade PV may be inef
ficient. Instead, urban design codes could encourage mid-rise typologies 
(up to ~40 m) where the balance between facade area gain and inter- 
building shading is optimized. Similarly, the identification of an 
SVF_sm insensitivity range (0.6–0.75) provides planners with greater 
design flexibility in moderately dense urban blocks. Most critically, the 
influence of the Height Standard Deviation of the shading area (HSD_sd) 
provides a quantitative rationale for context-sensitive zoning, shifting 
planning from a building-by-building approach to a more effective 
neighborhood-scale energy-morphology optimization.

An hourly-scale model with this level of detail is a critical enabler for 
advanced urban energy systems. By accurately capturing spatiotemporal 
variations, planners can address the "temporal mismatch" between PV 
generation and real-time urban electricity demand, thereby achieving 

Fig. 10. Importance ranking diagram of feature variables and density scatter diagram of feature variables for hourly facade BIPV power generation.

Fig. 11. Roof BIPV power generation SHAP dependence plots for variables in the XGBoost model. (Note: Red indicates high SHAP values, while blue indicates low 
SHAP values.).
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supply-demand alignment. This high-resolution mapping is not only 
crucial for strategically positioning energy storage stations but also 
provides the foundation for creating effective Vehicle-to-Grid (V2G) 
charging strategies, allowing electric vehicle charging needs to be syn
chronized with solar energy availability. Moreover, the model allows for 
the precise integration of BIPV systems with more refined urban energy 
management strategies, such as optimizing energy scheduling and 
balancing grid loads. Furthermore, coupling this model with large-scale 
climate models can enhance its predictive capabilities, enabling cities to 
forecast hourly BIPV generation under future climate conditions. This is 
vital for developing long-term energy strategies and optimizing the 
deployment of renewable resources. Ultimately, by providing a robust 
predictive foundation for the seamless integration of renewable energy, 
energy storage systems, and V2G technologies, our framework supports 
the transition toward smart, resilient, and self-sufficient urban energy 
networks that can minimize transmission losses, enhance local energy 
utilization, and achieve carbon neutrality.

4.3. Scalability and application challenges

The methodology proposed in this study possesses high scalability 
and can be applied to cities other than Shenzhen. Its core advantage is 
that the entire framework is based on the Local Climate Zone (LCZ), a 
globally universal standard for urban morphology classification. As 
stated previously, LCZ offers a comprehensive classification strategy 
applicable to any city, allowing for the division of a city into various LCZ 
combinations. This means that researchers can leverage this standard
ized framework to conduct comparable PV potential assessments across 
different cities.

However, several challenges may arise when extendin g this method 
to other cities. The first is data availability. The model’s accuracy is 
highly dependent on high-quality, city-wide 3D building vector data and 
high-spatiotemporal resolution meteorological data. Yet, not all cities 
possess such detailed and easily accessible public datasets. The second 
challenge is the requirement for significant computational resources. 
This study involved modeling over 10,000 buildings and training a 

Fig. 12. Facade BIPV power generation SHAP dependence plots for variables in the XGBoost model.
(Note: Red indicates high SHAP values, while blue indicates low SHAP values.)
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machine learning model on a massive dataset, which demands powerful 
computational support. The final challenge is local calibration. Although 
the LCZ framework is universal, the specific relationship between urban 
morphology and PV potential may exhibit regional variations due to 
unique architectural styles, materials, and local climatic features in 
different cities. Therefore, when applying the pre-trained model directly 

to a new city, a degree of calibration or retraining with local data may be 
necessary to ensure optimal prediction accuracy.

Despite these challenges, with the advancement of global urban 
digitalization and open data initiatives, we believe this method provides 
a robust and feasible technical pathway for conducting standardized, 
high-precision PV potential assessments in diverse urban contexts 

Fig. 13. Hourly scale urban roof and facade PV power distribution predicted based on NSRDB data.
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worldwide.

4.4. Limitations and future works

There are some limitations in this study that need to be addressed in 
future studies. 

1. Although this study constructed the XGBoost model and performed 
SHAP interpretability analysis using a real-world model, the SHAP 
analysis was limited to the training set within the XGBoost model. 
Therefore, the results of the SHAP analysis have certain limitations.

2. This study did not consider the building envelope when assessing the 
BIPV power generation potential at the urban scale. Different BIPV 
products (such as PV glass and PV walls) have varying PV effi
ciencies, leading to inaccuracies when evaluating BIPV power gen
eration at the urban scale (Xu, Chen & Ren, 2025).The study also did 
not account for the efficiency differences of PV modules on facade 
surfaces with different orientations, which may significantly affect 
the annual distribution of power generation. Future studies should 
refine the components of building envelopes to provide more accu
rate evaluations of urban BIPV power generation.

3. This study did not fully account for the impact of different building 
types and structures on the installation and performance of BIPV 
systems. Complex structures such as sloped roofs and historical 
buildings impose specific constraints on BIPV deployment, which 
were not reflected in the current model. Future research should 
integrate building categorization databases and incorporate struc
tural attributes into the modeling process to enable multidimen
sional predictions of BIPV suitability.

