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A B S T R A C T

Climate change is increasing the frequency and intensity of heatwaves, often accompanied by power outages that 
exacerbate indoor overheating and threaten human health. Precooling is a potential mitigation strategy for in
door overheating risks; however, few studies have systematically explored the impact of building design, cooling 
capacity, and power-outage events on its performance. This study proposes an optimized precooling thermostat 
schedule using Bayesian optimization to minimize thermal discomfort and cooling electricity costs. Based on this 
strategy, Sobol sensitivity and parametric analyses were conducted to explore the effects and interactions of 
building design parameters, cooling capacity, and power outage characteristics on thermal discomfort and 
electricity costs. A prototype high-rise residential building in Chengdu, China, was used as a case study. The 
results showed that thermal discomfort during power outages was primarily influenced by external wall insu
lation, airtightness and internal thermal mass, whereas cooling electricity cost was mainly affected by 
airtightness. Furthermore, the contribution of the internal thermal mass to reducing thermal discomfort 
increased with cooling capacity, whereas the influence of airtightness diminished. This suggests that coordinated 
optimization between cooling capacity and internal thermal mass is more effective than merely oversizing the 
cooling system. Regarding power outage impacts, the optimized precooling strategy maintained acceptable in
door comfort for approximately 6 h during morning outages, while only 2 h during afternoon outages. These 
findings offer practical guidance for policymakers and residents seeking to maximize the benefits of precooling 
strategies during heatwaves with power outages.

1. Introduction

Global climate change has significantly increased the frequency, 
intensity, and duration of heatwaves in several parts of the world [1]. 
This global trend is manifested as extreme heatwaves in various regions. 
For instance, in the UK, the daily maximum temperature exceeded 40 ◦C 
for the first time on record in 2022 [2]. In China, the average number of 
high-temperature days per year (daily maximum temperature ≥ 35 ◦C) 
has steadily increased over the past decades, from a historical average of 
nine days to 16 days in 2022 [3]. The increasing frequency and severity 
of heatwaves have sharply increased building cooling demand, posing 
serious challenges to power supply reliability. Heatwaves can increase 
the likelihood of power outages and prolong their duration [4]. A 

notable example is the 2022 Heatwave in Sichuan, China. According to 
the Lancet Countdown 2023 report, the prolonged heatwave in 2022 in 
the Sichuan region is expected to lead to a surge in cooling demand, 
whereas drought conditions will reduce hydropower generation, 
resulting in electricity rationing in the region [5].

Heatwaves accompanied by power outages can lead to a substantial 
increase in indoor temperatures, significantly increasing the risk of 
overheating in buildings. This issue is particularly critical in residential 
buildings and vulnerable facilities, as populations such as the elderly, 
children, and individuals with preexisting health conditions, who typi
cally spend more time at home, are especially susceptible to heat-related 
risks [6,7]. Previous studies have shown that when mechanical cooling 
is disrupted during heatwave events, indoor heat index levels can 
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escalate into the “danger” or even “extreme danger” zones, substantially 
raising the likelihood of heat exhaustion, heat stroke, and other 
heat-related illnesses [8–10]. Consequently, it is essential for govern
ments, utility companies, and residents to take proactive measures to 
enhance thermal resilience and mitigate the overheating risks posed by 
heatwaves combined with power outages [11].

Precooling has been recognized as a potential solution for improving 
thermal resilience during heatwave events with power outages. This 
technique has been applied in demand response programs to shift 
cooling loads from peak to off-peak hours by utilizing the thermal mass 
of a building to store cooling energy in advance and release it later. 
Typically, this is implemented by lowering the thermostat setpoint a few 
hours before peak periods and increasing it during peak hours [12]. By 
slowing the rate of increase in the indoor air temperature, precooling 
makes it possible to reduce or avoid air conditioning (AC) operation 
during on-peak periods. Notably, this strategy requires no additional 
equipment or significant modifications to the existing AC systems, 
making it relatively easy to implement in existing buildings. Moreover, 
precooling may provide economic benefits because it enables residents 
to take advantage of time-of-use electricity pricing by shifting part of the 
cooling load to lower-cost periods [13].

