Sustainable Cities and Society 135 (2025) 107010

Contents lists available at ScienceDirect

Sustainable Cities and Society

journal homepage: www.elsevier.com/locate/scs

ELSEVIER

Check for

Integrated physics-machine learning for real-time urban photovoltaic | e
mapping: Coupling local climate zones with 3D building models

Xingkang Chai "', Jiayu Chen™"', Chunying Li*", Pengyuan Shen “®, Yuqin Wang *-"®,

Yang Wan ©, Siyuan Chen“, Haida Tang "

@ School of Architecture & Urban Planning, Shenzhen University, Shenzhen, China

Y State Key Laboratory of Subtropical Building and Urban Science, Shenzhen, China

¢ Institute of Future Human Habitat, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
4 Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, China

€ School of Construction Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China

ARTICLE INFO ABSTRACT

Keywords:

Urban photovoltaic

Hourly BIPV potential forecasting
Local climate zone

Urban morphology

Machine learning

Adopting building-integrated photovoltaics in cities can alleviate energy shortages. Real-time analysis of climate
and urban morphology impacts improves the accuracy of BIPV energy yield predictions for roofs and facades.
This study simulated BIPV power generation in 85 realistic local climate zones in Shenzhen, China, including
10,549 buildings. Using the XGBoost algorithm and the Shapley interpretability method, the importance of
meteorological parameters and urban morphology on roof and facade PV power generation was evaluated. In the
generalization performance test, XGBoost achieved R? values of 0.99 in predicting roof and facade PV power
generation within a 100-meter resolution grid, with RMSE values of 7.5 kW and 13.3 kW, respectively,
demonstrating excellent performance. Global horizontal irradiance, diffuse horizontal irradiance, and total
building floor area were found to have the most significant impact on roof PV power generation, accounting for
89.8 % of its variation. For the facade PV, global horizontal irradiance, direct radiation, diffuse radiation,
average height, total building surface area, total building area, sky view factor, total building floor area of the
computation model and height standard deviation of the shading area were the most influential factors,
collectively accounting for 87.5 % of its variation. Finally, based on Shenzhen’s building data and high temporal
and spatial resolution NSRDB data, the hourly urban building PV potential of roofs and facades in Shenzhen was
assessed. When PV systems are installed on roofs, facades, and both combined, the annual power generation
could reach 45,256.1 GWh, 39,919.2 GWh, and 85,175.3 GWh, respectively, accounting for 49.34 %, 43.52 %,
and 92.86 % of annual urban electricity consumption. This study ultimately offers a transferable methodological
framework for dynamic, high-precision mapping of urban-scale PV potential. The framework, following locali-
zation and validation, can be applied to other cities with available 3D building data, thereby providing quan-
titative recommendations for policymakers and urban planners in developing BIPV cities with high energy
resilience and sustainability.

1. Introduction Liu, 2022). Photovoltaics (PV) have unique advantages compared to
other renewable energy. PV is an important method of harvesting solar
energy. The sun provides a vast amount of energy. Only a small per-

centage of solar energy is needed to meet human energy demands (Hu

Cities, as epicenters of global economic activity, face severe chal-
lenges related to energy consumption and carbon emissions. Cities

occupy only 3 % of the Earth’s land area but consume 60-80 % of global
energy and emit 75 % carbon dioxide (United Nations Environment
Programme, 2011). Adopting renewable energy in cities is the key so-
lution to address the challenge of urban energy shortages (Li, Zhang &
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etal., 2015). However, solar energy resources are not as energy-dense as
traditional fossil fuels. Therefore, large installation areas are needed to
collect sufficient energy (Liu, Liu, Jiang & Zhang, 2022). The adoption of
building-integrated photovoltaics (BIPV) in cities has attracted global
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attention (Pepermans, Driesen & Haeseldonckx, 2005). Studies have
shown that 40 % of Europe’s electricity demand can be met by installing
PV systems on 40 % of existing building roofs and 15 % of building fa-
cades (Ghosh, 2020). Therefore, adopting BIPV in cities can help alle-
viate urban energy shortages.

Current studies on urban-scale BIPV power generation mainly focus
on two aspects. The first is the use of satellite imagery combined with
image recognition technology. This approach evaluates the roof area in
cities to estimate roof BIPV power generation potential. Zhong et al. and
Lee et al. applied deep learning and satellite image recognition to study
building roof in specific regions. They assessed the potential for roof
BIPV power generation in these areas (Zhong, Zhang & Chen, 2021),
(Lee, Iyengar & Feng, 2019). Zhang et al. used a random forest model to
extract roof areas from satellite images in 354 cities in China. They
evaluated the carbon reduction potential of urban PV roof (Zhang, Chen
& Zhong, 2023). However, there are still limitations in using remote
sensing technology to assess urban BIPV potential. First, satellite images
cannot identify building facades. With the development of flexible PV
modules and the gradual improvement of PV efficiency, facade PV sys-
tems are also advancing. BIPV on urban facades is becoming increas-
ingly economically viable (Liu, Shen & Wang, 2023). Additionally,
urban facades often provide more available surface area due to the
limited roof area in cities. Installing PV systems on facades can generate
more electricity (Tao, Wang & Xiang, 2024). Second, satellite images
cannot effectively represent the shading relationships between build-
ings. Building shading is a critical factor that affects the power genera-
tion potential of facade BIPV systems.

Urban BIPV potential is also assessed through establishing realistic
3D urban models and integrating building morphology indicators. Liu
et al. identified nine residential building morphologies and proposed
urban energy-saving design strategies using Ladybug and multi-
objective optimization plugins (Liu, Xu & Zhang, 2023), (Liu, Xu &
Huang, 2023). Xu et al. extracted seven industrial building morphol-
ogies and evaluated their radiation, installation, and technical potential
using Ladybug (Xu, Jiang & Xiong, 2021). Xie et al. analyzed five types
of university dormitory morphologies, simulating BIPV potential and
building energy consumption with Ladybug, to explore the influence of
building morphology indicators on BIPV potential and energy use (M
Xie, Wang & Zhong, 2023). Zhang et al. studied six urban block mor-
phologies and simulated BIPV potential and energy consumption using
Ladybug (Zhang, Xu & Shabunko, 2019). However, these studies are
limited to simulations at the district scale, making it difficult to apply
them to the evaluation of roof and facade PV power generation at the
urban scale. For shading models, they often rely on idealized shading
scenarios. Another approach uses parametric methods to generate
simulated models and shading models for BIPV generation simulations.
Tian et al. used Rhino-Grasshopper parametric software to generate
numerous building and shading models, assessing BIPV potential at the
building scale (Tian & Ooka, 2025), (Tian & Ooka, 2024). Tang et al.
constructed representative Local Climate Zone (LCZ) areas based on LCZ
indicator ranges and simulated BIPV generation using idealized shading
buildings (Tang, Chai & Chen, 2025). Nevertheless, due to their reliance
on parametric methods to generate simulated buildings and shading
models these studies fail to capture the complexity of real urban envi-
ronments fully.