4. This model cannot predict the roof and facade photovoltaic PV power 
generation for individual buildings. However, in practical applica
tions, stakeholders such as property developers and building man
agers are more concerned with the power generation performance of 
individual buildings, for which the current model does not provide 
granular predictions. Therefore, future research should focus on 
achieving cross-scale predictions to estimate PV power generation 
for both individual buildings and building groups.

5. This study assumes that all eligible surface areas are fully equipped 
with BIPV systems, without considering real-world deployment 
constraints such as investment capacity, policy limitations, and the 
cost of equipment access. Therefore, future research should develop 
an integrated decision-making model that incorporates economic 
feasibility, policy incentives, and user acceptance, in order to 

Fig. 14. The proportion of roof, facade, and combined PV power generation relative to electricity consumption at different times.
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improve the practicality and applicability of urban BIPV power 
generation potential assessments.

6. This study is limited to the assessment of photovoltaic power gen
eration potential in Shenzhen and has not yet been extended to other 
global regions. Although the LCZ classification framework is theo
retically universal and applicable to cities worldwide, and the inte
gration of LCZ with 3D building models and machine learning shows 
good potential for transferability, the methodology still needs to be 
validated in different global contexts. In future work, we will carry 
out cross-regional and multi-climate zone extensions in several 
representative cities to test, improve, and ultimately verify the 
adaptability and effectiveness of the proposed method on a global 
scale.

7. Although this study integrated multiple data sources from 2018 to 
ensure temporal consistency and improve the accuracy of model 
training, the data used are relatively outdated. With ongoing changes 
in urban morphology and energy systems, data from 2018 may not 
accurately reflect current conditions, which could affect the timeli
ness and generalizability of the model. Therefore, future studies 
should incorporate more recent datasets to enhance the model’s 
practical relevance and predictive capability.

5. Conclusions

This study, based on LCZ classification, utilized XGBoost to construct 
prediction models for hourly roof and facade PV power generation, 
demonstrating excellent performance. Additionally, the study employed 
the XGBoost model and SHAP interpretability to investigate the impact 
of hourly meteorological parameters, computational models, and 
shading area parameters on roof and facade PV power generation. High 
temporal and spatial resolution NSRDB data were also used to evaluate 
Shenzhen’s hourly roof and facade PV power generation. The main 
conclusions are as follows: 

1. For roof PV power generation, LCZ3 has the highest roof PV power 
generation, while LCZ9 has the lowest. For facade PV power gener
ation, LCZ1 has the highest facade PV power generation, while LCZ9 
has the lowest.

2. Compared to MLR and RF, XGBoost demonstrated the best perfor
mance in predicting roof and facade PV power generation. For roof 
PV power generation, XGBoost achieved an R² of 0.99 across the 
testing data, and generalization performance evaluation, with MAE 
values of 1.4 kW, and 3.5 kW, RMSE values of 3.2 kW, and 7.5 kW, 

and CVRMSE values of 4.08 %, and 9.30 %, respectively. For facade 
PV power generation, XGBoost also achieved an R² of 0.99 across all 
evaluations, with MAE values of 5.0 kW, and 6.1 kW, RMSE values of 
11.9 kW, and 13.3 kW, and CVRMSE values of 15.41 %, and 17.60 %, 
respectively.

3. The main factors influencing roof PV power generation are GHI, DHI, 
and TBFA, which account for 89.8 % of the variation in roof PV 
power generation. For facade PV power generation, in addition to 
GHI, DNI, and DHI, the computation models morphology indicators 
AH, TBSA, TBA, SVF, and TBFA, as well as the shading area 
morphology indicator HSD, have the most significant influence. 
These nine indicators account for 87.5 % of the variation in facade 
PV power generation.

4. Based on NSRDB data, this study evaluated the potential for hourly 
roof and facade PV power generation in Shenzhen. Additionally, the 
study assessed BIPV power generation in January, July, and 2018. 
Roof PV systems could generate 2442.9 GWh, 4886.9 GWh, and 
45,256.1 GWh in January, July, and the entire year, meeting 38.29 
%, 74.17 %, and 49.34 % of electricity consumption, respectively. 
Facade PV systems could generate 3087.7 GWh, 3553.4 GWh, and 
39,919.2 GWh in January, July, and the entire year, meeting 48.39 
%, 53.93 %, and 43.52 % of electricity consumption, respectively.
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Appendix 1. Correlation matrix of meteorological parameters, computation models morphology, and shading area morphology with roof and façade PV power 
generation (Note: ** p < 0.05).

X. Chai et al.                                                                                                                                                                                                                                     Sustainable Cities and Society 135 (2025) 107010 

18 



Appendix 2. The Prediction Results of MLR, RF Models for Roof PV Power Generation.
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Appendix 3. The Prediction Results of MLR, RF Models for facade PV Power generation.

Data availability

Data will be made available on request.
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