Numerous studies have demonstrated that precooling can effectively 
shift cooling loads from peak to off-peak hours, enhance peak load 
reduction, reduce energy costs, and maintain indoor thermal comfort 
[13]. These studies mostly used residential [14–18] and office buildings 
[19–22] as case studies. Turner et al. assessed the precooling perfor
mance of a one-story house with a light thermal mass across various U.S. 
climate zones [14]. Their results showed that all the tested precooling 
strategies successfully shifted at least 50 % of the peak-period cooling 
loads to off-peak hours. Similarly, Stopps and Touchie simulated pre
cooling and preheating setback controls for load shifting in high-rise 
residential buildings in Canada and found that control strategy perfor
mance varied among suites owing to differences in occupant behavior 
[15]. They further recommended limiting the maximum temperature 
setback during load shifting control to 3 ◦C to prevent frequent occupant 
overrides [16]. Wang et al. developed an optimized precooling strategy 
for a test house to minimize energy costs, achieving up to 50 % cost 
savings compared with rule-based methods [23]. In addition to 
simulation-based analyses, a few studies have employed field tests or 
experimental methods to validate the effectiveness of precooling. Yin 
et al. conducted field tests in 11 commercial buildings and observed 
peak-period electricity demand reductions of 15–30 % [24]. Chen et al. 
examined the potential of passive thermal mass and active storage sys
tems in demand response programs using precooling and found that 
passive thermal mass was effective for short-term events (up to 2 h), 
whereas active storage was necessary for longer events [25]. Jiang et al. 
conducted a four-month long-term field test in nine houses to evaluate a 
model-predicted control-based precooling strategy, and the results 
showed that the energy cost could be reduced by 28.7–51.3 % on hot 
summer days [18]. These simulations and field studies demonstrate the 
potential of precooling to reduce the peak loads and energy costs in 
demand response programs. However, the aforementioned studies were 
primarily conducted in the context of demand response, aiming to 
reduce electricity consumption or minimize electricity costs, with in
door thermal comfort being used as a constraint. These studies were 
conducted under scenarios with uninterrupted power supply and 
continuous air-conditioning operation.

In addition to evaluating the effectiveness of precooling measures, 
several studies have investigated the potential factors influencing their 
performance, including building insulation, structural and internal 
thermal mass, AC system capacity, time-of-use electricity pricing, and 
climate conditions. For example, Wang et al. investigated the influence 
of the cooling capacity on precooling strategies across three capacity 
levels and found that increasing the cooling capacity shortened the AC 
system runtime but had little effect on the cooling energy consumption 
or cost [17]. Lu et al. conducted a parametric analysis to analyze the 

effects of thermal mass, weather conditions, and energy prices on the 
precooling performance [20]. Their results showed that buildings with a 
heavy thermal mass offered greater potential for cost savings and peak 
load reduction, albeit with an associated energy penalty. Their study 
focused primarily on flexible cooling load management in commercial 
buildings. Reza et al. analyzed the impact of various energy efficiency 
measures on the energy cost of a precooling strategy and found that roof 
insulation and lighting power density had the largest impact on energy 
costs [26].

In summary, existing studies have extensively examined the effec
tiveness of precooling in reducing peak loads and lowering energy costs 
and have developed optimized operating schedules to achieve these 
objectives. However, limited research has addressed the precooling 
performance under combined heatwave and power-outage scenarios. 
For example, one study evaluated the precooling effectiveness during 
heatwaves, but the AC system remained in continuous operation, which 
did not reflect the constraints under power-outage conditions [27]. 
Another study focusing on California suggested that heatwave-related 
power outages longer than 2 h substantially increased the risk of in
door overheating; however, this conclusion was based on conventional 
AC operation without implementing precooling measures [28]. There
fore, these two research questions remained unaddressed. The first is the 
feasibility of applying precooling during heatwaves with power outages 
and the extent to which precooling performance is influenced by various 
factors in residential buildings. To address these questions, this study 
developed an optimized precooling thermostat scheduling method using 
a Bayesian optimization algorithm, aiming to minimize both indoor 
overheating risks during outages and the economic burden on residents. 
Second, sensitivity and parametric analysis was conducted to quantify 
the impacts of the building design parameters, cooling capacity, and 
outage event characteristics on overheating and energy cost. These 
findings guide both policymakers and residents to maximize the benefits 
of precooling strategies for reducing indoor overheating risks during 
such events.

2. Methodology

The methodology of this study consisted of three primary steps, as 
illustrated in Fig. 1. The first is the setting of the scenario. The scenario 
set in this study was a historical five-day heatwave and power-outage 
event. A prototype high-rise residential building was selected as a case 
study. This scenario provides the simulation boundary conditions and 
outage profiles used as inputs for the subsequent strategy development. 
The second step was to develop an optimized precooling strategy and 
evaluate its performance related to thermal discomfort and energy costs. 
Finally, the impacts of building design parameters, cooling capacity, and 
characteristics of power-outage events on the efficacy of precooling 
were investigated using global sensitivity and parametric analyses.