Combining Local Climate Zone (LCZ) classification with real build-
ings for BIPV power generation simulation can resolve the aforemen-
tioned issues effectively. LCZ classification describes various urban
characteristics, including building height and urban morphology
(Stewart & Oke, 2012), (Cao, Liao & Li, 2023), (Yan, Ma & He, 2022).
Creating 3D models of buildings within LCZs makes it possible to eval-
uate BIPV power generation potential through simulation accurately (Li
et al., 2025, September), (An, Chen & Shi, 2023), (Machete, Falcao &
Gomes, 2018). However, due to the large scale of urban areas, assessing
urban-scale BIPV power generation using physical models faces signif-
icant challenges. Machine learning methods can be coupled with 3D
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urban building models to estimate urban-scale BIPV power generation
(Chen, Tu & Yu, 2024). Existing studies have explored the integration of
LCZs with urban BIPV power generation. Kaleshwarwar et al. used LCZ
to assess regional BIPV potential. However, the shading effect of sur-
rounding buildings was not considered in evaluation of BIPV power
generation at the city scale (Kaleshwarwar & Bahadure, 2023). Chen
et al. applied LCZ classification to select representative LCZ areas,
created 3D models, and assessed the roof and facade solar radiation
potential of different LCZs in Shenzhen (Machete, Falcao & Gomes,
2018). However, this study did not investigate the relationship between
urban morphology and roof, facade solar radiation potential, nor did it
account for shading from buildings outside the selected areas. Chen et al.
compared roof types in 26 global cities and used LCZ classification to
identify LCZ built-up areas with higher solar radiation potential (Chen &
Gou, 2024). Nevertheless, this study did not evaluate solar radiation
potential at the urban scale and analyze the impact of urban morphology
on solar radiation potential. Due to the temporal mismatch between
BIPV power generation and building energy consumption, building en-
ergy resilience has been proposed (Chen, He & Li, 2024). It highlights
the need for more detailed time-scale and urban-scale BIPV power
generation predictions (Luo, Peng & Cao, 2022), (Cai & Gou, 2024),
(Tang, Wang & Li, 2025). However, existing studies primarily focus on
the simulation and predicting annual BIPV power generation. They lack
simulations and predictions at an hourly scale, which are essential for
capturing the temporal variability of BIPV power generation and its
integration into urban energy systems.

Existing studies explore the relationship between urban morphology
and roof BIPV power generation. The studies emphasize the relationship
between building morphology and roof BIPV power generation. How-
ever, most of these studies rely on constructing prototypes and simu-
lating ideal shading scenarios without the complexity of real urban
environments. Most studies use typical meteorological year (TMY) data
for predicting urban-scale BIPV power generation. Nevertheless, this
approach cannot fully reflect the deviations in BIPV power generation
caused by varying meteorological conditions in urban areas. In addition,
as energy strategies become more refined, predicting hourly BIPV power
generation at the urban scale is becoming increasingly important. To
address these gaps, this study proposes a novel methodology. First,
based on real urban 3D buildings, Shenzhen’s built-up LCZ types were
classified, and randomly selected as computation models. GIS software
was then used to identify shading areas around these computation
models. Both computation models and shading areas were modeled in
Rhino-Grasshopper to simulate hourly roof and facade BIPV power
generation. Urban morphology in computation models and shading
areas were quantified, and meteorological parameters (8760 h) were
incorporated into the XGBoost model for training. The SHAP method
explained the relationships between variables and the model. Finally,
hourly-scale, 2-km resolution data from the National Solar Radiation
Database (NSRDB) was used to evaluate Shenzhen’s hourly roof and
facade BIPV power generation. The innovations of this study are as
follows:

(1) A Novel Framework for Dynamic, High-Resolution Prediction.
This study proposes a methodology to shift the paradigm from
traditional static, long-term (e.g., annual or monthly) assess-
ments to dynamic, hourly-scale predictions of city-level PV gen-
eration. This high temporal resolution is crucial for effective
integration with modern energy systems, such as smart grids and
V2G networks.

High-Fidelity Urban Environmental Modeling. Our approach in-
troduces a modeling process grounded in real-world urban
morphology. Unlike studies using idealized or parametric pro-
totypes, this research systematically incorporates the shading
effects from the complex surrounding urban fabric, thereby
capturing a more realistic and intricate physical environment for
PV simulation.

(2

—
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(3) An Integrated Physics-Informed Machine Learning Methodology.

(4

—

We propose a hybrid methodology that synergistically combines
physics-based simulations (derived from high-fidelity 3D models)
with a powerful machine learning algorithm (XGBoost). This in-
tegrated framework leverages the descriptive accuracy of phys-
ical modeling with the predictive efficiency and power of
machine learning to estimate urban-scale PV potential.

Interpretable Modeling for Urban Design Guidance. The study
moves beyond "black-box" prediction by employing the SHAP
(SHapley Additive exPlanations) method to deconstruct the
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model’s logic. This allows for a systematic analysis of the complex
and non-linear relationships between key urban morphological
indicators, meteorological variables, and hourly PV generation,
offering nuanced and data-driven insights for urban planning.

While this study uses Shenzhen as a case, its primary contribution is a
transferable methodological framework. By leveraging the globally
standardized Local Climate Zone (LCZ) classification (Stewart & Oke,
2012), a modular workflow, and increasingly accessible global datasets
like the NSRDB (Rodriguez-Pérez & Bajorath, 2020), this framework
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provides a clear pathway for broader regional application. It is impor-
tant to note, however, that applying this framework to a new city re-
quires localization and further validation. This involves adapting the
model with local 3D building data and meteorological conditions, and
subsequently retraining the machine learning model to ensure predic-
tive accuracy in the new context.

The structure of this paper is as follows: Section 2 introduces the
workflow of the study, the division of LCZ in Shenzhen, the selection of
real LCZ areas and shading areas, the machine learning model, and the
NSRDB data. Section 3 discusses the simulation of BIPV power genera-
tion in computation models and the SHAP analysis. Section 4 summa-
rizes the impact of meteorological parameters and urban morphology on
roof and facade BIPV power generation. It also provides limitations and
future work. Section 5 concludes the main findings.

2. Methodology and materials
2.1. Workflow

Fig. 1 illustrates the workflow of this study. The assessment of urban-
scale BIPV power generation potential using the LCZ classification
method involves the following steps:

1. Firstly, a 100-meter resolution grid of Shenzhen City was created.
Based on Shenzhen’s building data, ArcGIS Pro 3.1.0 was used to
calculate the main parameter indicators of the built-up areas. A
distribution map of Shenzhen’s built-up LCZ areas was then gener-
ated based on the calculated parameters.

2. For each LCZ type, 10 real models were randomly selected as
calculation models. Additionally, a 100-meter buffer zone around
each calculation model was selected as the shadow area. Both the
calculation models and the shading areas were imported into Rhino-
Grasshopper to build 3D models. The Ladybug tool was used to
calculate hourly solar radiation on roofs and facades, which was then
converted into hourly roof and facade PV power generation.

3. The building morphology indicators of both the computation models
and shading areas were calculated. The urban morphology parame-
ters of both the computation models and shading areas, along with
the 8760° h of meteorological data, were collectively treated as in-
dependent variables, while the total BIPV power generation of the
computation models were taken as the dependent variable to
construct a comprehensive dataset.

4. Among the selected computation models, one computation model
was randomly chosen for each LCZ type to validate the generaliza-
tion capability of the model. The remaining computation models
were included in the training set for model training. Three models,
Multiple Linear Regression (MLR), Random Forest (RF), and Extreme
Gradient Boosting (XGBoost) were used for training. Based on the
evaluation metrics of the training data, testing data, and general-
ization ability, XGBoost demonstrates the best performance among
the three models. Meanwhile, the SHAP method is used for inter-
pretability analysis.

