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Abstract 17 

E-mobility accelerates carbon neutrality, with electric vehicle charging stations (EVCS) crucial for 18 

reducing range anxiety and supporting adoption. Yet, limited research on EVCS accessibility and 19 

renewable energy equity under diverse climates constrains carbon abatement potential. This study 20 

proposes an integrative framework that connects two climate-sensitive dimensions: EVCS 21 

accessibility, affected by driving range under varying conditions, and renewable energy distribution, 22 

shaped by climate variability. Using data from 31 provincial capitals in China, we evaluate 23 

disparities in accessibility and equity, and introduce an innovative EVCS planning strategy. Results 24 

show accessibility can rise from 0.7–47.3 to 1.7–49.5 kW/10,000 m², while the Gini coefficient falls 25 

to 0.3, indicating enhanced equity. The strategy enables annual carbon mitigation of 1.4×10⁶–26 

8.3×10⁸ kg in the near term. Policy implications include targeted subsidies, optimized deployment 27 

in underserved areas, and integration of EVCS with renewable energy systems to enhance 28 

accessibility, equity, and emission reduction. 29 

Keywords: Electric Vehicle Charging Station; Renewable Energy Penetration; Integrative Energy 30 

System; Energy Equity; Carbon Abatement 31 

Introduction 32 

The global transition to carbon neutrality hinges on the rapid electrification of transport, yet the 33 

success of this shift is constrained by two critical challenges: ensuring equitable access to electric 34 

vehicle charging stations (EVCS)1 and powering them with clean, renewable energy (RE)2. 35 

Insufficient or inequitably distributed charging infrastructure can create "charging deserts", leading 36 
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to range anxiety3 and hindering electric vehicle (EV) adoption4. Simultaneously, relying on carbon-1 

intensive grids for charging negates the environmental benefits of e-mobility, particularly in regions 2 

with high grid emission factors5. These challenges are acutely magnified in China, where vast 3 

climatic, urban, and energy landscapes require a highly integrated planning approach6. Consequently, 4 

a framework that co-optimizes both climate-sensitive accessibility and RE integration is essential 5 

to unlock the full decarbonization potential of electric transport. 6 

The electrification of energy systems fundamentally reshapes demand-side dynamics, with 7 

transportation electrification creating massive, spatially-concentrated new loads on the power grid7. 8 

A primary challenge for urban planners is to manage the deployment of the requisite infrastructure, 9 

namely EVCS, in a manner that is both efficient and socially equitable. A significant body of 10 

research has addressed this from a socio-spatial perspective, focusing on accessibility and planning8. 11 

These studies often leverage urban data to model charging demand9, optimize station locations10, 12 

and assess economic co-benefits, such as property values11, business activity12, and local economic 13 

development13. Crucially, a growing sub-field addresses "energy justice" within this transition14, 14 

using metrics like the Gini coefficient15 to quantify and mitigate disparities in EVCS access across 15 

different socio-economic groups and communities16. This research is vital for preventing the 16 

emergence of "charging deserts" and ensuring an inclusive energy transition17. However, while 17 

excelling at socio-economic analysis, this research stream suffers from a critical engineering blind 18 

spot: it largely overlooks how climate-dependent variations in EV driving range dynamically alter 19 

the true service radius of charging stations. Consequently, most large-scale accessibility studies fail 20 

to account for climatic diversity. 21 

A core tenet of energy systems electrification is the "sector coupling" of transport and power18, 22 

where EVs are envisioned not just as loads but as active grid participants19. The literature on this 23 

topic is vast, primarily focusing on micro-level energy management and control20. This includes 24 

sophisticated algorithms for smart charging21, demand response22, and bidirectional power flow via 25 

Vehicle-to-Grid (V2G) 23, Building-to-Vehicle (B2V) technologies24, or coordinated charging 26 

strategies25. These studies convincingly demonstrate how intelligent control can transform millions 27 

of EVs into a virtual power plant for grid balancing26 and absorbing intermittent renewables27. 28 

However, this research is overwhelmingly temporally focused and spatially abstracted. While adept 29 

at solving the temporal challenge of "when" to charge, it largely ignores the geographical challenge 30 

of "where" charging infrastructure must be located to enable these interactions at scale. 31 

Consequently, a disconnect persists between spatially-blind energy optimization algorithms and the 32 

practical realities of urban infrastructure planning. 33 

The ultimate metric for the success of energy system electrification is its quantifiable contribution 34 

to decarbonization. The literature addresses this from several perspectives. A foundational stream 35 

uses Life Cycle Assessment (LCA)28 to rigorously compare the carbon footprints of EVs and 36 

internal combustion engine vehicles (ICEVs)29 during vehicle manufacturing30, energy use during 37 

operation31, and in some cases, end-of-life processes32, establishing that an EV’s environmental 38 
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benefit is critically contingent on the cleanliness of its electricity source33. Building on this, energy 1 

system models explore macro-scale decarbonization pathways7, assessing the impact of broad 2 

policy levers like renewable energy targets34 or carbon pricing35 on overall grid emissions. A third, 3 

more granular area focuses on the synergistic operation of coupled sectors36, particularly the 4 

building-transport nexus37, by modeling how integrated systems can enhance local renewable 5 

energy use and resilience38. However, these diverse research streams share a common limitation: 6 

they tend to operate at the extremes of the analytical scale. Research is often either hyper-specific, 7 

focusing on the technical potential of a single technology or vehicle, or highly aggregated, analyzing 8 

macro-level energy systems without granular geospatial detail. Consequently, the critical role of 9 

data-driven, meso-scale EVCS infrastructure planning in bridging these scales and actively shaping 10 

decarbonization outcomes remains a significant analytical blind spot. 11 

Based on the literature review, we identify three critical research gaps that prevent a holistic 12 

approach to EVCS planning within the broader context of energy system electrification: 13 

(1) The lack of a climate-sensitive framework for accessibility assessment. Existing studies often 14 

overlook the quantifiable impact of varying climate on EV driving ranges, a critical engineering 15 

factor that alters the true service coverage of EVCS. Consequently, robust cross-city comparisons 16 

of accessibility and equity remain limited. 17 

(2) The absence of an integrated planning strategy bridging social needs and energy system 18 

constraints. There is a lack of integrated planning strategies that comprehensively co-optimize for 19 

both social equity (addressing accessibility gaps) and engineering feasibility (aligning with the 20 

spatial distribution of surplus renewable energy). Furthermore, the consequential impact of such 21 

strategies on stimulating EV adoption has not been clearly quantified. 22 

(3) The unquantified system-wide decarbonization impact of spatially-aware EVCS deployment. 23 

Previous research has not adequately studied how the strategic, meso-scale spatial deployment of 24 

EVCS infrastructure actively reshapes urban energy flows. Consequently, the aggregated, city-wide 25 

carbon abatement potential that emerges directly from an optimized planning strategy remains 26 

critically under-explored, particularly across multiple cities and diverse energy transition scenarios. 27 

To address these gaps, this study proposes an integrative framework that connects two climate-28 

sensitive dimensions: EVCS accessibility, which is influenced by EV driving range under different 29 

climate conditions, and the spatial distribution of surplus renewable energy, which is affected by 30 

climate-dependent building energy demand and climate-dependent renewable generation potential. 31 

By linking these two aspects, the framework enables a unified evaluation of EVCS deployment 32 

strategies and their carbon abatement potential across diverse climate zones. Specifically, this 33 

research makes three major contributions:  34 

(1) To assess the disparities in EVCS distribution, an EVCS accessibility evaluation framework 35 

focusing on the spatial distribution of charging supply and demand has been developed, 36 

comprehensively considering climate impacts on EV driving range across 31 provincial capital 37 

cities in China. This framework is used to evaluate the level of EVCS infrastructure across these 38 
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cities with real-world data, providing a foundation for subsequent planning and optimization. 1 

(2) Building on the accessibility evaluation and the spatial distribution of surplus renewable energy, 2 

an innovative EVCS planning strategy has been proposed and used to enhance EVCS accessibility 3 

and renewable energy penetration across the 31 provincial capital cities, thereby increasing EV 4 

adoption (including the number of EVs and annual EV mileage), and amplifying carbon abatement 5 

potential. 6 

(3) Focusing on the coordination of renewable energy flows, the study examines the role of EVCS 7 

in the electrified energy network. Through the strategic deployment of EVCS and power flow 8 

dispatch, carbon abatement potentials across 31 provincial capital cities in China have been 9 

predicted and estimated, considering different levels in net-zero energy transitions and varying 10 

climatic conditions in five climate zones in China. 11 

Building on the previously outlined innovations, this study develops an optimized EVCS 12 

deployment strategy across 31 provincial capitals. The strategy is informed by two critical, climate-13 

sensitive factors: the spatial distribution of EVCS accessibility and the availability of surplus 14 

renewable energy. Therefore, the study provides a novel, interdisciplinary framework that combines 15 

engineering and social science perspectives to offer actionable insights for EVCS planning, energy 16 

transition, and carbon mitigation strategies in urban contexts, which provides actionable insights for 17 

urban planners, policymakers, and EVCS operators to guide effective energy transition and carbon 18 

abatement strategies. 19 

Results 20 

This study aims to enhance electric vehicle charging station (EVCS) infrastructure in areas with 21 

low accessibility yet high renewable energy potential, in order to boost EV adoption and maximize 22 

carbon abatement. Our analytical framework (Fig. 1) proceeds in three stages, detailed in the 23 

subsequent sections: (1)EVCS accessibility assessment for 31 cities across different climatic zones 24 