2.1. Scenario setting

2.1.1. Weather data
The selection of heatwave events follows the definition proposed by 

the China Meteorological Administration, where a heatwave was 
defined as a period of three consecutive days with the daily maximum 
temperatures exceeding 35 ◦C [29]. Chengdu experienced a severe 
heatwave from August 8 to 24, 2022. A continuous five-day period was 
selected from this event, during which the daily maximum temperature 
exceeded 38 ◦C. The dry-bulb temperature and relative humidity of the 
selected heatwaves are shown in Fig. 2. Weather data for the selected 
heatwaves were collected from the ERA5 dataset. ERA5 is a 
fifth-generation reanalysis climate database produced by the European 
Center for Medium-Range Weather Forecasts model, which has been 
widely used for building simulation analysis [30]. The original meteo
rological variables provided by the ERA5 dataset included the dry-bulb 
temperature, dew point temperature, 10 m wind over the Earth’s 
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surface, global horizontal irradiance, and direct normal irradiance.

2.1.2. Building energy model
This study selected a prototype high-rise tower residential building 

in a hot summer and cold winter climate zone (Chengdu, China) to 
evaluate the optimized precooling framework and conduct a sensitivity 
analysis. High-rise apartments are one of the most typical housing types, 
particularly in megacities with large populations. The geometric model 
and layout of the prototype building are shown in Fig. 3. Each apartment 
consisted of several types of zones, including residential bedrooms, 
living rooms, kitchens, and bathrooms.

The building envelope thermal properties of the prototype buildings 
were set according to the building energy efficiency standard for hot 
summer and cold winter climate zones released in 2010, as listed in 
Table 1. The airtightness was set to 0.6 ACH, assuming that the room 
remains air-conditioned for most of the time except during power out
ages, and occupants are unlikely to open windows under such conditions 
to minimize heat exchange with the outdoor environment. This value 
also fell within the typical range of air change rates established in a 
previous study on representative residential building models [31]. In 

terms of the internal heat gain, a typical household was assumed to 
contain two adults. Occupancy schedules are determined based on a 
typical daily routine in which at least one person is assumed to remain at 
home throughout the day [32]. The lighting and electric equipment 
schedules follow the occupancy patterns. In addition, this study also 
analyzed the impact of a 10 % increase in internal heat gains on the 
precooling performance. The detailed results of this analysis are pre
sented in Appendix A.

For the AC system, this case study applied a split air conditioner, 
which is a typical AC system in residential buildings. In each household, 
the living room and bedroom were equipped with split air conditioners. 
The living room had an area of 24 m2, and the default cooling capacity 
was set to 3.6 kW. Once the cooling capacity was determined, precooling 
strategies were implemented based on this capacity. Furthermore, the 
default setting of internal thermal mass of furniture is 98,010 J/(m2⋅K), 
and the surface area was twice the floor area. These values are adopted 
from previous studies [27,33].

This study used EnergyPlus v24.2, a simulation engine, to develop 
the building energy model. This simulation tool, supported by the 
United States Department of Energy, and is an open-source program that 

Fig. 1. Methodology framework for this study.
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models heating, ventilation, cooling, lighting, water use, renewable 
energy generation, and other building energy flows.

2.2. Optimized precooling strategy

An optimized precooling strategy was developed for a historical five- 

day heatwave event that coincided with a power outage in 2022. The 
power-outage event lasted from 7:00 to 13:00. The precooling strategy 
was implemented using a day-ahead rolling optimization scheme in 
which the optimal temperature setpoints and start time were generated 
each day based on the daily weather conditions and internal heat gain 
profiles. It should be noted that precooling was applied only to the living 
room because nighttime precooling could affect the thermal comfort of 
occupants’ sleep in the bedroom. Besides, occupants are likely to natu
rally choose the room that offers the most comfortable thermal envi
ronment, which would most probably be the pre-cooled living room. 
Therefore, occupants were assumed to most probably stay in the living 
room during periods of power outages.

2.2.1. Optimization problem formulation
To optimize the precooling strategy of a residential thermal zone 

during summer mornings, a multi-objective optimization problem was 
formulated to minimize the daily cooling electricity cost and thermal 
discomfort. The decision variables included the precooling temperature 
setpoint and start time. Once precooling begins, the air conditioner 
operates continuously until a power outage begins, maintaining a con
stant thermostat setpoint to maximize thermal storage. The objective 

Fig. 2. Outdoor air temperature and relative humidity of the selected heatwave.

Fig. 3. Geometric model and floorplan of the prototype building.

Table 1 
Key parameters for building energy modeling.