5. Based on all 100-meter grids in Shenzhen, the morphological in-
dicators of the calculation model and shading model, as well as the
NSRDB 2 km hourly meteorological data, were used. The BIPV power
generation for 8760° h in Shenzhen was estimated using the trained
XGBoost model.

2.2. BIPV power calculation of selected LCZ models

Shenzhen locates in the Pearl River Delta region, and has a sub-
tropical monsoon climate, with an average annual temperature of 24.0 °
C and precipitation of 1933 mm (Li, Yu & Jiang, 2019). Since the 1970s,
the city has been designated as a special economic zone, and was
developed with a rapid urbanization process (Hao, Sliuzas & Geertman,
2011), (Liu, He & Wu, 2010). In 2022, the urbanization rate of Shenzhen
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reached 99.79 %. Shenzhen was chosen as the study area because it has
abundant solar energy resources and a significant demand for cooling
energy.

LCZ is considered for defining urban landscapes, offering a
comprehensive classification strategy considering land cover and phys-
ical features (Demuzere, Kittner & Bechtel, 2021). Notably, LCZ is uni-
versal for any city, allowing for the division of a city into combinations
of different LCZs (Hashemi, Mills & Poerschke, 2024). And also, each
LCZ type has its specific range of parameters that can be used for
physically based modelling (Ching, Aliaga & Mills, 2019), (Demuzere,
Hankey & Mills, 2020). As shown in Fig. 2, LCZ have 10 categories for
building types. These areas have consistent surface cover, structure,
materials, and human activities. Based on Shenzhen’s boundary data,
this study used ArcGIS Pro 3.1.0 to create a 100-meter grid dataset for
Shenzhen as the basic analysis unit. Using Shenzhen’s building data, the
average building height, building surface fraction, and sky view factor
within each grid were calculated to classify Shenzhen’s Local Climate
Zones. After completing the LCZ classification (Fig. 3), the "Random
Selection Within Subset" tool in QGIS was used to randomly select 10
models for each LCZ type. Due to the absence of LCZ7 in the classified
areas and LCZ3 only containing 5 models, 85 computation models,
comprising 1778 buildings, were selected as computation models. Sub-
sequently, ArcGIS Pro 3.1.0 was used to create a 100-meter radius buffer
zone for each computation model. These buffer zones were intersected
with Shenzhen’s building vector data to obtain 85 shading areas
comprising 8771 buildings.

This study evaluated the BIPV power generation potential of
different LCZs while considering the factors that limit BIPV power
generation. According to previous research (Li et al., 2025, September),
solar energy potential is primarily considered from three aspects: radi-
ation potential, installation potential, and technical potential. Radiation
potentialrefers to the distribution of solar radiation on building surfaces.
Local solar radiation resources and the morphology of urban blocks in-
fluence it. Fig. 4 visualizes roof and facade solar radiation simulations.
Installation potential refers to the distribution of solar radiation on PV
panels installed on building surfaces. It is affected by the PV installation
coefficient. Technical potential refers to the overall power generation
efficiency of the PV system, which is primarily influenced by the pho-
toelectric conversion rate and system efficiency coefficient (Campbell,
Aschenbrenner & Blunden, 2008).

This study imported 85 computation models and shading area into
Rhino and distinguished between roofs and facades. Then, using the
Ladybug plugin on the Grasshopper platform, the hourly solar radiation
potential of roofs and facades were calculated separately. This tool can
calculate the solar radiation on different building surfaces while taking
into account the obstructions caused by shading area. The accuracy of
solar radiation simulation using Ladybug has been validated in many
studies. The simulation settings are shown in Table 1.

Epv: rad XAPVXKXW (1)

Where Epy is the PV power generation, kW; Hy,q is the cumulative
solar radiation on the building surface, kW; A,y is the area where PV
modules can be installed, m? K is the comprehensive efficiency factor,
which is set at 86 % (Kumar & Ku mar 2017); n is the PV module effi-
ciency, which is set at 17.87 % (M Xie, Wang & Zhong, 2023).

2.3. Data process

Table 2 shows the urban morphology indicators calculated in this
study. In previous research, these indicators have been identified as
being related to roof and facade PV power generation (Machete, Falcao
& Gomes, 2018). Meteorological parameters were sourced from
Shenzhen’s T™MY data (https://climate.onebuilding.
org/WMO_Region_2_Asia/CHN_China/index.html#IDGD_Guangdong-).
From the TMY data, 8760 h of temperature (T), dew point temperature
(Td), relative humidity (RHU), wind speed (V), global horizontal
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Built types Definition
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Fig. 2. Abridged definitions for LCZ built types (Stewart & Oke, 2012).

irradiance (GHI), direct normal irradiance (DNI), diffuse horizontal
irradiance (DHI), and sky cover (SC) were extracted. Urban morphology
indicators for both computation models and shading areas were calcu-
lated, and a PV power generation dataset was constructed using the
building morphology parameters and meteorological parameters of the
computation models and shading areas. To distinguish between the
urban morphology indicators of computation models and shading areas,
the suffix "_sm" was added to the indicators of computation models. The
suffix "_sd" was added to the indicators of shading areas. For example,
"TH_sm" represents the morphology indicator of a computation model,
while "TH_sd" represents the morphology indicator of a shading area.
Spearman correlation analysis was used for feature selection, and

multicollinearity analysis was conducted to avoid overfitting in the
model. Variables with a variance inflation factor greater than 10 were
removed. Additionally, all independent variables in the model were
required to pass a significance test (p < 0.05) (Wheeler & Tiefelsdorf,
2005). Appendix 1 presents the correlation matrix between the inde-
pendent variables and BIPV power generation. After preprocessing the
data, one computation model was randomly selected for each LCZ type,
resulting in 9 computation models and 78,840 rows of data for testing
the model’s generalization ability. From the remaining 76 computation
models (665,760 rows of data), 80 % of the total sample (532,608 rows)
was used as the training dataset. The remaining 20 % (133,152 rows)
was used for model validation and comparison.
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Fig. 3. Shenzhen 100-m grid LCZ classification.

a. Roof solar radiation simulation visualization

b. Facade solar radiation simulation visualization

Fig. 4. Visualization of roof and facade solar radiation simulation of computation models.

Table 1
Settings of simulation parameters.

Simulation parameters Value

Weather data
Simulation period
Measurement point
Grid size

Shenzhen TMY data

00:00 on Jan 1st to 24:00 on December 31st
1 mm above the grid

Imx1m

The PV power generation potential was calculated with Eq (1).
2.4. Model

This study used MLR, RF, and XGBoost models to quantify building
morphology and meteorological parameters’ impact on roof and facade
PV power generation. MLR, a widely used algorithm in BIPV power
generation studies (Oukawa, Krecl & Targino, 2022), evaluates the
linear relationship between independent and dependent variables.
However, due to the nonlinear relationships between building
morphology, meteorological parameters, and BIPV power generation,
RF and XGBoost were also employed to model these complex in-
teractions. The SHAP (SHapley Additive explanations) method was
applied to interpret the models further, providing insights into the
contributions of building morphology and meteorological parameters to
BIPV power generation.