(Fig. 2), (2)EVCS expansion planning based on accessibility distribution gaps and renewable energy 25 

distribution (Fig. 3 and 4), and (3)Carbon abatement potential of optimized EVCS deployment 26 

across China’s climate zones (Fig. 5).  27 
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 1 

Fig. 1 Overall process flowchart. The main process is to enhance the EVCS infrastructure in 2 

communities with poor EVCS accessibility and sufficient surplus renewable energy. This is 3 

expected to increase EV adoption and improve renewable energy penetration, ultimately increasing 4 

the carbon abatement potential of electric vehicles (EVs). 5 

 6 

EVCS accessibility assessment for 31 cities across different climatic zones 7 

To assess the adequacy of charging infrastructure, this study proposes a climate-sensitive EVCS 8 

accessibility metric. This approach is critical as temperature variations across climates impact EV 9 

battery performance and driver behavior, thus altering the effective service range of an EVCS39. 10 

Accessibility is defined as the ratio of available charging supply to potential charging demand within 11 

discrete urban community cells (Fig. 2a). Specifically, it is calculated as the total charging power of 12 

accessible EVCS (supply) divided by the total building area (demand proxy) within each grid 13 
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community, with details provided in the Methods section: Sample selection and accessibility metrics 1 

for EVCS accessibility analysis. 2 

A key feature of our methodology is the use of building area as a proxy for potential charging 3 

demand. This is justified because buildings are the primary destinations of most EV trips and serve 4 

as a robust indicator of human activity density. Furthermore, Chinese urban planning standards link 5 

building area directly to parking provisions, reinforcing its validity as a proxy for potential vehicle 6 

and charging demand40. A detailed rationale for this approach is provided in Note S138. This 7 

framework considers current EV ownership as a dependent variable spurred by infrastructure 8 

improvements, rather than a direct input for accessibility calculation, aligning with the study's goal 9 

of stimulating EV adoption. 10 

Applying this method to Guangzhou (Fig. 2b) reveals distinct spatial patterns. It can be observed 11 

that in areas with high building density, such as the city center, the EVCS accessibility distribution 12 

aligns closely with the distribution of total EVCS charging station power. In contrast, some grid 13 

communities in suburban areas have higher EVCS accessibility due to lower charging demands. 14 

Beyond Guangzhou, our analysis of representative cities across other climate zones—from cold 15 

Beijing to temperate Kunming—reveals a consistent spatial pattern (Fig. 2c). EVCS accessibility is 16 

typically highest in urban cores but remains unevenly distributed, with significant portions of cities 17 

like Shenyang (39% of communities) having no EVCS coverage at all. (The complete EVCS power 18 

and accessibility distributions for all 31 provincial capital cities are provided in Fig. S1 and Fig. S2).  19 

To quantify these city-wide characteristics, we assessed all 31 provincial capitals using two key 20 

metrics. The average EVCS accessibility evaluates the overall sufficiency of charging infrastructure 21 

across the city. And the Gini coefficient, which is a well-established measure of inequality41, 22 

evaluates the spatial disparity in accessibility within each city (see the Methods section: Sample 23 

selection and accessibility metrics for EVCS accessibility analysis for details). The results, 24 

summarized in Fig. 2d, highlight significant disparities. Haikou demonstrates the best performance 25 

with the highest average accessibility (47.3 kW/10,000 m²) and the most equitable distribution (Gini 26 

= 0.35). A clear trend emerges where cities in colder northern climates (e.g., Harbin, Urumqi) exhibit 27 

the lowest accessibility levels. Across all 31 cities, the median accessibility is a modest 11.8 28 

kW/10,000 m², with a high median Gini coefficient of 0.62, indicating that inequitable access to 29 

public charging is a widespread issue in urban China (see Table S1 for detailed data). The robustness 30 

of our accessibility metric was validated through sensitivity analyses of grid community sizes and 31 

outlier handling, which confirmed the stability of our findings (see Table S2-S4 for details). 32 

This analysis centers on climate-modulated EVCS accessibility. While it identifies spatial gaps 33 

for initial planning, maximizing carbon mitigation also requires considering the distribution of 34 

surplus renewable energy (RE). Therefore, the following section integrates these accessibility gaps 35 

with surplus RE distribution to inform a comprehensive deployment strategy. 36 

 37 

Jo
urn

al 
Pre-

pro
of



7 

 

 1 

 2 

Fig. 2 Methodology and results of EVCS accessibility evaluation. a) Illustration of EVCS 3 

accessibility calculation. b) EVCS accessibility distribution in Guangzhou. c) EVCS accessibility 4 

distribution of typical provincial capital cities. d) Average EVCS accessibility results and disparities 5 
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in EVCS accessibility (Gini coefficient) of the 31 provincial capital cities. 1 

(Note: EVCS accessibility refers to how much EV charging power is available from EVCS per 2 

building area of building users. The Gini coefficient refers to the level of inequality in the 3 

distribution of EVCS accessibility among different communities within a city, with higher values 4 

indicating greater disparities. Gray areas represent non-urban regions outside the scope of this study. 5 

The specific method for delineating these regions is detailed in the Methods section: Sample 6 

selection and accessibility metrics for EVCS accessibility analysis. 7 

EVCS expansion planning based on accessibility distribution gaps and renewable energy 8 

distribution 9 

EVCS can work as an intermediary bridge to associate buildings, the e-mobility EVs, and the 10 

power grid42. To align EVCS deployment with clean energy availability, we simulated the surplus 11 

renewable energy (RE) within urban communities. Our model (Fig. 3a) integrates building-12 

integrated photovoltaics (BIPV) and rooftop PV with four types of urban buildings to estimate local 13 

RE generation and consumption. To achieve a net-zero energy balance for buildings, the model also 14 

incorporates supplemental PV farms in suburban areas to offset energy deficits43. The detailed 15 

energy modeling, including building profiles, the feasibility of PV farms, and the rationale for 16 

focusing on solar PV, is provided in the Methods section: Surplus renewable energy simulation for 17 

buildings and communities, Note S2-S344 and Table S5. 18 

Our simulations in Guangzhou reveal the city's energy landscape. While areas with high building 19 

density generate substantial RE (Fig. 3b) and exhibit high energy consumption (Fig. 3c), local PV 20 

generation is insufficient to meet demand, resulting in significant annual energy shortages across 21 

most communities (Fig. 3d). However, by incorporating PV farms, an annual net-zero energy 22 

balance can be achieved city-wide (Fig. 3e). Beyond the annual balance, hourly dynamic 23 

simulations highlight a crucial temporal mismatch. Even after achieving net-zero on an annual basis 24 

with PV farms, significant hourly surpluses of RE are still generated, particularly during midday 25 

solar peaks (compare Fig. 3f and 3g). This surplus RE, which exists even when building demand is 26 

met, provides a critical opportunity for clean EV charging. 27 

Expanding this analysis to all 31 provincial capitals (Fig. 3h), we observe diverse energy profiles. 28 

Cities like Shanghai exhibit the largest energy deficits, requiring extensive PV farm capacity. 29 

Conversely, cities such as Kunming and Lhasa can achieve a net-zero building energy transition 30 

primarily through BIPV and rooftop PV. These results map the spatial and temporal availability of 31 

surplus RE across China, forming the second critical input alongside accessibility gaps for our 32 

subsequent EVCS expansion planning. (Detailed city-level data are available in Fig. S3-S6 and 33 

Table S1). 34 
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Fig. 3 Overview of the integrative energy system and building energy simulation results in 1 

Guangzhou. a) Illustration of integrative energy systems. b) Annual total BIPV and rooftop PV 2 

generation. c) Annual total building energy consumption. d) Annual total energy shortage before 3 

adding PV farms. e) Annual total energy shortage after adding PV farms. f) Dynamic building 4 

energy simulation results (energy demand, RE generation, and surplus curves) before adding PV 5 

farms over three days near the spring equinox (from 19th March to 21st March). g) Dynamic building 6 

energy simulation results after adding PV farms over three days near the spring equinox. h) Total 7 

BIPVs and rooftop PV production, total building consumption, total shortage without PV farm, and 8 

total PV farm area for zero-energy buildings of the 31 provincial capital cities. 9 

 10 

Our EVCS expansion strategy integrates accessibility gaps with surplus renewable energy 11 

availability to guide new infrastructure deployment (Fig. 4a). The core principle is to prioritize new 12 