Parameters Value

Average window-to-wall ratio [− ] 0.27
U-value of exterior wall [W/(m2⋅K)] 0.8
U-value exterior window [W/(m2⋅K)] 3.0
U-value of roof [W/(m2⋅K)] 1.0
Window SHGC 0.3
Lighting power density [W/m2] 4.0
Equipment power density [W/m2] 5.0
Airtightness [ACH] 0.6
Rated cooling capacity [kW] 3.6
Air conditioner COP [− ] 3.0
Default cooling setpoint [ ◦C] 25
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function is defined as shown in Eq. (1). This formulation seeks to 
determine the globally optimal precooling setpoint and start time within 
the optimization horizon. 

min f(Tset, t) = w1⋅CPMVnorm + w2⋅CAC cost norm (1) 

Here, Tset denotes the precooling temperature setpoint ( ◦C) during 
the precooling period and serves as a decision variable. It is constrained 
between 20.0 ◦C and 26.0 ◦C, with a resolution of 0.5 ◦C. The variable t 
represents the start time of pre-cooling, ranging from 01:00–07:00, with 
a resolution of 0.5 h. CPMV norm is the normalized thermal discomfort 
measured by the predicted mean vote (PMV), as shown in Equation (2); 
CAC cost norm is the normalized daily electricity cost (CNY) of the AC 
system and accounts for the dynamic electricity pricing and cooling 
energy consumed, as shown in Eq. (3). The two objective terms in the 
optimization function, including thermal discomfort and daily cooling 
electricity cost, were normalized before aggregation to eliminate the 
influence of unit differences and ensure comparability. The weighting 
factors w1 and w2 refer to the relative significance of minimizing energy 
cost and maintaining thermal comfort, respectively. In this study, both 
weights were set to one (w1 = w2 = 0.5) to give equal significance to 
energy cost and thermal comfort in the optimization process. In addi
tion, the effects of different combinations of weighting coefficients on 
the precooling optimization outcomes were examined. A sensitivity 
analysis was conducted by varying the relative weighting between the 
two objectives, and the comparison result is provided in Appendix B. 

CPMVnorm =
PMVCE − PMVCEmin

PMVCEmax − PMVCEmin
(2) 

CAC cost norm =
EAC − EAC min

EAC max − EAC min
(3) 

PMVCE =

∫t2

t1

max(0,PMV(t) − PMVth)dt (4) 

Here, PMVCE is the cumulative predicted mean vote exceedance 
hour, defined as a metric for quantifying indoor thermal discomfort. t1 

and t2 denote the start and end times of the power outage (h), respec
tively, and PMVth denotes the PMV threshold for thermal comfort. In this 
study, PMV was calculated assuming a metabolic rate of 1.2 met, 
clothing insulation of 0.5 clo, and air velocity of 0.15 m/s, while the 
mean radiant temperature was taken from the EnergyPlus simulation 
results. PMVth was set to 0.7, based on the comfort zone defined by ISO 
7730 [34]. PMVCEmax and PMVCEmin denote the maximum and mini
mum values of PMVCE, respectively; EAC represents the daily total 
electricity cost; EAC max and EAC min indicate the maximum and minimum 
values of EAC, respectively.

The cooling electricity cost was calculated using the real-time-of-use 
tariff in Chengdu during the summer of 2022. An off-peak rate of 0.239 
CNY/kWh was applied from 23:00 to 07:00; a mid-peak rate of 0.497 
CNY/kWh was applied from 07:00 to 14:00 and 21:00 to 23:00; and an 
on-peak rate of 0.754 CNY/kWh was applied from 14:00 to 21:00.

2.2.2. Optimization algorithm
This study adopts a Bayesian optimization algorithm to solve the 

optimization problem. The primary motivation for selecting this algo
rithm was the complexity and computational expense of the building 
energy model constructed using EnergyPlus. Despite simplifying the 
optimization problem to only two decision variables, each evaluation 
still requires an entire building performance simulation, which is time- 
consuming. Bayesian optimization is a probabilistic global optimization 
framework that is particularly suitable for problems in which objective 
evaluations rely on expensive simulations, such as building energy 
simulations. It uses a probabilistic agent model to approximate the true 
objective function based on the data obtained from previous evaluations 
[35]. Bayesian optimization is a type of prior-informed search that 

leverages the performance of previously evaluated hyperparameters to 
guide the selection of subsequent candidates. In each iteration, a 
Gaussian Process was fitted to the observed samples, and the resulting 
posterior distribution was combined with an acquisition function to 
determine the next sampling point. This algorithm improves the effi
ciency of the optimization process by efficiently exploiting historical 
information. This study used the Bayesian optimization Python package 
Bayesian-optimization. The Bayesian optimization process was initialized 
with 20 random samples to construct the surrogate model, followed by 
50 iterations of guided sampling based on the acquisition function.

2.2.3. Cooling strategies for comparison
To evaluate the performance of the optimized precooling strategy, 

two additional cooling strategies were selected for comparison. The first 
is the baseline strategy, in which no precooling is applied. According to 
the occupied schedule in the living room, the occupied hours are from 
09:00 to 21:00, and the desired indoor air temperature in the summer is 
25 ◦C. Therefore, the AC operates from 13:00 to 21:00, as it remains off 
during the scheduled power outage from 07:00 to 13:00. The tempera
ture setpoint is 25 ◦C. The second is a fixed precooling strategy, in which 
the AC is scheduled with a constant setpoint of 25 ◦C and runs contin
uously throughout the day, except during the outage period. Table 2
presents a brief introduction to the three cooling strategies.