Assuming there are n variables in the MLR model, denoted as xj, x2,
X3, ..., Xp, the regression model can be expressed as shown in Eq. (2):

Yi=Po+HXi +foXo 4 + S Xn+ & (2)

In the Equation, y; represents the dependent variable value for in-
dividuali(i=1, 2, ..., n), fp denotes the total coefficient of the intercept,
PB1, P2, ..., Pn represent the total coefficients of the slopes, and ¢; is the
random error term.

Random Forest is a powerful machine learning technique that com-
bines multiple decision trees to predict values, offering robustness
against overfitting and improving accuracy by averaging predictions
from individual trees (Guo, Wu & Schlink, 2021). The Random Forest
model was trained in Python, with the optimal hyperparameters deter-
mined using grid search and 10-fold cross-validation. During training,
the optimal parameter values for rooftop and facade PV power genera-
tion were: max_depth = 7, max_features = 0.8, min_samples_split = 10,
and n_estimators = 500.

Extreme Gradient Boosting (XGBoost) is an advanced boosting al-
gorithm developed by improving Gradient Boosting Decision Trees
(GBDT). XGBoost is designed to achieve maximum speed and efficiency
(Zamani Joharestani, Cao & Ni, 2019). The XGBoost algorithm,
composed of multiple regression trees, integrates homogeneous weak
learners to create a more powerful learner (Chen & Guestrin, 2016). This
can be represented by Eq. (3):

Y= fulX) &)

In the equations, ¥ represents this study’s predicted BIPV power
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Table 2
Urban Morphology Indicators and Calculation Methods.

Urban Morphology Calculation Methods
Indicators

Total height (TH " h

otal height (TH) Zi:1 hi

Average height (AH)

1
n Z?—l hi

iy (h — AH)
n

Height standard deviation
(HSD)

Total building surface s
area (TBSA) =1
Average building surface 1

n Zi:l Si
n
Zi:l Ai
Average building area

area (ABSA)
Total building area (TBA)
1 n
= A
(ABA) n DA
Z:Ll h; * A;

Total building volume

(TBV)
Average building volume 1
(ABV) EPDRLA
Total building floor area Z:‘Zl A +f;
(TBFA)
Total building perimeter " P
(TBP) i
Surface area density (SAD) TBSA

TBV
Building count density n
(BCD) Stotal
Floor area ratio (FAR) TBFA

Stotal

Sky view factor (SVF) Calculated by saga-gis (Bohner & Antonic, 2009),

(Hantzschel, Goldberg & Bernhofer, 2005)

Building surface fraction Srasi
(BSF) Stotal
Degree of enclosure (DE) DE — > CB

CN

Note: h; is the height of the building i; n is the number of buildings within the
unit block; S; is the surface area of building i; A; is the base area of building i; f; is
the number of building floors;.

P; is the perimeter of building i; S, is the area of unit block; RW; is the width of
road i. CB is the perimeter of an individual building. CN is the total perimeter of a
computation model.

generation, X denotes the explanatory variables, and M is the number of
trees. f;, refers to the CART tree constructed to reduce the residuals of
the (m — 1) tree. The XGBoost model was trained with the optimal
hyperparameters determined using grid search and 10-fold cross-
validation. The optimal parameter values for rooftop and facade PV
power generation are: max_depth = 7, learning rate = 0.1, n_estimators
= 1000, colsample_bytree = 1.0, and subsample = 0.8.

To evaluate the model’s performance, the Coefficient of Determi-
nation (R?), Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Coefficient of Variation of the Root Mean Square Error
(CVRMSE) were used as metrics. Egs. (4), (5, 6), and (7) represent the
calculation formulas for R%, RMSE, and MAE, respectively.

RZ_1_ 2 -P)*

! 4
YA A) @
RMSE = % > (A-P)? (5)
1
1 n
MAE = > lAi-Py 6)
1
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RMSE

MEAN (roof or facade PV power generation)

CVRMSE = ( ) x 100% 7)

2.5. SHAP model

To explain the XGBoost model, SHAP values are used to visualize the
relative importance of each variable, known as the additive feature
attribution method (Han, Zhao & Gao, 2022). The most significant
advantage of SHAP values is their ability to represent the influence of
features on each sample. The model generates a prediction value for
every prediction sample, and SHAP values are assigned to each feature
in the sample, indicating both positive and negative influences. The
SHAP package provides functionalities such as feature importance
ranking for all samples, where the X-axis represents SHAP values (ab-
solute values, regardless of positive or negative), and feature density
scatter plots, where each point represents a sample. In these scatter
plots, the X-axis shows SHAP values (negative SHAP values indicate
negative influence, and positive SHAP values indicate positive influ-
ence). At the same time, the Y-axis represents the magnitude of the
feature variable (Parsa, Movahedi & Taghipour, 2020), (Garcia &
Aznarte, 2020), (Rodriguez-Pérez & Bajorath, 2020). This method
effectively addresses the issue of multicollinearity and considers the
synergistic effects of different variables. The function of SHAP values for
tree-based models is described as follows.

S|!(M — |8 — 1)!
_ZI\( IS -1)

= S U )~ £(S) 7a)

SCN\{i}

where ¢, is the SHAP value of the feature i, N is the set of all features for
the training set, the dimension is M; S is a permutation subset of N, the
dimension is |S|, f«(S) is the average predicted value of samples using the
feature set S; f,(S U {i}) is the average predicted value of samples with
feature i using the feature set S, W is the weight of the difference
between samples with feature i and without feature i using the feature

set s.

2.6. Evaluation of shenzhen’s BIPV potential based on nsrdb data

The NSRDB provides continuous and comprehensive solar and
meteorological data, including the three most common solar radiation
measurement methods: GHI, DNI, and DHI. These data are collected in
the United States and an increasing number of international locations,
with high temporal (10-minute) and spatial (2-km) resolution, accu-
rately representing global and regional solar radiation climates
(Sengupta, Xie & Lopez, 2018). The current NSRDB uses the National
Renewable Energy Laboratory’s Physical Solar Model (PSM). PSM is a
two-step physical modeling process: In the first step, cloud and aerosol
properties are acquired, collected, and resampled, and in the subsequent
step, these properties are input into a radiative transfer model. This
model includes the Fast All-Sky Radiation Model for Solar Applications
and the FARMS-NIT (Narrowband Irradiance on Tilted Surfaces) for
tilted surface irradiance (Y Xie, Sengupta & Dooraghi, 2018), (Xie,
Sengupta & Wang, 2019), (Y Xie, Sengupta & Dooraghi, 2018). In this
study, meteorological parameters for 2018, with a temporal resolution
of 60 min and a spatial resolution of 2 km , were downloaded from the
NSRDB website. These data were combined with the building
morphology indicators of 92,785 simulated shading areas in Shenzhen.
This integration enabled the accurate estimation of hourly roof and
facade PV power generation at the urban scale.

3. Results
3.1. Roof and facade BIPV power generation of different LCZ types

Fig. 5a shows the cumulative roof PV power generation for different
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Fig. 5. Roof and facade PV power generation for different LCZ types.