EVCS in communities with the lowest accessibility, while constraining the new capacity by the local 13 

surplus RE supply. The primary planning objective is to enhance charging equity, aiming to reduce 14 

each city's EVCS accessibility Gini coefficient to below 0.3, a threshold representing a state of 15 

relative equality45,46. (The detailed methodology and rationale for focusing on the Gini coefficient 16 

are described in the Methods section: EVCS planning method considering both accessibility gaps 17 

and surplus renewable energy distribution, and Note S4.) 18 

Applying this strategy to Guangzhou (Fig. 4b), new charging piles are strategically placed in 19 

underserved areas. This significantly improves both the overall level and the fairness of EVCS 20 

provision, as shown by the city-wide accessibility maps before and after planning (Fig. 4c, d). The 21 

average accessibility increases from 36.2 to 44.9 kW/10,000 m², while the Gini coefficient drops 22 

from a highly unequal 0.52 to the target of 0.30. 23 

These infrastructure improvements are projected to stimulate significant growth in EV adoption. 24 

As illustrated in Fig. 4e, our empirical analysis confirms a strong positive relationship: enhanced 25 

EVCS infrastructure leads to both a higher number of EVs and increased annual mileage per vehicle. 26 

Specifically, the model indicates that the addition of one public charging pile is associated with an 27 

increase of approximately 2.4 EVs. As a result of this increased adoption and mileage, the total 28 

annual EV charging energy in Guangzhou also rises substantially, a trend visible in the spatial 29 

distribution maps before and after planning (Fig. 4f and 4g). (The detailed regression models, 30 

including robustness checks, are provided in the Methods section: Relationship between EVCS and 31 

EV adoption and Table S6-S8). 32 

The nationwide impact of this planning strategy is summarized in Fig. 4h-k. Across all 31 cities, 33 

the plan leads to significant improvements in four key areas: EVCS accessibility (h), EV ownership 34 

(i), annual mileage (j), and total charging energy demand (k). Notably, the strategy successfully 35 

enhances both the level and equity of charging access; city-level average accessibility is lifted from 36 

a range of 0.7–47.3 kW/10,000 m² to 1.7–49.5 kW/10,000 m², while the Gini coefficient in each 37 

city is reduced to the target of 0.3 (Fig. 4h). This tailored approach is exemplified by the varied scale 38 

of intervention: Shanghai requires 3.0×10⁴ new piles to achieve this goal, whereas Haikou requires 39 
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only 200. The resulting growth in EV adoption and usage significantly boosts the overall electricity 1 

demand for charging. By directing this new demand to communities with identified RE surpluses, 2 

the strategy creates a critical opportunity to enhance renewable energy penetration and maximize 3 

carbon abatement potential, which will be quantified in the following section. (City-specific 4 

planning results are available in Fig. S7-S10 and Table S9). 5 

 6 
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Fig. 4 Impact of EVCS planning on EVCS accessibility, total EV number, and total annual 1 

charging energy. a) EVCS planning method flowchart. b) Planning of new EVCS piles for 2 

Guangzhou. c) EVCS accessibility distribution in Guangzhou before adopting the EVCS planning 3 

method. d) EVCS accessibility distribution in Guangzhou after adopting the EVCS planning method. 4 

e) Impact of EVCS planning method on EV adoption. f) EV charging energy distribution in 5 

Guangzhou before adopting the EVCS planning method. g) EV charging energy distribution in 6 

Guangzhou after adopting the EVCS planning method. h) EVCS accessibility before and after 7 

adopting the EVCS planning method. i) Number of total EV before and after adopting the EVCS 8 

planning method. j) EV average annual mileage before and after adopting the EVCS planning 9 

method. k) EV total annual charging energy before and after adopting the EVCS planning method. 10 

(Note: EVCS accessibility refers to how much EV charging power is available from EVCS per 11 

building area of building users; the Gini coefficient refers to the level of inequality in the distribution 12 

of EVCS accessibility among different communities within a city, with higher values indicating 13 

greater disparities.) 14 

 15 

Carbon abatement potential of optimized EVCS deployment across China’s climate zones 16 

This section quantifies the carbon abatement potential unlocked by our integrated EVCS planning 17 

and renewable energy (RE) deployment strategy. We first analyzed how increasing levels of 18 

distributed RE affect the cleanliness of EV charging. We considered three configurations: no RE, 19 

adding BIPV/rooftop PV, and achieving a full net-zero building paradigm with PV farms. As shown 20 

in Fig. 5a-c, progressively adding RE dramatically reduces reliance on grid electricity for EV 21 

charging and increases the direct use of clean energy via Building-to-Vehicle (B2V). This directly 22 

translates to lower lifecycle carbon emissions per kilometer for EVs, significantly widening their 23 

advantage over traditional internal combustion engine vehicles (ICEVs) across all cities (Fig. 5d). 24 

(See Methods section: Annualized carbon emissions from EV and ICEV manufacturing and 25 

operation). 26 

Building on this, we evaluated the total urban-scale carbon abatement across four scenarios: a 27 

baseline (Scenario 1: before planning, no RE), planning-only (Scenario 2: after planning, no RE), 28 

and two integrated scenarios (Scenario 3: planning + BIPV/rooftop PV; Scenario 4: planning + net-29 

zero buildings). This comparative analysis is conducted within a short-term framework to isolate 30 

the direct impact of our proposed interventions, assuming other long-term drivers remain constant 31 

(see Note S5 for rationale). The baseline carbon emissions are substantial, particularly in large cities 32 

like Shanghai (Fig. 5e). 33 

Our results demonstrate that simply optimizing EVCS placement (Scenario 2) yields only modest 34 

carbon reductions, as the benefits are constrained by the grid's carbon intensity (Fig. 5f). The true 35 

potential is unlocked when EVCS planning is coupled with RE deployment. In Scenario 3, the 36 

availability of surplus RE significantly boosts carbon abatement, with cities like Guangzhou 37 

showing a total mitigation of 7.4×10⁸ kg (Fig. 5g). The maximum potential is realized in Scenario 38 

4, where the annual carbon abatement spans a wide range. It reaches as high as 8.3×10⁸ kg in 39 

Guangzhou, while a city like Lhasa shows the lowest mitigation at 1.4×10⁶ kg (Fig. 5h). A clear 40 
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pattern emerges: the most significant carbon reductions occur in cities that combine aggressive 1 

EVCS expansion with abundant local RE, whereas cities in colder regions with carbon-intensive 2 

grids show more limited gains. 3 

Finally, we assessed the economic feasibility of this strategy under Scenario 4 by analyzing the 4 

required EVCS investment and the resulting Levelized Carbon Cost (LCC), which represents the 5 

cost per kilogram of CO₂ abated. While cities with the highest abatement potential like Shanghai 6 

require the largest investment (4.6×10⁸ RMB), they do not necessarily have the lowest LCC (Fig. 7 

5i). The LCC varies significantly, ranging from a highly efficient 0.05 RMB/kg CO₂ in Haikou to 8 

over 1.3 RMB/kg CO₂ in northern cities, reflecting regional differences in climate, grid carbon 9 

intensity, and RE availability (Fig. 5j). These findings underscore that an integrated planning 10 

approach is crucial for achieving cost-effective decarbonization in the transport sector. (Detailed 11 

city-level data related to carbon emission abatement are available in Table S10-S12). 12 
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 1 

Fig. 5 Comparison of renewable penetration of EV charging and carbon abatement potential 2 

from EVCS planning and renewable installation. a) Energy of EV charging from the power grid 3 

under different RE configurations. b) Energy of EV charging from renewable systems under 4 

different renewable configurations. c) renewable penetration ratio of EV charging under different 5 
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renewable configurations. d) Lifecycle carbon emission per kilometer for an EV under different 1 

renewable configurations. e) Total annual vehicle carbon emission in scenario 1 (before EVCS 2 

planning and without renewables). f) Total annual vehicle carbon abatement in scenario 2 (after 3 

EVCS planning and without renewables). g) Total annual vehicle carbon abatement in scenario 3 4 

(after EVCS planning and with BIPV and rooftop PV). h) Total annual vehicle carbon abatement in 5 

scenario 4 (after EVCS planning and with BIPV, rooftop PV, and PV farm). i) Total EVCS 6 

investment for 31 provincial capital cities. j) Levelized carbon cost (LCC) for 31 provincial capital 7 

cities. 8 

Discussion 9 

In the global transition to carbon neutrality, electric vehicle charging stations (EVCS) are critical 10 

nodes for integrating e-mobility with renewable energy and building electrification, and this study 11 

pioneers an integrated planning framework to maximize their synergistic potential. Specifically, we 12 

first develop a climate-sensitive framework to evaluate EVCS accessibility across 31 Chinese cities, 13 

then propose an innovative planning strategy targeting accessibility gaps while leveraging local 14 

renewable energy surpluses, and finally quantify the resulting carbon abatement potential under 15 

various net-zero energy scenarios. The findings provide a scientific basis for guiding government 16 

policy and commercial strategy in the e-mobility sector. The key conclusions of this study are as 17 

follows: 18 

(1) Significant disparities in climate-adjusted EVCS accessibility exist across Chinese cities. Our 19 

quantitative assessment reveals that average accessibility ranges from 0.7 to 47.3 kW/10,000 m², 20 

with Gini coefficients from 0.35 to 0.89, highlighting widespread inequity in charging infrastructure. 21 