2.3. Sensitivity and parametric analysis

To investigate the critical factors influencing the effectiveness of 
precooling during power outage periods, three categories of factors were 
considered: (1) building design parameters, (2) cooling capacity, and (3) 
the characteristics of power outage events. Building design parameters 
involve multiple uncertain variables with potentially nonlinear effects 
and interactions and were therefore examined using a global sensitivity 
analysis. The cooling capacity and power-outage events were analyzed 
using a parametric approach because these factors are characterized by a 
limited range of representative values.

2.3.1. Sensitivity analysis
Sensitivity analysis can be categorized into two types: local and 

global. Local sensitivity analysis evaluates the effect of small perturba
tions in a single input parameter on the output while keeping all other 
parameters fixed, capturing only the local linear response and failing to 
reflect nonlinearities or interactions over the full input space [36]. To 
overcome these limitations, this study employed a global sensitivity 
analysis using the Sobol method. This variance-based method de
composes the variance of the model output into contributions attribut
able to individual input parameters and their interactions [37]. The 
Sobol method defines two critical indices: first-order and total-order. 
The first-order index is the proportion of the output variance 
explained by a single parameter, while holding all others fixed. A higher 
first-order index indicates that the parameter has a strong independent 
effect on output. However, in high-dimensional problems, first-order 
indices alone may not fully explain the output variance because the 
interactions between the parameters can be significant [38]. To address 
this issue, Saltelli et al. introduced a total-order index that captures the 
overall contribution of a parameter, including both its direct effect and 
all interaction effects with other parameters [38]. By comparing the 

Table 2 
Cooling strategies in this study.

Strategy AC operation hours Temperature setpoint ( ◦C)

Baseline Regular cooling: 13:00–21:00 25
Fixed 00:00–7:00, 13:00–00:00 25
Optimized Precooling: determined by 

optimization. 
Regular cooling: 13:00–21:00

Precooling period: determined by 
optimization. 
Regular cooling: 25
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first- and total-order indices, it is possible to distinguish between pa
rameters with dominant direct effects and those whose significance 
arises primarily through interaction effects.

The objective of the sensitivity analysis is to identify the building 
design parameters that most significantly influence the effectiveness of 
the precooling strategies. The parameters considered included external 
envelope insulation, internal thermal mass, and airtightness. Table 3
summarizes the selected parameters and their corresponding ranges, 
which were determined based on standard building practices and rele
vant literature. In this study, variations in internal thermal mass were 
achieved by modifying its surface area, while other properties, such as 
density and specific heat, remained unchanged. The internal thermal 
mass ranged from 0.5 to 4 times the room floor area. This range was 
chosen to represent buildings with varying levels of internal thermal 
storage, from sparsely furnished to heavily furnished spaces [33]. For 
the range of airtightness, the air change rate was varied from 0.5 to 3.0 
ACH. The lower limit corresponds to the minimum requirement in 
Chinese standard for indoor air quality in residential buildings, and the 
upper limit is determined by large-scale airtightness measurements of 
Chinese residential buildings, which reported that the 95th-percentile 
air change rate was below 1.5ACH, while the maximum value reached 
3.1ACH in summer conditions [39]. Therefore, this study selected 
3.0ACH as the upper limit representing older and poor airtightness 
performance.

Sampling was performed using the Saltelli method, an enhanced 
sampling strategy typically used in Sobol sensitivity analysis [40]. The 
samples were generated based on the parameter ranges listed in Table 3. 
For the Sobol index, the minimum sample size is N× (2k + 2), where N 
is the base sample size, ranging from 16, 32, …, 1024, and k is the 
number of input parameters [40]. In this study, 3072 samples were used, 
with N set to 256, balancing accuracy and computational cost. Sensi
tivity analysis was performed using the SALib Python package [41].

2.3.2. Parametric analysis
The cooling capacity of an AC system is a critical factor influencing 

the effectiveness of precooling strategies. Previous studies have shown 
that the precooling performance decreases as the AC cooling capacity 
decreases [27]. To investigate the impact of cooling capacity on pre
cooling effectiveness, five representative cooling capacity levels were 
considered: 0.5, 0.75, 1.0, 1.25, and 1.5 times the default capacity. 
These values correspond to 1.8, 2.7, 3.6, 4.5, and 5.4 kW, respectively. 
Each configuration was analyzed and compared to evaluate its influence 
on precooling performance in terms of thermal discomfort and elec
tricity cost.