LCZ types across months. The roof PV power generation for each LCZ
type has been averaged. From the figure, it can be seen that LCZ3 has the
highest roof PV power generation. LCZ3 is primarily composed of dense
low-rise buildings, which results in a large amount of roof area, thus,
higher roof PV power generation. The LCZ type with the lowest roof PV
power generation is LCZ9. LCZ9 mainly consists of sparsely arranged
small- to medium-sized buildings. Due to the smaller number of build-
ings and limited roof area, its roof PV power generation is relatively low.
Compact building types (LCZ1, LCZ2, LCZ3) have the highest roof PV
power generation, while sparse building types (LCZ4, LCZ5, LCZ6) have
lower roof PV power generation. The primary reason for this phenom-
enon is that compact building types have a more significant amount of
roof area due to their higher density, contributing to higher BIPV power
generation.

Fig. 5b shows the cumulative facade PV power generation for
different LCZ types across various months. The facade PV power gen-
eration for each LCZ type has been averaged. From the figure, it can be
observed that LCZ1 has the highest facade PV power generation. LCZ1 is
primarily composed of dense high-rise buildings. Due to the high
building density and height, LCZ1 has a large facade area. Although
shading is significant in these areas, the large facade area compensates
for this, generating higher facade PV power. The LCZ type with the
lowest facade PV power generation is LCZ9. LCZ9 mainly consists of
sparsely arranged small- to medium-sized buildings. Due to the smaller
number of buildings and limited facade area, its facade PV power gen-
eration is relatively low. The taller the buildings, the higher the facade
PV power generation. The primary reason for this phenomenon is that
taller buildings have larger facade areas, which leads to higher facade
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PV power generation.
3.2. Model comparisons

Table 3 illustrates the performance of roof PV power generation in
the MLR, RF, and XGBoost models across the training data, testing data,
and generalization evaluation. From the Table3, it can be observed that
XGBoost performs the best in roof PV training. Regardless of the training
set, testing data or generalization evaluation, XGBoost achieves an R? of
0.99. Additionally, its MAE, RMSE and CVRMSE remain consistently low
across all evaluations, demonstrating the excellent performance of the
XGBoost model. Although the RF model achieves an R? of 0.98 in the
training set, testing data, and generalization evaluation, its MAE, RMSE
and CVRMSE are higher than those of the XGBoost model. The MLR
model shows the most significant deviation, with an R? of 0.86 across the
training set, testing data, and generalization evaluation. Furthermore,
its MAE, RMSE and CVRMSE are higher than those of the RF and
XGBoost models. Fig. 6 and appendix 2 compares the predicted results
and actual values for different models. The MLR model exhibits greater
fitting differences in training, test, and generalization evaluation. In
contrast, the linear fit lines of the XGBoost and RF models align more
closely with the 1:1 line, particularly for the XGBoost model, where the
predicted values for both the training and testing data are distributed on
both sides of the 1:1 line.

Table 4 illustrates the performance of facade PV power generation in
the MLR, RF, and XGBoost models across the training data, testing data,
and generalization evaluation. From Table 4, it can be observed that
XGBoost performs the best. Regardless of the training data, testing data,
or generalization evaluation, XGBoost achieves an R of 0.99. Addi-
tionally, its MAE, RMSE and CVRMSE remain consistently low across all
evaluations, demonstrating the excellent performance of the XGBoost
model. The RF model achieves an R? of 0.94 in the training and testing
data, and an R? of 0.95 in the generalization evaluation. However, its
MAE, RMSE and CVRMSE are higher than those of the XGBoost model
across all evaluations. The MLR model shows the poorest fitting per-
formance, with an R? of 0.71 in the training and testing data, and an R?
of 0.75 in the generalization evaluation. Moreover, its MAE, RMSE and
CVRMSE are higher than those of both the RF and XGBoost models
across all evaluations. A comparison of the predicted results and actual
values for different models is shown in Fig. 7 and appendix 3. The MLR
model exhibits greater fitting differences in the training data, testing
data, and generalization evaluation. In contrast, the linear fit lines of the
XGBoost and RF models align more closely with the 1:1 line, particularly
for the XGBoost model, where the predicted values for both the training
and test sets are distributed on both sides of the 1:1 line.

Fig. 8 illustrates the hourly differences between MLR, RF, XGBoost,
and actual values over a week. It is clear that for both roof and facade PV
power generation, XGBoost shows the smallest differences compared to
the actual values. XGBoost achieves the best performance in predicting
roof and facade PV power generation across all evaluation metrics, with
R? values of 0.995 and 0.998, RMSE values of 4.9 kW and 6.6 kW, and
MAE values of 2.4 kW and 3.5 kW, respectively. RF follows with R2
values of 0.938 and 0.982, RMSE values of 18.2 kW and 27.1 kW, and
MAE values of 9.9 kW and 13.0 kW. MLR demonstrates the poorest
performance.

Table 3
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3.3. Contribution of impact factors to urban PV

The summary plot of meteorological parameters, computation
models, and shading area characteristics for roof PV power generation is
shown in Fig. 9. The left side of Fig. 9 displays the global importance
ranking of each factor on roof PV power generation, ordered from the
most significant to the least. The right side of Fig. 9 provides a local
explanation of the changes in roof PV power generation influenced by
each factor. The visualization illustrates the SHAP values and their di-
rections, where red and blue points represent high and low feature
values, respectively. The figure shows that the total contributions of
meteorological parameters, computation models and shading areas
characteristics are 76 %, 22.6 %, and 1.3 %, respectively. This indicates
that meteorological parameters significantly impact roof PV power
generation. GHI has the most significant influence among the meteo-
rological parameters, positively correlating with roof PV power gener-
ation. As GHI increases, roof PV power generation rises significantly.
The computation models characteristic of TBFA also shows a positive
correlation with roof PV power generation. Similarly, the meteorolog-
ical parameter DHI positively correlates with roof PV power generation.

The summary plot of meteorological parameters, computation
models, and shading area characteristics for facade PV power generation
is shown in Fig. 10. The left side of Fig. 10 displays the global impor-
tance ranking of each factor on facade PV power generation, ordered
from the most significant to the least. The right side of Fig. 10 provides a
local explanation of the changes in facade PV power generation influ-
enced by each factor. The visualization illustrates the SHAP values and
their directions, where red and blue points represent high and low
feature values, respectively. The figure shows that the total contribu-
tions of meteorological parameters, computation models, and shading
area characteristics are 65.2 %, 30.7 %, and 4.1 %, respectively. Similar
to roof PV, meteorological parameters have the most significant impact
on facade PV power generation. However, the influence of computation
models, and shading area characteristics on facade PV power generation
is greater than on roof PV power generation. Among the meteorological
parameters, GHI, DNI, and DHI have the most significant impact on
facade PV power generation. These three meteorological variables
positively correlate with facade PV power generation, indicating that as
GHI, DN, and DHI increase, facade PV power generation also increases.
For computation models characteristics, AH, TBSA, and TBA are posi-
tively correlated with facade PV power generation. In contrast, SVF is
negatively correlated. For shading area characteristics, HSD positively
correlates with facade PV power generation.