This underscores the urgent need for targeted, data-driven planning. 22 

(2) An integrated planning strategy effectively improves both accessibility and equity. By 23 

prioritizing underserved communities and constraining new capacity by local RE surplus, our 24 

strategy elevates average accessibility by a range of 1.0–13.8 kW/10,000 m² and reduces the Gini 25 

coefficient to a more equitable 0.3 across all cities. This infrastructure enhancement is projected to 26 

increase EV ownership by 477–72,419 vehicles and annual mileage by 488–8,219 km per city. 27 

(3) Coupling EVCS planning with distributed RE is essential to maximize carbon abatement. While 28 

improved infrastructure alone provides modest benefits (1.3×10⁶–6.5×10⁸ kg annual abatement), 29 

integrating it with building-level PV systems (Scenario 3) and net-zero energy paradigms (Scenario 30 

4) unlocks the full potential, boosting the annual carbon mitigation to a range of 1.4×10⁶–8.3×10⁸ 31 

kg. This demonstrates that strategic EVCS deployment serves as a crucial bridge for channeling 32 

surplus RE into the transport sector. 33 

These findings lead to several policy recommendations. First, policymakers should implement 34 

differentiated, needs-based subsidies to address inter-city accessibility disparities, supporting less 35 

developed regions. Second, urban planners should adopt a spatially targeted, intra-city optimization 36 

strategy, focusing on high-demand areas to improve equity and cost-effectiveness. Third, integrated 37 

incentive structures are needed to co-promote EVCS and distributed RE projects, such as building-38 

Jo
urn

al 
Pre-

pro
of



16 

 

integrated PV, to form unified net-zero energy systems. 1 

While this study provides a robust framework, we acknowledge several limitations that open 2 

avenues for future research. Future work should aim to: (1) Refine charging demand models by 3 

incorporating spatiotemporal data for different building types, moving beyond the building area 4 

proxy. (2) Deepen the empirical analysis of how local socio-economic factors influence the EVCS-5 

EV adoption relationship. (3) Conduct detailed feasibility studies on urban RE integration to validate 6 

the surplus energy assumptions. (4) Develop dynamic, long-term models that account for 7 

technological evolution and socio-economic shifts, extending beyond our short-term, static analysis. 8 

Methods 9 

Sample selection and accessibility metrics for EVCS accessibility analysis 10 

This section outlines the methodology used to calculate the accessibility of EVCS across different 11 

cities in China, with a focus on identifying areas with limited charging infrastructure.  12 

This study selected 31 provincial capital cities as its research sample to ensure broad 13 

representation of China's diverse economic landscapes and climatic conditions while maintaining 14 

methodological consistency. (See Note S6 for a detailed rationale on sample selection and study 15 

area delineation). 16 

EVCS data for each of the 31 cities were compiled from publicly available map-based mobile 17 

applications (e.g., Baidu Maps, Huolala)47–50. Key attributes, including geographic coordinates, 18 

number of piles, and power capacity for each station, were extracted through automated queries. To 19 

ensure data quality, we cross-validated a subset of locations with other digital map platforms and 20 

conducted physical site visits. The dataset was then filtered using administrative boundaries to 21 

assign each station to its respective city. As this study exclusively used publicly accessible 22 

infrastructure data, no personal or sensitive user information was involved. The final processed 23 

dataset is summarized in Table S13, and the original data is available upon request to ensure 24 

replicability. 25 

To calculate the accessibility of EVCS, each sample city was divided into square grids with a side 26 

length of 𝑑𝑐𝑖𝑡𝑦  (Fig. 1a). Each grid represents a community, and the accessibility of each 27 

community was calculated using Equation 1, an indicator based on the supply and demand of EVCS.  28 

Accessibility
i
=

Charging Supply
i

Charging Demandi

(1.) 29 

Where Accessibility
i
 , Charging Suppl,y

i
  and Charging Demandi  represent the accessibility, 30 

supply of EVCS and charging demand of community i in each provincial capital city. 31 

The city's overall EVCS accessibility level is described using the average accessibility (Equation 32 

2) and the Gini coefficient (Equation 3) across all communities in the city. 33 

Average=
∑ Accessibility

i
n
i=1

n
(2.) 34 

Gini=
∑  n

i=1 ∑ |Accessibility
i
-Accessibility

j
|n

j=1

2n2×Average
(3.) 35 

Where Average  is the average EVCS accessibility for each provincial capital city, n  is the 36 

number of community in that city, and Gini is the EVCS accessibility Gini coefficient for that city. 37 

The supply of EVCS within a community i is represented by the total power of EVCS piles in 38 

the community i  (Equation 4), which accounts for the substantial difference in practical use 39 
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between slow chargers (e.g., 7 kW piles) and fast chargers (e.g., 60 kW piles). Compared to previous 1 

studies that used the number of EVCS or piles, using power provides a more accurate measure of 2 

EVCS supply. 3 

Charging Supply
i
= ∑ Power of Pilej

Ni

j=1

(4.) 4 

Where Charging Supply
i
 is the total charging supply in community i, Ni denotes the number 5 

of charging piles in community i and Power of Pilej is the power of the j-th charging pile in the 6 

community i. 7 

The demand for EVCS is represented by the total building floor area within the community 8 

(Equation 5). (See Note S1 for more rationale). Building location, height, and floor area data were 9 

obtained from the dataset of Building height of Asia in 3D-GloBFP51,52. 10 

Charging Demandi= ∑ Floor area of building
j

Ni

j=1

(5.) 11 

Where Charging Demandi  is the total charging demand in community i , Ni  denotes the 12 

number of buildings in community i  and Floor area of building
j
  is the floor area of the j-th 13 

building in the community i. To simplify calculations and exclude the impact of auxiliary structures 14 

(e.g., restrooms, greenhouses, and guardhouses), all single-story buildings and buildings with 15 

rooftop areas less than 300 m2 were excluded. 16 

The service diameter d  was adjusted by Consumption ratiocity  according to the average EV 17 

driving range and energy consumption per range under different climates to calculate the size of a 18 

community dcity (Equation 6).  19 

dcity=
d

Consumption ratiocity

(6.) 20 

Where dcity  is the length of the grid community in each city  and d  is the initial service 21 

diameter of EVCS. According to the Guidelines for Layout Planning of Electric Vehicle Charging 22 

Infrastructure53, the service radius of an EVCS should be no less than 2 km, so the initial service 23 

diameter  (2×service radius) is set to 5 km. Consumption ratiocity is the ratio of the average energy 24 

consumption of an EV under the temperature conditions of a specific city to the optimal energy 25 

consumption of the EV(See the Note S739). The study area was restricted to the built-up regions of 26 

the city54 (See Note S6 for more details).  27 

The resulting accessibility values are then used as a foundation for subsequent EVCS planning. 28 

Surplus renewable energy simulation for buildings and communities 29 

To quantify the surplus renewable energy (RE) within each community, we modeled each 30 

community as a microgrid capable of centrally managing and dispatching energy (Fig. 3a). The 31 

simulation is based on four standardized building archetypes (residential, commercial, school, and 32 

office), each with a unique, climate-specific energy consumption and RE generation profile (from 33 

BIPV and rooftop PV). For each city, these archetype profiles were generated at an hourly time step 34 

for an entire year (8,760 hours) using detailed building energy simulations. (See Note S344,55 and 35 

Table S14-S1656 for more details). Each building archetype in every city is simulated with an hourly 36 

time step, generating 8,760-hour electricity consumption profile curves and production curves for 37 