For power outage events, two significant characteristics were 
considered: the power outage duration and occurrence time. Outage 
duration refers to the total period during which electricity is unavai
lable, whereas the time of occurrence indicates the specific time of day 
when the outage occurs. Both characteristics can directly affect the 
ability of precooling to maintain thermal comfort during outage periods. 
Based on these characteristics, three representative outage scenarios are 
defined as follows: 

a) Event 1: Power outage from 07:00 to 13:00 (default case).
b) Event 2: A power outage occurs from 13:00 to 19:00, coinciding with 

the period of the highest outdoor air temperatures and peak solar 

radiation. This scenario was intended to evaluate the precooling 
performance under the most severe weather conditions of the day.

c) Event 3: The outage extended to 12 h, from 07:00 to 19:00. This 
prolonged blackout scenario was designed to evaluate the effec
tiveness of precooling strategies under extended outage conditions.

3. Results

3.1. Results of the optimized precooling strategy

During the five-day heatwave, the optimized precooling strategy 
showed variations in both the temperature setpoint and duration of 
precooling, as shown in Fig. 4. The temperature setpoint was 20.5 ◦C on 
August 11, and 21 ◦C on August 12 and 13, compared to 20 ◦C on August 
10 and 14. The precooling duration also varied with time. On August 10, 
13, and 14, the pre-cooling lasted for 7 h, whereas on August 11 and 12, 
a shorter duration of 4.5 h was adopted. Notably, although the outdoor 
temperature on August 10 was not the highest among the five-day 
heatwave period, the optimized strategy adopted the longest precool
ing duration with a lower setpoint of 20 ◦C. This is primarily attributed 
to the absence of on the preceding day, which leads to internal heat 
accumulation and requires extended precooling for effective cooling and 
energy storage.

The simulation results for the indoor air temperature profiles of the 
baseline, fixed, and optimized precooling strategies are shown in Fig. 5
(a). The baseline scenario had the highest indoor air temperatures, with 
peak values exceeding 30 ◦C during the power outage period. The fixed 
strategy reduced the temperature below 29 ◦C across the power outages. 
In contrast, the optimized precooling strategy provided the most effec
tive thermal mitigation, with the indoor air temperature remaining 
around or even below 27 ◦C throughout the outage periods, lowering the 
peak temperatures by up to 3.5 ◦C compared to the baseline and by 1.7 
◦C relative to the fixed strategy.

Fig. 5(b) shows the hourly cooling load profiles for the three cooling 
strategies. The optimized precooling strategy required nighttime oper
ation of air conditioners while significantly lowering the starting cooling 
load after a power outage compared to the other two strategies. Addi
tionally, the cooling loads during the afternoon period (13:00–21:00) 
were also lower. These reductions indicate that the building successfully 
stored a considerable amount of cooling energy in the thermal mass 
during the precooling periods, effectively decreasing the cooling load 
during the power recovery periods.

To quantitatively compare the performance of the three different 
strategies, the electricity consumption, electricity cost, and PMVCE 
during the heatwave are shown in Fig. 6. The optimized strategy 
exhibited the highest total electricity consumption owing to the 
extended operation of the air conditioner during nighttime hours for 
precooling, with an increase of 41 %. However, this did not correspond 
to a significant increase in electricity costs because the differences 
among the three strategies were relatively small. This was primarily 
because the cooling energy storage during off-peak hours helped reduce 
cost increases, even though the total energy consumption was higher. 
Therefore, the optimized precooling strategy did not impose an addi
tional economic burden on the building occupants. The optimized pre
cooling eliminated thermal discomfort during power-outage periods, 
achieving a 100 % reduction in PMVCE compared with the baseline. 
This indicates its substantial contribution to maintaining indoor thermal 
comfort under heatwave conditions. The baseline yielded the highest 
PMVCE value, indicating the highest overheating risk during power 
outage periods, while the fixed strategy provided moderate improve
ment in both cost and thermal comfort but remained less effective than 
the optimized precooling strategy. Overall, these results demonstrate the 
effectiveness of the optimized precooling strategy in balancing thermal 
comfort and cost efficiency despite the higher total electricity 
consumption.

Table 3 
Summary of building design parameters.

Parameter Range

U-value of exterior wall [W/(m2⋅K)] 0.3–1.4
U-value of exterior window [W/(m2⋅K)] 2.0–6.0
Window SHGC [− ] 0.3–0.7
Ratio of internal thermal mass surface area to floor area [− ] 0.5–4
Airtightness [ACH] 0.5–3.0
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3.2. Impacts of building design parameters

The Sobol sensitivity analysis results for thermal discomfort and 
electricity costs are presented in Fig. 7. The analyzed input variables 
included the U-values of the external walls and windows, SHGC, 
airtightness, and internal thermal mass. These parameters contributed to 
the variance in thermal discomfort and electricity costs. In this figure, 
the first-order index represents the direct contribution of each variable 
to output variance, whereas the total-order index accounts for both the 
individual effects and their interactions with other variables. A higher 
Sobol index indicates a stronger influence of input parameters on the 
output variance. Notably, the differences between the first-order and 
total-order Sobol indices were small, suggesting that the effects of the 
parameters were primarily direct rather than that resulting from 
interactions.