3.4. Nonlinear correlation analysis of impact factors

To study the nonlinear relationships between roof PV power gener-
ation and its influencing factors, scatter plots were created for GHI,
TBFA, and DHI, which together account for 89.8 % of the variation in
roof PV power generation, indicating their crucial role. As shown in
Fig. 11, GHI is positively correlated with roof PV power generation,
meaning that roof PV power generation increases significantly as GHI
increases. Similarly, TBFA from computation models positively corre-
lates with roof PV power generation, with larger TBFA values leading to
higher energy output. DHI also shows a positive correlation overall, but
when DHI exceeds approximately 100 W/m?, its impact on roof PV

shows the parameter metrics of MLR, RF, and XGBoost models in the evaluation of roof PV power generation across the training data, testing data, and generalization

ability evaluation.

PV_roof Training data Testing data Generalization ability evaluation

Model R2 MAE(kWh) RMSE(kWh) CVRMSE( %) R? MAE(kWh) RMSE(kWh) CVRMSE( %) R? MAE(kWh) RMSE(kWh) CVRMSE( %)
MLR 0.86 329 47.3 59.92 0.86 32.8 47.2 60.23 0.86 30.6 47.5 58.92

RF 098 9.4 18.6 23.56 098 7.2 15.6 19.91 098 124 26.2 32.50
XGBoost 0.99 1.1 2.2 2.79 099 14 3.2 4.08 099 35 7.5 9.30
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Fig. 6. The Prediction Results of MLR, RF, and XGBoost Models for Roof PV Power Generation.

Table 4

shows the parameter metrics of MLR, RF, and XGBoost models in the evaluation of facade PV power generation across the training data, testing data, and generalization

ability evaluation.

PV_facade  Training data Testing data Generalization ability evaluation
Model R? MAE RMSE CVRMSE(%) R® MAE RMSE CVRMSE(%) R? MAE RMSE CVRMSE( %)
(kwh) (kWh) (kWh) (kWh) (kWh) (kWh)
MLR 0.71  45.0 69.5 89.29 0.71  45.0 69.5 90.01 0.75 405 59.1 78.21
RF 0.94 13.0 30.3 38.93 0.94 13.1 30.5 39.50 0.95 12.4 26.2 34.67
XGBoost 099 3.9 8.2 10.53 0.99 5.0 11.9 15.41 099 6.1 13.3 17.60
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Fig. 7. The Prediction Results of MLR, RF, and XGBoost Models for facade PV Power generation.

power generation gradually diminishes.

To study the nonlinear relationships between facade PV power
generation and its influencing factors, this study selected nine key in-
dicators: GHI, DNI, DHI from meteorological parameters, AH, TBSA,
TBA, SVF, TBFA from computation models morphology, and HSD from
shading area morphology. These nine indicators account for 87.5 % of
the variation in facade PV power generation, indicating their critical
importance. As shown in Fig. 12, GHI is positively correlated with facade
PV power generation when below 500 W/m?, but its effect stabilizes
when GHI exceeds this value. DNI maintains a positive correlation with
facade PV power generation, with higher DNI resulting in greater energy
output. Similarly, DHI is positively correlated; however, its influence is
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not significant below 150 W/m?, becoming more apparent when DHI
exceeds this value. Among the representative area building morphology
indicators, AH positively correlates with facade PV power generation,
but its growth impact diminishes when AH exceeds 40 m TBSA exhibits a
similar trend, with a positive impact below 20,000 m?, after which its
influence stabilizes. TBA generally shows a positive correlation, but this
relationship becomes steady when TBA is below 28,000 m?, showing no
significant growth. TBFA demonstrates a stable relationship with facade
PV power generation below 5000 m? but turns inversely correlated when
exceeding this value. SVF displays an inverse correlation with facade PV
power generation, but this relationship stabilizes when SVF ranges be-
tween 0.6 and 0.75. For the shading area building morphology indicator,
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Fig. 8. Comparison of roof and facade hourly BIPV power generation prediction.

HSD shows a positive correlation with facade PV power generation when
greater than 25 m However, its impact remains stable when HSD is
below 25 m

3.5. Calculation of roof and facade PV power generation in shenzhen

Based on NSRDB high temporal and spatial resolution data (1 h and 2
km), Fig. 13 (c - h) visualized roof and facade PV power generation data
for 10:00, 13:00, and 16:00 on June 22, 2018. Spatially, BIPV power
generation in Shenzhen shows significant regional differences, with the
majority concentrated in the northwestern and southern areas of the
city. Fig. 13a and 13b show that these regions have a higher density of
buildings, providing more roof and facade areas, which leads to higher
PV power generation. Temporally, PV power generation in Shenzhen
also varies significantly across different times of the day. At 10:00, roof
and facade PV power generation peaked at 17.14 GWh and 10.31 GWh,
respectively. At 13:00, roof and facade PV power generation decreased
to 5.01 GWh and 4.72 GWh, respectively. By 16:00, PV power genera-
tion was at its lowest, with roof and facade generation at only 1.46 GWh
and 1.53 GWh, respectively.

This study analyzes the relationship between BIPV power generation
and electricity consumption data on monthly and annual scales based on
2018 electricity consumption data (Yan, Huang & Ren, 2024). First,a 1
km grid for Shenzhen was created as the basic analysis unit. The elec-
tricity consumption and BIPV power generation data for January, July,
and the entire year of 2018 were selected to explore the proportion of
roof, facade, and combined roof and facade PV power generation in
electricity consumption. Specifically, in the visualization, the PV power
generation of roofs, facades, and their combination was divided by the
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electricity consumption data of the 1 km grid, resulting in the percent-
age of BIPV power generation relative to electricity consumption, which
was used to calculate the PV consumption rate (Fig. 14). The roof and
facade PV power generation data were calculated hourly based on
NSRDB data, and the spatial join tool in GIS was used to summarize the
roof, facade, and combined PV power generation for January, July, and
the entire year. Overall, there is significant spatial and temporal
inequality in BIPV consumption rates. If only roof PV were considered,
the areas where roof PV power generation can meet electricity con-
sumption in January would be mainly concentrated in the northwest,
south, and northeast of Shenzhen. In July, while the areas remain
limited to these regions, more grids can meet electricity demand. When
facade PV is considered, in January, most areas in the northwest, south,
and northeast of Shenzhen can meet electricity consumption through
facade PV. However, the self-sufficiency rate of facade PV decreased in
July due to increased electricity consumption. From an annual
perspective, if only roof PV is used, most areas in Shenzhen’s northwest,
south, and northeast can meet energy demand. If only facade PV were
used, it would mainly meet the demand in the southern part of Shenz-
hen. However, if roof and facade PV are combined, electricity demand
can be well met in January, July, and throughout the year. Overall, if
only roof PV is considered, it can meet 38.29 %, 74.17 %, and 49.34 % of
electricity consumption in January, July, and the entire year, respec-
tively. If only facade PV is considered, it can meet 48.39 %, 53.93 %, and
43.52 % of electricity consumption in January, July, and the entire year,
respectively. If roof and facade PV are combined, they can meet 86.68
%, 128.09 %, and 92.86 % of electricity consumption in January, July,
and the entire year.
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Fig. 9. Importance ranking diagram of feature variables and density scatter diagram of feature variables for hourly roof BIPV power generation.