BIPV and rooftop PV systems over a year. 38 

The hourly profiles from the archetypes were then scaled up to the community level. For each 39 

community 𝑖, the total energy consumption and RE generation at each hour 𝑡 were calculated by 40 

aggregating the contributions of all individual buildings within it (Equation 7, 8). The energy profile 41 
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of each individual building was scaled from its corresponding archetype based on its actual floor 1 

area (for consumption), facade area (for BIPV generation), and rooftop area (for rooftop PV 2 

generation), using data from the dataset Building height of Asia in 3D-GloBFP51,52. Once the 3 

aggregated hourly energy consumption and RE production were determined, the net energy balance 4 

for each community was calculated. A positive balance indicates a surplus, while a negative balance 5 

signifies a shortage (Equation 9, 10). This process yields an 8,760-hour surplus/shortage profile for 6 

each community under the baseline BIPV and rooftop PV scenario. 7 

Energy Consumptioni,t= ∑  Building Consumptioni,t  (7.) 8 

RE Productioni,t= ∑  Building RE Productioni,t  (8.) 9 

Energy Shortagei,t=Building Energy Consumptioni,t-RE productioni,t (9.) 10 

Surplus Energyi,t=RE productioni,t-Building Energy Consumptioni,t (10.) 11 

To model a city-wide net-zero energy building scenario, we calculated the supplemental PV farm 12 

area required to offset the city's total annual energy deficit. The energy generated by these farms 13 

was then allocated back to each community proportional to its shortage, creating an updated hourly 14 

surplus/shortage profile for this advanced scenario (Equation 11).  15 

Farm Areacity=
Total Shortagecity

PV Productioncity

(11.) 16 

Where the Total Shortagecity represents the total annual energy shortage across all communities 17 

in the city, PV Productioncity denotes the annual energy generation per unit area of PV under the 18 

city’s climatic conditions, and Farm Areacity refers to the total PV farm area required for the city. 19 

The feasibility of installing these PV farms, based on available land area, is supported by our 20 

analysis detailed in Table S5. 21 

The results from the surplus energy simulation in this section will be used to guide the EVCS 22 

expansion planning and simulate the EV charging process in the following section. 23 

EV charging simulation and energy allocation method 24 

To simulate the hourly EV charging energy demand for each community, we developed a top-25 

down aggregate model. Consistent with our accessibility framework, the spatial distribution of 26 

charging demand is assumed to be proportional to the building area within each community (see 27 

Note S1 for rationale). This approach uses the national average temporal distribution of charging 28 

sessions57 to remain computationally feasible for a 31-city analysis, avoiding complex agent-based 29 

simulations. The simulation follows a four-step process: 30 

Step 1 calculate total city-level demand: First, the total daily charging energy demand for each 31 

city was calculated by multiplying its average annual EV mileage (data from China Automotive 32 

Technology and Research Center Co., Ltd.58 ) with its climate-specific energy consumption per 33 

kilometer (see the Note S739,59 and Fig. S11-S12). The annual mileage was averaged to a daily value. 34 

For Xining, however, the mileage data showed abnormally high values due to the influence of the 35 

New Energy Rally. To address this, the mileage data for Xining was replaced with vehicle travel 36 

data sourced from Yiche60. 37 

Step 2 determine hourly charging sessions: Using the average charging power of EVCS in each 38 

city and the total daily EV energy consumption, the number of charging sessions per day is 39 

calculated (Equation 12, one charging session is assumed to last one hour). Then, based on the 40 
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distribution of charging times across 24 hours (Ratiot, Annual Report on the Big Data of New Energy 1 

Vehicle in China(2023)57), the number of EVs charging in each hour is determined (Equation 13).  2 

Daily Number of Charging EV= 
Daily EV Energy Consumption

Average Charging Power
(12.) 3 

Hourly Number of Charing EVt= Daily Number of Charging EV ×Ratiot (13.) 4 

Step 3 allocate demand to communities: Since the study assumes that charging demand is 5 

proportional to building area, the number of charging EVs per hour is allocated to each community 6 

based on its building area ratio. If the number of charging EVs in a community exceeds the available 7 

charging stations during a given time, the excess EVs are allocated to the nearest community with 8 

available charging stations. 9 

Step 4 derive final community energy profiles: Finally, the hourly charging energy for each 10 

community was calculated by multiplying the number of allocated charging EVs by the community's 11 

average charging pile power. The resulting annual total was cross-checked and scaled against the 12 

city-level total from Step 1 to ensure consistency.  13 

EV charging from renewable energy (B2V) simulation 14 

To determine the source of EV charging energy, the simulated hourly charging demand for each 15 

community ( EV charging Energy
i,t

 ) was compared against its available hourly surplus RE 16 

(Suprlus Energy
i,t

). The amount of energy drawn from local RE (B2V) is the minimum of these two 17 

values, with any remaining demand met by the power grid. An energy conversion efficiency of 0.9 18 

was applied to the RE supplied to the charging stations37. 19 

Energy from REi,t= min (EV charging Energy
i,t

, Suprlus Energy
i,t

) (14.) 20 

Energy from Gridi,t=EV charging Energy
i,t

-Energy from REi,t (15.) 21 

Where Energy from REi,t  is the energy that EVs charge from RE at time t  in community i , 22 

Energy from Gridi,t is the energy that EVs charge from power grid, EV charging Energy
i,t

  is the 23 

total energy EVs charge and Suprlus Energy
i,t

 is the surplus energy at time t in community i. 24 

Relationship between EVCS and EV adoption  25 

To estimate the impact of infrastructure improvements, we developed two separate empirical 26 

regression models due to data availability constraints. 27 

First, a two-way fixed-effects panel data model was used to quantify the relationship between the 28 

number of EVCS piles and EV ownership at the provincial level. It is assumed that the ratio between 29 

EV numbers and EVCS piles is consistent across provinces and cities. 30 

EV Numberi,t=β
1
×EVCS Pilesi,t+Controls+ϵ (16.) 31 

Where EV Numberi,t is the number of EV for province i in year t, EVCS Pilesi,t is the number 32 

of EVCS piles for province i in year t, β
1
 is the coefficient, Controls is the control variable- the 33 

number of Vehicles, and ϵ is the error term. 34 

Second, a cross-sectional model was developed to analyze the relationship between city-level 35 

EVCS accessibility and the average annual EV mileage. Due to the availability of only one year's 36 

provincial EV mileage data, the annual average EV mileage of provincial capital cities is substituted 37 

with provincial data as the dependent variable. 38 

EV Mileagei

CityAreai
0.5

=β
2
×EVCS Accessibility

i
+Controls+ϵ (17.) 39 

Where EV Mileagei is the annual average EV mileage for city i, CityAreai is the area of city 40 

Jo
urn

al 
Pre-

pro
of



20 

 

i, EVCS Accessibilityi is the EVCS accessibility for city i, β2 is the coefficient, Controls is the 1 

control variable, and ϵ is the error term. To account for the potential increase in EV mileage due to 2 

larger city sizes, EV mileage is adjusted and made dimensionless by dividing by CityAreai
0.5, the 3 

square root of the city area. Control variables include the city area and the energy ratio of city i, 4 

which represents the factor by which EV energy consumption per unit distance exceeds the standard 5 

consumption due to climate influences in that city. 6 

Data on EV and vehicle numbers and brands from 2016 to the end of the first half of 2024 are 7 

sourced from the Website Dasouchezhiyun61. EVCS pile counts are obtained from the China Electric 8 

Vehicle Charging Infrastructure Promotion Alliance62. The average EVCS accessibility is derived 9 

from calculations in this study. EV mileage data comes from China Automotive Technology and 10 

Research Center Co., Ltd.58. City area refers to the built-up area of each city in the process of 11 

calculating metrics of EVCS accessibility. The energy ratio reflects the actual energy consumption 12 

multiple of EVs in each city (detailed in Note S7 and Fig S11-S12). The mileage data for Xining 13 

was replaced with vehicle travel data sourced from Yiche60. Details of regression results and 14 

robustness checks, including the use of additional control variables (GDP) and a lagged-variable 15 

approach to address potential endogeneity, are detailed in Table S6-S8 and Note S8. 16 

EVCS planning method considering both accessibility gaps and surplus renewable energy 17 

distribution 18 

To enhance EVCS accessibility while leveraging local RE, we developed an iterative optimization 19 

algorithm that strategically adds new charging capacity. The algorithm is guided by the primary 20 

objective of reducing the city-wide Gini coefficient of accessibility to a target value of 0.3. The 21 

process, illustrated in Fig. 4a, unfolds as follows: 22 

Step 1 identify target community: In each iteration, the community i with the lowest current 23 

EVCS accessibility is identified as the candidate for new infrastructure. 24 

Step 2 add and constrain new stations: A standard charging station, assumed to consist of five 60 25 

kW fast chargers, is notionally added to the target community. This addition is subject to a critical 26 

constraint: the new total charging power in the community must not exceed half of its average hourly 27 

surplus RE, ensuring that new demand aligns with local clean energy supply (Equation 18). 28 

Total charing poweri ≤ 
∑ Hourly Surplusi

2×Hoursi

(18.) 29 

Where Total charing poweri  is the total power of charging piles for community i  after 30 

planning, Hourly Surplusi is the hourly surplus energy for community i when surplus energy is 31 

positive and Hoursi is the number of hours when surplus energy is positive.  32 

Step 3 evaluate termination condition: After adding the new station, the city-wide Gini coefficient 33 

is recalculated. If the new Gini is less than or equal to 0.3, the algorithm terminates. Otherwise, it 34 

returns to Step 1 to identify the next target community. 35 

Upon termination, the algorithm outputs the final number and spatial distribution of new EVCS 36 

piles. This output is then used to project the resulting increase in EV ownership and annual mileage 37 