For thermal discomfort, the external wall U-value, internal thermal 
mass and airtightness were identified as the dominant contributors, with 
total-order Sobol indices of 0.55, 0.24, 0.22, respectively. The SHGC had 
a relatively minor effect, with a total-order index of approximately 0.05. 
In contrast, the electricity cost was predominantly influenced by the 
airtightness, which had a total-order Sobol index of 0.9, followed by the 
external wall U-value (0.08), whereas the internal thermal mass and 
window U-value had negligible effects. These results highlight that 
external wall insulation, airtightness and internal thermal mass are key 
to reducing thermal discomfort, whereas airtightness is the dominant 
factor in cooling electricity costs.

3.3. Impacts of AC cooling capacity

This section investigates the impact of different cooling capacities on 
the optimized precooling schedule for this building. Fig. 8 illustrates the 
variation in the precooling setpoints and durations from August 10 to 14 
under five different cooling capacity scenarios, corresponding to 1.8, 
2.7, 3.6, 4.5, and 5.4 kW. The optimized precooling strategies varied 
with the cooling capacity. As the cooling capacity increased, the pre
cooling setpoint could be raised or the precooling duration shortened. 
Nevertheless, once the cooling capacity exceeded 4.5 kW, the optimized 
precooling strategy remained largely unchanged.

The indoor air temperature and cooling load profiles for the three 
different cooling capacities are shown in Fig. 9, and the corresponding 
cooling electricity consumption and costs are summarized in Table 4. 
The results indicated that cooling capacity primarily affected cooling 

speed. When the cooling capacity was 1.8 kW, it was sometimes insuf
ficient to reach the desired temperature setpoint during the precooling 
period. In contrast, cooling capacities of 2.7 kW or higher reduced the 
indoor air temperature to the setpoint within approximately 2 h, 
whereas the highest capacity (5.4 kW) reached the setpoint in less than 
30 min. This demonstrates that a higher cooling capacity substantially 
enhances the cooling speed.

However, the effect of the cooling capacity on mitigating indoor 
overheating and reducing cooling electricity costs was found to be 
relatively limited. As shown in Fig. 9 and Table 4, except for the 1.8 kW 
case, the indoor air temperature trajectories during the outage periods 
were almost identical across different AC sizes, and the PMVCE was 
reduced to zero. The 1.8 kW case was an exception because the insuf
ficient cooling capacity prevented the setpoint temperature from being 
consistently reached during nighttime precooling. This resulted in a 
higher initial air temperature before the outage and, consequently, a 
greater overheating risk during the subsequent power-outage hours. 
Regarding electricity consumption and cost, although a higher capacity 
led to higher instantaneous cooling loads during precooling, the total 
electricity consumption and associated costs were only slightly affected. 
Specifically, increasing the cooling capacity from 1.8 kW to 5.4 kW 
resulted in an approximately 8 % increase in cooling electricity con
sumption and a 5 % increase in electricity cost.

3.4. Impacts of power-outage events

To further evaluate the effectiveness of the precooling strategy under 
various power-outage scenarios, two additional events were analyzed. 
Event 2 represented an afternoon outage (13:00–19:00) with a 6-hour 
outage duration, during which precooling was conducted from 06:00 
to 13:00. At the baseline of this event, air conditioner was assumed to 
operate from 08:00 to 13:00 and from 19:00 to 21:00, with a tempera
ture setpoint of 25 ◦C prior to the outage. Event 3 corresponded to a 
prolonged outage lasting 12 h, from 07:00 to 19:00, with precooling 
conducted from 0:00 to 07:00. For both events, the optimized precooling 
strategy was implemented and compared with a no-precooling baseline.

The indoor air temperature and PMV profiles for these two events are 
shown in Figs. 10 and 11. In Event 2, without precooling, the indoor air 
temperature exceeded 30 ◦C, reaching a peak of 30.9 ◦C. The PMV values 
rose above +1.0 and even reached +1.5 in some hours. With optimized 
precooling, the temperature remained basically below 29 ◦C, with a 
maximum of 29.5 ◦C, and the PMV values were generally within +1.0. 

Fig. 4. Cooling schedule of the optimized precooling strategy.
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Consequently, the PMVCE decreased from 16.4 h to 3.9 h, representing a 76 % reduction, as shown in Fig. 12.

Fig. 5. a) Indoor temperature and b) cooling load profiles of the three cooling strategies.