4. Discussion

This study introduced an integrated physics-machine learning
framework to map urban BIPV generation at an hourly scale. The
exceptionally high accuracy achieved (R>=0.99 for both roof and facade
predictions) is not merely a statistical achievement but a direct outcome
of our methodological innovations. Unlike previous models that re-
ported lower accuracies—such as Chen et al. (R? of 0.85 and 0.70), Tang
et al. (R? of 0.93), and Tao et al. (R? of 0.696)—our approach succeeded
through a synergistic combination of critical elements. First, we con-
ducted high-fidelity physical simulations based on real 3D building
models instead of idealized prototypes. Second, we systematically
included the surrounding shading area’s morphology, a factor often
overlooked. And third, we used the XGBoost algorithm, which is adept at
capturing complex, non-linear interactions that simpler models like
linear regression or even standard Random Forest might miss. This
section critically discusses the novel insights derived from this robust
model and their implications for urban energy planning.

4.1. Novel insights into the drivers of BIPV generation

A key contribution of this work is the deconstruction of how mete-
orological and morphological factors influence BIPV generation,
revealing several novel, non-linear relationships that challenge or refine
previous understanding.

For roofs, our findings confirm that Global Horizontal Irradiance
(GHI) is the dominant driver, and that Total Building Floor Area
(TBFA_sm) serves as a strong proxy for generation capacity, which aligns
with previous research (Song, Cao & Yang, 2023 ; Lee, Lee & Lee, 2016).
However, our model provides a more nuanced insight into the role of
Diffuse Horizontal Irradiance (DHI). While DHI shows a positive corre-
lation, its impact exhibits a clear non-linear saturation effect,
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diminishing significantly beyond approximately 100 W/m? (Fig. 11b).
This quantifiable threshold suggests that at high levels of diffuse radi-
ation, unfavorable incident angles limit further gains in power genera-
tion, a phenomenon that simpler linear models often fail to capture (Pan,
Bai & Chang, 2022). Furthermore, our analysis quantitatively confirms
that the impact of surrounding building shading on roofs is minimal
(contributing only 1.3 % of the variation, Fig. 9), providing a strong
evidence base for prioritizing building-intrinsic factors in rooftop PV
planning.

For facades, our study offers the most significant new insights by
moving beyond generalized correlations to identify specific, previously
unquantified thresholds and non-linearities. For instance, while prior
studies correctly identified building height as positively correlated with
facade potential (Brito, Redweik & Catita, 2019 ; Chatzipoulka, Com-
pagnon & Nikolopoulou, 2016), our model reveals a critical perfor-
mance plateau for Average Height (AH_sm) around 40 m (Fig. 12d).
Beyond this height, the gains from increased facade area are progres-
sively negated by inter-building shading, yielding diminishing returns
and providing a novel, quantifiable guideline for urban planners. Our
analysis also refines the conventional understanding of the Sky View
Factor (SVF_sm), which is typically held to be inversely correlated with
facade generation (Mirkovic & Alawadi, 2017 ; Heng, Malone-Lee &
Zhang, 2017 ; Arboit, Diblasi & Llano, 2008). We identified a range of
relative insensitivity between 0.6 and 0.75 (Fig. 12g), where changes in
SVF have a minimal impact, suggesting a "sweet spot" in urban form
where planners can achieve balance. Critically, our study is one of the
first to systematically quantify the impact of the surrounding urban
fabric’s morphology. The Height Standard Deviation of the shading area
(HSD_sd) was identified as a key factor whose negative impact becomes
pronounced only when it exceeds 25 m (Fig. 12i). This reveals that
height uniformity in the surrounding area is highly beneficial for a target
building’s facade PV generation. This insight transcends single-building



X. Chai et al.

GHI

DNI
AH_sm
TBSA_sm
TBA_sm
DHI
SVF_sm |
time

T

usp_sd [l

TH_sm
ABSA_sm

Td 4.1%

30.7%

TBFA_sm
TH.sd I

HSD_sm
_— 65.2%

SAD_sm
SVF_sd |
SAD_sd |

Meteorological parameters
Computation model indicators
I Shading area indicators

Sustainable Cities and Society 135 (2025) 107010

High

Feature value

—

+
4—
e
=
i =

+

Low

0 10 20 30 40 50

mean(|SHAP value|) (average impact on model output magnitude)

=50 0 50 100 150 200 250

SHAP value (impact on model output)

60 =100

Fig. 10. Importance ranking diagram of feature variables and density scatter diagram of feature variables for hourly facade BIPV power generation.

40
500 %]zoo
T 400 T 30
5 g g 100
o 7
12300 S99 =
2 2 S
3200 g 8
< < o 0
> > 10 =
a, 100 - =
= = Sa00| | |
7 %0 < l El!?‘
100 _10 w-200
0 200 400 600 800 1000 0 100 200 300 400 1000 2000 3000 4000 5000 6000 7000
GHI(W/m?) DHI(W/m?) TBFA_sm(m?)
a. GHI b. DHI c. TBFA _sm

Fig. 11. Roof BIPV power generation SHAP dependence plots for variables in the XGBoost model. (Note: Red indicates high SHAP values, while blue indicates low

SHAP values.).

analysis and underscores the necessity of considering the broader
neighborhood context in 3D, a key advantage of our methodology.

4.2. Implications to urban energy planning

The granular and non-linear insights from our model translate into
more sophisticated and data-driven urban planning strategies than
previously possible, moving beyond generic recommendations.

For roof PV, planning remains relatively straightforward: strategies
should prioritize maximizing installable area (TBFA) in zones with high
solar radiation (GHI), as our model confirms these linear drivers are
dominant. For facade PV, however, our findings provide a basis for more
nuanced zoning and design regulations. The discovery of a 40-meter
threshold for Average Height (AH._sm) suggests that policies
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promoting endlessly tall, slender buildings for facade PV may be inef-
ficient. Instead, urban design codes could encourage mid-rise typologies
(up to ~40 m) where the balance between facade area gain and inter-
building shading is optimized. Similarly, the identification of an
SVF_sm insensitivity range (0.6-0.75) provides planners with greater
design flexibility in moderately dense urban blocks. Most critically, the
influence of the Height Standard Deviation of the shading area (HSD_sd)
provides a quantitative rationale for context-sensitive zoning, shifting
planning from a building-by-building approach to a more effective
neighborhood-scale energy-morphology optimization.

An hourly-scale model with this level of detail is a critical enabler for
advanced urban energy systems. By accurately capturing spatiotemporal
variations, planners can address the "temporal mismatch" between PV
generation and real-time urban electricity demand, thereby achieving
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Fig. 12. Facade BIPV power generation SHAP dependence plots for variables in the XGBoost model.

(Note: Red indicates high SHAP values, while blue indicates low SHAP values.)

supply-demand alignment. This high-resolution mapping is not only
crucial for strategically positioning energy storage stations but also
provides the foundation for creating effective Vehicle-to-Grid (V2G)
charging strategies, allowing electric vehicle charging needs to be syn-
chronized with solar energy availability. Moreover, the model allows for
the precise integration of BIPV systems with more refined urban energy
management strategies, such as optimizing energy scheduling and
balancing grid loads. Furthermore, coupling this model with large-scale
climate models can enhance its predictive capabilities, enabling cities to
forecast hourly BIPV generation under future climate conditions. This is
vital for developing long-term energy strategies and optimizing the
deployment of renewable resources. Ultimately, by providing a robust
predictive foundation for the seamless integration of renewable energy,
energy storage systems, and V2G technologies, our framework supports
the transition toward smart, resilient, and self-sufficient urban energy
networks that can minimize transmission losses, enhance local energy
utilization, and achieve carbon neutrality.
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4.3. Scalability and application challenges

The methodology proposed in this study possesses high scalability
and can be applied to cities other than Shenzhen. Its core advantage is
that the entire framework is based on the Local Climate Zone (LCZ), a
globally universal standard for urban morphology classification. As
stated previously, LCZ offers a comprehensive classification strategy
applicable to any city, allowing for the division of a city into various LCZ
combinations. This means that researchers can leverage this standard-
ized framework to conduct comparable PV potential assessments across
different cities.