(Equation 19 and 20), based on the coefficients (β
1
, β

2
) from our empirical models: 38 

∆EV Numbercity = ∆EVCS Pilescity×β
1

(19.) 39 

∆EV Mileagecity= ∆EVCS Accessibility
city

× β
2
×CityAreacity

0.5  (20.) 40 

Where ∆EV Numbercity is the increase in the number of EVs in the city, ∆EVCS Pilescity is the 41 

increase in the number of EVCS piles in the city, ∆EV Mileagecity is the increase in the EV annual 42 
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mileage in the city, and ∆EVCS Accessibility
city

 is the increase in the average EVCS accessibility 1 

of the city. To avoid the interference of residuals ϵ in the regression model, the increase in the 2 

dependent variable (EV Numbercity, EV Mileagecity ) is calculated by multiplying the changes in 3 

independent variables ( ∆EVCS Pilescity,   ∆EVCS Acessibility
city

 ) by their corresponding 4 

coefficients (β
1
, β

2
), thereby obtaining the updated dependent variable. 5 

These updated EV population and mileage figures serve as inputs for the post-planning charging 6 

energy simulation. 7 

Annualized carbon emissions from EV and ICEV manufacturing and operation 8 

The annualized carbon emissions calculations in this study focus exclusively on vehicle-side 9 

emissions, with the following system boundaries: 10 

Scope: The analysis is confined to vehicle-side emissions, including the manufacturing (vehicle 11 

body and battery) and operational phases for both EVs and Internal Combustion Engine Vehicles 12 

(ICEVs). 13 

Zero-Carbon Charging: Emissions from distributed RE installations are allocated to the building 14 

sector. Consequently, EV charging powered by surplus local RE is considered to have zero 15 

operational emissions. 16 

Based on the energy charged from RE and from the grid during EV operation, as well as the grid's 17 

carbon emission factor and the carbon emissions from EV manufacturing, the annual lifecycle 18 

carbon emissions for EVs can be calculated (Equation 21, 22, 23, 24 and 25). 19 

CEEV=CEEVopertion+CEEVproduction+CEEVbattery (21.) 20 

CEEVoperation=Energy
grid

×CEgrid (22.) 21 

CEEVproduction=
MassEV×CEproduction

Service Life
(23.) 22 

 23 

CEEVbattery=
Capacity

battery
×CEbattery×Numberbattery

Service Life
(24.) 24 

CEEVtotal= CEEV×NumEV (25.) 25 

Where CEEV  is the annual carbon emissions per EV, CEEVoperation  is the annual carbon 26 

emissions from operation, CEEVproduction  is the annual carbon emissions from production, and 27 

CEEVbattery is the annual carbon emissions from battery degradation. CEEVtotal is the annual total 28 

EV carbon emissions for each city, which is calculated by the carbon emissions per EV multiply the 29 

number of EV for each city. Energy
grid

 is the energy charging from the power grid per year per EV, 30 

and CEgrid is the carbon emission factor of the power grid for each city. Massev is the average 31 

mass per EV for each city, and CEproduction is the carbon emission factor of production per kilogram. 32 

"Service Life" refers to the number of years a vehicle can be used. Capacity
battery

 is the average 33 

EV battery capacity for each city. CEbattery is the carbon emission factor of EV battery production. 34 

Numberbattery refers to the number of batteries each EV will use over its service life. 35 

Similarly, the carbon emissions of ICEVs can be determined by considering the emissions from 36 

both their operation and manufacturing (Equation 26, 27, 28 and 29).  37 

CEICEV=CEICEVopertion+CEICEVproduction (26.) 38 

CEICEVopertion=Energy
gas

×CEgas (27.) 39 

Jo
urn

al 
Pre-

pro
of



22 

 

CEICEVproduction=
MassICEV×CEproduction

Service Life
(28.) 1 

CEICEVtotal= CEICEV×NumICEV (29.) 2 

Since the overall travel demand in a city remains constant when other conditions are unchanged, 3 

an increase in the number and annual mileage of EVs will result in a decrease in the mileage and 4 

number of ICEVs. Therefore, the number and mileage of ICEVs can be calculated based on the 5 

planned number and mileage of EVs (Equation 30 and 31). 6 

NumV=NumEV+NumICEV (30.) 7 

NumV×MilageV= NumEV×MilageEV+NumICEV×MilageICEV (31.) 8 

Where NumV , NumEV  and NumICEV  is the number of vehicle, EV, and ICEV for each city, 9 

respectively. MilageV, MilageEV, MilageICEV is the annual mileage of vehicle60, EV and ICEV for 10 

each city respectively. NumV and NumV×MilageV indicate the total demand for vehicle and travel, 11 

which remains the same for each individual city before and after EVCS planning. 12 

The total carbon emissions for all vehicles in each city are the sum of the carbon emissions of 13 

EVs and ICEVs, which is calculated in different scenarios. 14 

CEVtotal=CEICEVtotal+CEEVtotal (32.) 15 

Detailed data related to carbon emissions calculations can be found in the Table S1758,59,61,63–65 16 

and Note S958,59,61,63–65. 17 

EVCS construction investment and levelized carbon cost 18 

The economic analysis focuses on the upfront capital investment required for the new EVCS 19 

infrastructure. Operational costs and revenues are excluded, assuming a break-even operational 20 

phase. The total investment is calculated based on the number of new 60 kW piles installed, at an 21 

estimated cost of 15,000 RMB per pile, based on EVCS dealers LV C-CHONG66. The Levelized 22 

Carbon Cost (LCC), a metric for the cost-effectiveness of carbon mitigation, is then calculated as 23 

the total investment divided by the total annual carbon abatement achieved in Scenario 4. 24 

Comparison of methodology with existing literature 25 

A detailed comparison of our methodological contributions against existing literature is provided 26 

in Note S1015,67,68, further highlighting the novelty of this work. 27 

 28 

Data and code availability 29 

Data and code used to generate the results reported in this study are available from the 30 

corresponding author upon request. 31 

Acknowledgments 32 

This work was supported by National Natural Science Foundation of China (NSFC)     33 

(52408137), Guangdong Provincial Natural Science Foundation General Project (2414050003253, 34 

2024A1515012166).  35 

 36 

Author contributions 37 

Conceptualization, Y.Zheng, Z.D., Y.Zhou; methodology, Y.Zheng, Y.Zhou, and A.S.; software, 38 

Y.Zheng and A.S.; data, Y.Zheng, Z.D., A.S., X.S.; validation, Y.Zheng and A.S.; writing–original 39 

draft, Y.Zheng, A.S.; writing – review & editing, Y.Zhou, W.F., P.S.; funding acquisition, Y.Zhou; 40 

supervision, Y.Zhou. 41 

Jo
urn

al 
Pre-

pro
of



23 

 

 1 

Supplemental information 2 

Supplemental Figures S1-S12, Tables S1–S17 and Notes S1–S10. 3 

 4 

Declaration of interests 5 

The authors declare no competing interests. 6 

 7 

References  8 

1. Powell, S., Cezar, G.V., Min, L., Azevedo, I.M.L., and Rajagopal, R. (2022). Charging 9 

infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption. 10 

Nat Energy 7, 932–945. https://doi.org/10.1038/s41560-022-01105-7. 11 

2. Alhuyi Nazari, M., Blazek, V., Prokop, L., Misak, S., and Prabaharan, N. (2024). Electric 12 

vehicle charging by use of renewable energy technologies: A comprehensive and updated 13 

review. Computers and Electrical Engineering 118, 109401. 14 

https://doi.org/10.1016/j.compeleceng.2024.109401. 15 

3. Chakraborty, P., Parker, R., Hoque, T., Cruz, J., Du, L., Wang, S., and Bhunia, S. (2022). 16 

Addressing the range anxiety of battery electric vehicles with charging en route. Sci Rep 12, 17 

5588. https://doi.org/10.1038/s41598-022-08942-2. 18 

4. Mohammed, A., Saif, O., Abo-Adma, M., Fahmy, A., and Elazab, R. (2024). Strategies and 19 

sustainability in fast charging station deployment for electric vehicles. Sci Rep 14, 283. 20 

https://doi.org/10.1038/s41598-023-50825-7. 21 

5. Ullah, Z., Wang, S., Wu, G., Hasanien, H.M., Rehman, A.U., Turky, R.A., and Elkadeem, M.R. 22 

(2023). Optimal scheduling and techno-economic analysis of electric vehicles by implementing 23 

solar-based grid-tied charging station. Energy 267, 126560. 24 

https://doi.org/10.1016/j.energy.2022.126560. 25 

6. Liang, C., Yang, Q., Sun, H., and Ma, X. (2024). Unveiling consumer satisfaction and its 26 

driving factors of EVs in China using an explainable artificial intelligence approach. Humanit 27 