However, several challenges may arise when extendin g this method
to other cities. The first is data availability. The model’s accuracy is
highly dependent on high-quality, city-wide 3D building vector data and
high-spatiotemporal resolution meteorological data. Yet, not all cities
possess such detailed and easily accessible public datasets. The second
challenge is the requirement for significant computational resources.
This study involved modeling over 10,000 buildings and training a
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Fig. 13. Hourly scale urban roof and facade PV power distribution predicted based on NSRDB data.

machine learning model on a massive dataset, which demands powerful to a new city, a degree of calibration or retraining with local data may be
computational support. The final challenge is local calibration. Although necessary to ensure optimal prediction accuracy.

the LCZ framework is universal, the specific relationship between urban Despite these challenges, with the advancement of global urban
morphology and PV potential may exhibit regional variations due to digitalization and open data initiatives, we believe this method provides
unique architectural styles, materials, and local climatic features in a robust and feasible technical pathway for conducting standardized,
different cities. Therefore, when applying the pre-trained model directly high-precision PV potential assessments in diverse urban contexts

15
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Fig. 14. The proportion of roof, facade, and combined PV power generation relative to electricity consumption at different times.

worldwide.

4.4. Limitations and future works

There are some limitations in this study that need to be addressed in
future studies.

1. Although this study constructed the XGBoost model and performed
SHAP interpretability analysis using a real-world model, the SHAP
analysis was limited to the training set within the XGBoost model.
Therefore, the results of the SHAP analysis have certain limitations.

2. This study did not consider the building envelope when assessing the
BIPV power generation potential at the urban scale. Different BIPV
products (such as PV glass and PV walls) have varying PV effi-
ciencies, leading to inaccuracies when evaluating BIPV power gen-
eration at the urban scale (Xu, Chen & Ren, 2025).The study also did
not account for the efficiency differences of PV modules on facade
surfaces with different orientations, which may significantly affect
the annual distribution of power generation. Future studies should
refine the components of building envelopes to provide more accu-
rate evaluations of urban BIPV power generation.
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3. This study did not fully account for the impact of different building
types and structures on the installation and performance of BIPV
systems. Complex structures such as sloped roofs and historical
buildings impose specific constraints on BIPV deployment, which
were not reflected in the current model. Future research should
integrate building categorization databases and incorporate struc-
tural attributes into the modeling process to enable multidimen-
sional predictions of BIPV suitability.

4. This model cannot predict the roof and facade photovoltaic PV power
generation for individual buildings. However, in practical applica-
tions, stakeholders such as property developers and building man-
agers are more concerned with the power generation performance of
individual buildings, for which the current model does not provide
granular predictions. Therefore, future research should focus on
achieving cross-scale predictions to estimate PV power generation
for both individual buildings and building groups.

5. This study assumes that all eligible surface areas are fully equipped
with BIPV systems, without considering real-world deployment
constraints such as investment capacity, policy limitations, and the
cost of equipment access. Therefore, future research should develop
an integrated decision-making model that incorporates economic
feasibility, policy incentives, and user acceptance, in order to
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improve the practicality and applicability of urban BIPV power
generation potential assessments.

6. This study is limited to the assessment of photovoltaic power gen-
eration potential in Shenzhen and has not yet been extended to other
global regions. Although the LCZ classification framework is theo-
retically universal and applicable to cities worldwide, and the inte-
gration of LCZ with 3D building models and machine learning shows
good potential for transferability, the methodology still needs to be
validated in different global contexts. In future work, we will carry
out cross-regional and multi-climate zone extensions in several
representative cities to test, improve, and ultimately verify the
adaptability and effectiveness of the proposed method on a global
scale.

7. Although this study integrated multiple data sources from 2018 to
ensure temporal consistency and improve the accuracy of model
training, the data used are relatively outdated. With ongoing changes
in urban morphology and energy systems, data from 2018 may not
accurately reflect current conditions, which could affect the timeli-
ness and generalizability of the model. Therefore, future studies
should incorporate more recent datasets to enhance the model’s
practical relevance and predictive capability.

5. Conclusions

This study, based on LCZ classification, utilized XGBoost to construct
prediction models for hourly roof and facade PV power generation,
demonstrating excellent performance. Additionally, the study employed
the XGBoost model and SHAP interpretability to investigate the impact
of hourly meteorological parameters, computational models, and
shading area parameters on roof and facade PV power generation. High
temporal and spatial resolution NSRDB data were also used to evaluate
Shenzhen’s hourly roof and facade PV power generation. The main
conclusions are as follows:

1. For roof PV power generation, LCZ3 has the highest roof PV power
generation, while LCZ9 has the lowest. For facade PV power gener-
ation, LCZ1 has the highest facade PV power generation, while LCZ9
has the lowest.

2. Compared to MLR and RF, XGBoost demonstrated the best perfor-
mance in predicting roof and facade PV power generation. For roof
PV power generation, XGBoost achieved an R* of 0.99 across the
testing data, and generalization performance evaluation, with MAE
values of 1.4 kW, and 3.5 kW, RMSE values of 3.2 kW, and 7.5 kW,

Appendix

Appendix 1, Appendix 2, Appendix 3

17

Sustainable Cities and Society 135 (2025) 107010

and CVRMSE values of 4.08 %, and 9.30 %, respectively. For facade
PV power generation, XGBoost also achieved an R* of 0.99 across all
evaluations, with MAE values of 5.0 kW, and 6.1 kW, RMSE values of
11.9 kW, and 13.3 kW, and CVRMSE values of 15.41 %, and 17.60 %,
respectively.

3. The main factors influencing roof PV power generation are GHI, DHI,
and TBFA, which account for 89.8 % of the variation in roof PV
power generation. For facade PV power generation, in addition to
GHI, DNI, and DHI, the computation models morphology indicators
AH, TBSA, TBA, SVF, and TBFA, as well as the shading area
morphology indicator HSD, have the most significant influence.
These nine indicators account for 87.5 % of the variation in facade
PV power generation.

4. Based on NSRDB data, this study evaluated the potential for hourly
roof and facade PV power generation in Shenzhen. Additionally, the
study assessed BIPV power generation in January, July, and 2018.
Roof PV systems could generate 2442.9 GWh, 4886.9 GWh, and
45,256.1 GWh in January, July, and the entire year, meeting 38.29
%, 74.17 %, and 49.34 % of electricity consumption, respectively.
Facade PV systems could generate 3087.7 GWh, 3553.4 GWh, and
39,919.2 GWh in January, July, and the entire year, meeting 48.39
%, 53.93 %, and 43.52 % of electricity consumption, respectively.
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Appendix 2. The Prediction Results of MLR, RF Models for Roof PV Power Generation.
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Appendix 3. The Prediction Results of MLR, RF Models for facade PV Power generation.
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