Soc Sci Commun 11, 1575. https://doi.org/10.1057/s41599-024-04120-z. 28 

7. IEA (2023) (2023). Electricity Grids and Secure Energy Transitions (IEA). 29 

8. Wu, J., Powell, S., Xu, Y., Rajagopal, R., and Gonzalez, M.C. (2024). Planning charging 30 

stations for 2050 to support flexible electric vehicle demand considering individual mobility 31 

patterns. Cell Reports Sustainability 1. https://doi.org/10.1016/j.crsus.2023.100006. 32 

9. Ren, Q., and Sun, M. (2025). Predicting the spatial demand for public charging stations for EVs 33 

using multi-source big data: an example from jinan city, china. Sci Rep 15, 6991. 34 

https://doi.org/10.1038/s41598-025-91106-9. 35 

10. Yu, G., Ye, X., Gong, D., and Xia, X. (2025). Stochastic planning for transition from shopping 36 

Jo
urn

al 
Pre-

pro
of



24 

 

mall parking lots to electric vehicle charging stations. Applied Energy 379, 124894. 1 

https://doi.org/10.1016/j.apenergy.2024.124894. 2 

11. Liang, J., Qiu, Y. (Lucy), Liu, P., He, P., and Mauzerall, D.L. (2023). Effects of expanding 3 

electric vehicle charging stations in California on the housing market. Nat Sustain 6, 549–558. 4 

https://doi.org/10.1038/s41893-022-01058-5. 5 

12. Zheng, Y., Keith, D.R., Wang, S., Diao, M., and Zhao, J. (2024). Effects of electric vehicle 6 

charging stations on the economic vitality of local businesses. Nat Commun 15, 7437. 7 

https://doi.org/10.1038/s41467-024-51554-9. 8 

13. Holland, S.P., Mansur, E.T., Muller, N.Z., and Yates, A.J. (2016). Are There Environmental 9 

Benefits from Driving Electric Vehicles? The Importance of Local Factors. American 10 

Economic Review 106, 3700–3729. https://doi.org/10.1257/aer.20150897. 11 

14. Carley, S., and Konisky, D.M. (2020). The justice and equity implications of the clean energy 12 

transition. Nat Energy 5, 569–577. https://doi.org/10.1038/s41560-020-0641-6. 13 

15. Chen, Y., Chen, Y., and Lu, Y. (2023). Spatial Accessibility of Public Electric Vehicle Charging 14 

Services in China. ISPRS International Journal of Geo-Information 12, 478. 15 

https://doi.org/10.3390/ijgi12120478. 16 

16. Assessing the spatial distributions of public electric vehicle charging stations with emphasis on 17 

equity considerations in King County, Washington (2024). Sustainable Cities and Society 107, 18 

105409. https://doi.org/10.1016/j.scs.2024.105409. 19 

17. Yu, Q., Que, T., Cushing, L.J., Pierce, G., Shen, K., Kejriwal, M., Yao, Y., and Zhu, Y. (2025). 20 

Equity and reliability of public electric vehicle charging stations in the United States. Nat 21 

Commun 16, 5291. https://doi.org/10.1038/s41467-025-60091-y. 22 

18. Mitra, B., Pal, S., Reeve, H., and Kintner-Meyer, M. (2025). Unveiling sectoral coupling for 23 

resilient electrification of the transportation sector. npj. Sustain. Mobil. Transp. 2, 2. 24 

https://doi.org/10.1038/s44333-024-00019-z. 25 

19. Logavani, K., Ambikapathy, A., Arun Prasad, G., Faraz, A., and singh, H. (2021). Smart Grid, 26 

V2G and Renewable Integration. In Electric Vehicles: Modern Technologies and Trends, N. 27 

Patel, A. K. Bhoi, S. Padmanaban, and J. B. Holm-Nielsen, eds. (Springer), pp. 175–186. 28 

https://doi.org/10.1007/978-981-15-9251-5_10. 29 

20. Mahmud, K., and Town, G.E. (2016). A review of computer tools for modeling electric vehicle 30 

energy requirements and their impact on power distribution networks. Applied Energy 172, 31 

337–359. https://doi.org/10.1016/j.apenergy.2016.03.100. 32 

21. Brinkel, N., van Wijk, T., Buijze, A., Panda, N.K., Meersmans, J., Markotić, P., van der Ree, 33 

B., Fidder, H., de Brey, B., Tindemans, S., et al. (2024). Enhancing smart charging in electric 34 

vehicles by addressing paused and delayed charging problems. Nat Commun 15, 5089. 35 

https://doi.org/10.1038/s41467-024-48477-w. 36 

Jo
urn

al 
Pre-

pro
of



25 

 

22. Pang, S., Fan, K., and Huo, M. (2025). Charge and discharge scheduling method for large-scale 1 

electric vehicles in V2G mode via MLGCSO. Sci Rep 15, 16202. 2 

https://doi.org/10.1038/s41598-025-00265-2. 3 

23. Ibrahim, R.A., Gaber, Ibrahim.M., and Zakzouk, N.E. (2024). Analysis of multidimensional 4 

impacts of electric vehicles penetration in distribution networks. Sci Rep 14, 27854. 5 

https://doi.org/10.1038/s41598-024-77662-6. 6 

24. Zhou, Y., Cao, S., Hensen, J.L.M., and Lund, P.D. (2019). Energy integration and interaction 7 

between buildings and vehicles: A state-of-the-art review. Renewable and Sustainable Energy 8 

Reviews 114, 109337. https://doi.org/10.1016/j.rser.2019.109337. 9 

25. Liu, H., and Zhang, A. (2024). Electric vehicle path optimization research based on charging 10 

and switching methods under V2G. Sci Rep 14, 30843. https://doi.org/10.1038/s41598-024-11 

81449-0. 12 

26. Zhou, Y. (2022). Energy sharing and trading on a novel spatiotemporal energy network in 13 

Guangdong-Hong Kong-Macao Greater Bay Area. Applied Energy 318, 119131. 14 

https://doi.org/10.1016/j.apenergy.2022.119131. 15 

27. Ma, X., Ma, W., Tao, Y., Gao, K., and Liu, X. (2025). Optimizing bus charging infrastructure 16 

by incorporating private car charging demands and uncertain solar photovoltaic generation. npj. 17 

Sustain. Mobil. Transp. 2, 6. https://doi.org/10.1038/s44333-024-00021-5. 18 

28. Xia, X., and Li, P. (2022). A review of the life cycle assessment of electric vehicles: Considering 19 

the influence of batteries. Science of The Total Environment 814, 152870. 20 

https://doi.org/10.1016/j.scitotenv.2021.152870. 21 

29. Nguyen-Tien, V., Zhang, C., Strobl, E., and Elliott, R.J.R. (2025). The closing longevity gap 22 

between battery electric vehicles and internal combustion vehicles in Great Britain. Nat Energy 23 

10, 354–364. https://doi.org/10.1038/s41560-024-01698-1. 24 

30. Ahmadzadeh, O., Rodriguez, R., Getz, J., Panneerselvam, S., and Soudbakhsh, D. (2025). The 25 

impact of lightweighting and battery technologies on the sustainability of electric vehicles: A 26 

comprehensive life cycle assessment. Environmental Impact Assessment Review 110, 107668. 27 

https://doi.org/10.1016/j.eiar.2024.107668. 28 

31. Li, W., Wang, M., Cheng, X., Cui, K., Li, Q., and Chen, S. (2025). Travel intensity of private 29 

electric vehicles and implications for GHG emission reduction in China. Environmental Impact 30 

Assessment Review 112, 107770. https://doi.org/10.1016/j.eiar.2024.107770. 31 

32. Kang, H., Jung, S., Kim, H., An, J., Hong, J., Yeom, S., and Hong, T. (2025). Life-cycle 32 

environmental impacts of reused batteries of electric vehicles in buildings considering battery 33 

uncertainty. Renewable and Sustainable Energy Reviews 207, 114936. 34 

https://doi.org/10.1016/j.rser.2024.114936. 35 

33. Tao, M., Lin, B., and Poletti, S. (2025). Deciphering the impact of electric vehicles on carbon 36 

Jo
urn

al 
Pre-

pro
of



26 

 

emissions: Some insights from an extended STIRPAT framework. Energy 316, 134473. 1 

https://doi.org/10.1016/j.energy.2025.134473. 2 

34. Grubler, A., Wilson, C., Bento, N., Boza-Kiss, B., Krey, V., McCollum, D.L., Rao, N.D., Riahi, 3 

K., Rogelj, J., De Stercke, S., et al. (2018). A low energy demand scenario for meeting the 4 

1.5 °C target and sustainable development goals without negative emission technologies. Nat 5 

Energy 3, 515–527. https://doi.org/10.1038/s41560-018-0172-6. 6 

35. Beath, H., Mittal, S., Few, S., Winchester, B., Sandwell, P., Markides, C.N., Nelson, J., and 7 

Gambhir, A. (2024). Carbon pricing and system reliability impacts on pathways to universal 8 

electricity access in Africa. Nat Commun 15, 4172. https://doi.org/10.1038/s41467-024-48450-9 

7. 10 

36. Luderer, G., Madeddu, S., Merfort, L., Ueckerdt, F., Pehl, M., Pietzcker, R., Rottoli, M., 11 

Schreyer, F., Bauer, N., Baumstark, L., et al. (2021). Impact of declining renewable energy costs 12 

on electrification in low-emission scenarios. Nat Energy 7, 32–42. 13 

https://doi.org/10.1038/s41560-021-00937-z. 14 

37. Song, A., Dan, Z., Zheng, S., and Zhou, Y. (2024). An electricity-driven mobility circular 15 

economy with lifecycle carbon footprints for climate-adaptive carbon neutrality transformation. 16 

Nat Commun 15, 5905. https://doi.org/10.1038/s41467-024-49868-9. 17 

38. Dan, Z., Song, A., Zheng, Y., Zhang, X., and Zhou, Y. (2025). City information models for 18 

optimal EV charging and energy-resilient renaissance. Nexus 2, 100056. 19 

https://doi.org/10.1016/j.ynexs.2025.100056. 20 

39. Yuksel, T., and Michalek, J.J. (2015). Effects of Regional Temperature on Electric Vehicle 21 

Efficiency, Range, and Emissions in the United States. Environ. Sci. Technol. 49, 3974–3980. 22 

https://doi.org/10.1021/es505621s. 23 

40. Shenzhen Municipal People’s Government (2021). Shenzhen Urban Planning Standards and 24 

Guidelines, https://www.sz.gov.cn/attachment/1/1133/1133901/10013132.pdf. 25 

41. Gini, C. (1912). Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle 26 

relazioni statistiche.[Fasc. I.] (Tipogr. di P. Cuppini). 27 

42. Liu, J., Yang, H., and Zhou, Y. (2021). Peer-to-peer trading optimizations on net-zero energy 28 

communities with energy storage of hydrogen and battery vehicles. Applied Energy 302, 29 

117578. https://doi.org/10.1016/j.apenergy.2021.117578. 30 

43. Miskin, C.K., Li, Y., Perna, A., Ellis, R.G., Grubbs, E.K., Bermel, P., and Agrawal, R. (2019). 31 

Sustainable co-production of food and solar power to relax land-use constraints. Nat Sustain 2, 32 

972–980. https://doi.org/10.1038/s41893-019-0388-x. 33 

44. UW-Madison, SEL (Solar Energy Laboratory, University of Wisconsin-Madison), 34 

TRANSSOLAR (TRANSSOLAR Energietechnik GmbH), and CSTB (Centre Scientifique et 35 

Technique du Bâtiment) (2017). Multizone Building (Type56 – TRNBuild) for the TRNSYS 36 

Jo
urn

al 
Pre-

pro
of



27 

 

Simulation Environment, Volume 5 Multizone Building modeling with Type56 and TRNBuild. 1 

(Solar Energy Laboratory, University of Wisconsin-Madison). 2 

45. World Health Organization Interpretation of Gini index values. 3 

46. Al-Sheddi, A., Kamel, S., Almeshal, A.S., and Assiri, A.M. (2023). Distribution of Primary 4 

Healthcare Centers Between 2017 and 2021 Across Saudi Arabia. Cureus. 5 

https://doi.org/10.7759/cureus.41932. 6 

47. Baidu Map, https://map.baidu.com/. 7 

48. Amap, https://www.amap.com/. 8 

49. Huolala, https://www.huolala.cn/. 9 

50. StarCharge, https://www.starcharge.com/. 10 

51. Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., et 11 

al. (2024). 3D-GloBFP: the first global three-dimensional building footprint dataset. Earth 12 

System Science Data Discussions, 1–28. https://doi.org/10.5194/essd-2024-217. 13 

52. Che, Y., Li, X., Liu, X., Wang, Y., Liao, W., Zheng, X., Zhang, X., Xu, X., Shi, Q., Zhu, J., et 14 

al. (2024). Building height of Asia in 3D-GloBFP. (Zenodo). 15 

https://doi.org/10.5281/ZENODO.12674244 https://doi.org/10.5281/ZENODO.12674244. 16 

53. China Urban Planning Society (2021). Guidelines for Layout Planning of Electric Vehicle 17 

Charging Infrastructure (China Urban Planning Society). 18 

54. China Academy of Urban Planning & Design (2023). Report on the Urban Built Environment 19 

Density of Major Chinese Cities (China Academy of Urban Planning & Design). 20 

55. Meteonorm 5, Asia,https://meteonorm.com/ (2003). (Meteotest). 21 

56. Csisolar (2019). Hiku-CS3W-450MS, https://static.csisolar.com/wp-22 

content/uploads/sites/9/2019/12/07115154/CS-Datasheet-HiKu_CS3W-MS_v5.9_CN.pdf. 23 

57. Wang, Z. (2024). Annual Report on the Big Data of New Energy Vehicle in China (2023) 24 

(Springer Nature Singapore) https://doi.org/10.1007/978-981-97-4840-2. 25 

58. China Automotive Technology and Research Center Co., Ltd. (2023). Confidential Data on 26 

Carbon Emission Factors of China’s Power Grid and EV Annual Mileage. 27 

59. Autohome, https://www.autohome.com.cn. 28 

60. Yiche Research Institute (2023). Driving Mileage Insight Report 2023, 29 

https://chuban.yiche.com/publiccms/yanjiuyuan.html. 30 

61. Dasouchezhiyun, https://zhiyun.souche.com/. 31 

Jo
urn

al 
Pre-

pro
of



28 

 

62. China Electric Vehicle Charging infrastructure Promotion Alliance, 1 

https://mp.weixin.qq.com/s/LvdyKRC_vI1iHaMd8YQCiA. 2 

63. Qiao, Q., Zhao, F., Liu, Z., He, X., and Hao, H. (2019). Life cycle greenhouse gas emissions of 3 

Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy 177, 222–233. 4 

https://doi.org/10.1016/j.energy.2019.04.080. 5 

64. Ciez, R.E., and Whitacre, J.F. (2019). Examining different recycling processes for lithium-ion 6 

batteries. Nat Sustain 2, 148–156. https://doi.org/10.1038/s41893-019-0222-5. 7 

65. Paul Gasper, Nina Prakash, and Kandler Smith BLAST-Lite,https://github.com/NREL/BLAST-8 

Lite. (National Renewable Energy Laboratory). 9 

66. LV C-CHONG, https://bdppgg.lbbtech.com/. 10 

67. Jiao, J., Choi, S.J., and Nguyen, C. (2024). Toward an equitable transportation electrification 11 

plan: Measuring public electric vehicle charging station access disparities in Austin, Texas. 12 

PLoS ONE 19, e0309302. https://doi.org/10.1371/journal.pone.0309302. 13 

68. Ju, Y., Wu, J., Su, Z., Li, L., Zhao, J., González, M.C., and Moura, S.J. (2025). Trajectory-14 

Integrated Accessibility Analysis of Public Electric Vehicle Charging Stations. Preprint at arXiv, 15 

https://doi.org/10.48550/arXiv.2505.12145 https://doi.org/10.48550/arXiv.2505.12145. 16 

 17 

 18 

Jo
urn

al 
Pre-

pro
of



 

➢ EVCS accessibility definition and quantification for sustainability 

➢ Climate variability integration with accessibility assessment 

➢ A new strategy for EVCS accessibility enhancement and renewable energy equity 

➢ Carbon abatement potential quantification for 31 cities via the proposed strategy 

Jo
urn

al 
Pre-

pro
of



Transition towards electric vehicles (EVs) is a critical step in low-carbon transition and adapting to 

climate change, while cruise anxiety becomes the main concern for widespread acceptance among 

EV owners. Electric Vehicle Charging Station (EVCS) Deployment is important to ensure end-users’ 

accessibility, energy equity with carbon abatement potentials. 

Our research offers a blueprint for cities to build smarter charging networks. We created a new way 

to pinpoint ‘charging deserts’ even accounting for local climate impact on EV cruise range. We show 

that by deploying new chargers in areas with surplus solar or wind power, cities can slash carbon 

emissions while encouraging EV owners to widely accept EVs with EVCS accessibility. This 

provides a scalable model for policymakers worldwide to accelerate just energy transition towards 

zero-carbon future through EV charging infrastructure deployment, EVCS accessibility and equity . 
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eTOC blurb 

This study addresses the critical gap in Electric Vehicle Charging Station (EVCS) planning 

concerning accessibility and renewable energy equality. We first develop a novel framework 

to evaluate EVCS accessibility, introducing an index that accounts for climate's impact on EV 

range. We then propose an innovative planning strategy that links surplus renewable energy 

with EV adoption to improve both accessibility and equality. Using data from 31 Chinese 

provincial capitals, we assess spatial disparities and quantify the carbon abatement potential 

of our strategy. The findings provide scientific support for policymakers to deploy equitable 

EVCS infrastructure and accelerate a just carbon-neutral transition. 
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