Fig. 6. Electricity consumption, electricity cost, and PMVCE of the three cooling strategies.
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In Event 3, the thermal discomfort became more severe. Without 
precooling, the PMV exceeded +2.0, indicating a state of heat stress that 
poses a considerable risk to occupant health. In contrast, with the 
application of precooling, the indoor thermal risk was significantly 
mitigated, with PMV peaks maintained around +1.0 and always below 
+1.5. Accordingly, the PMVCE reduced from 83.9 h to 8.0 h, achieving a 
90 % decrease. These results confirmed the effectiveness of optimized 
precooling in mitigating overheating and enhancing indoor thermal 
resilience during outages.

The effective duration of thermal comfort maintained by precooling 
was also analyzed. In Event 2, the acceptable duration of thermal 
comfort maintenance was approximately 2 h, whereas in Event 1 

(07:00–13:00 outage), it was 6 h. This difference reflects the effect of the 
outage time. For an outage of the same duration beginning in the af
ternoon, precooling is less effective owing to higher outdoor air tem
peratures and greater solar gains. In Event 3, when the power outage 
occurred in the morning and lasted 12 h, precooling could maintain the 
indoor conditions within the comfort zone for approximately 6 h, except 
on the first day, when it lasted only approximately 2 h. However, after 
13:00, the indoor PMV values increased sharply, resulting in the highest 
level of thermal discomfort.

In terms of electricity consumption and cost, the precooling scenario 
consumed more electricity than scenarios without precooling. This also 
led to an increase in power costs, with a 28 % increase in electricity costs 
for Event 2 and 46 % increase in electricity costs for Event 3. Among the 
three events, Event 2 exhibited the highest electricity cost, primarily 
because precooling was conducted during daytime hours when elec
tricity prices were relatively higher.

4. Discussion

4.1. Explanation of the impacts of building design parameters

The results of the Sobol sensitivity analysis show that the primary 
factors influencing thermal discomfort and electricity costs related to 
the precooling performance are distinct. External wall insulation is the 
dominant contributor to thermal discomfort, followed by internal 
thermal mass. During power outages, heat transfer through external 
walls dominates the cooling energy loss, increasing both the indoor air 
temperature and the mean radiant temperature, thereby exacerbating 
thermal discomfort. Airtightness can increase thermal discomfort 
through air exchange; however, its impact is relatively minor in this 
study because of the upper limit considered (3.0 ACH). Internal thermal 
mass primarily affects thermal discomfort by storing cooling energy 
during precooling and slowing the rate of temperature rise as it shifts, 
rather than reducing cooling demand.

Airtightness was identified as the primary contributor to electricity 
cost. Poor airtightness accelerates the loss of cooled indoor air and the 
infiltration of hot outdoor air, thereby increasing the cooling demand 
and electricity consumption. In addition, it introduces additional latent 
heat, which further increases the cooling load. The influence of external 
wall insulation on electricity costs was relatively small. This is primarily 
because of the thermal inertia of both the walls and the internal thermal 
mass; when leveraged through precooling, the buffer temperature rises 
and mitigates the peak cooling demand.

To place the results of this study into a broader research context, the 
main sensitivity analysis findings are compared with those reported in 
previous studies focusing on similar precooling applications. For 

Fig. 7. First- and total-order of the Sobol index of input parameters for a) 
thermal discomfort and b) energy cost (CNY).

Fig. 8. Optimized precooling strategies under varying cooling capacities.
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instance, a comparable study conducted in Australia reported that peak- 
load reduction potential of precooling exhibited a strong sensitivity to 
star-rating levels, reflecting improvements in both envelope perfor
mance and airtightness can benefit precooling performance [42]. 
However, the study did not identify which specific envelope improve
ments had the most important effect on peak-load reduction or cost 
outcomes. Another similar study compared precooling performance 

related to energy cost savings and peak load reduction under light, 
medium and heavy thermal mass configurations, and found heavy 
thermal mass was the most effective [20]. In comparison, the findings in 
this study also reflect the effects of thermal mass on improving thermal 
discomfort during power outages.

4.2. Sensitivity analysis under different cooling capacities

Fig. 13 presents the Sobol total-order sensitivity index of the pa
rameters under the five cooling capacities. For thermal discomfort, the 
external wall insulation consistently played a dominant role, whereas 
the influence of airtightness decreased and that of the internal thermal 
mass increased with a higher cooling capacity. At a low cooling capacity 
(e.g., 1.8 kW), airtightness plays a more significant role than the internal 
thermal mass because the limited cooling output makes indoor tem
peratures highly sensitive to infiltration. As the cooling capacity 
increased (e.g., 3.6 kW), enhanced precooling and greater thermal 
storage utilization reduced this sensitivity, highlighting the need to 
coordinate the cooling capacity with passive thermal characteristics to 
fully leverage the benefits of precooling. Regarding the electricity cost, 

Fig. 9. a) Indoor air temperature and b) cooling load profiles under different cooling capacities.

Table 4 
Electricity consumption, electricity cost, and PMVCE of the optimized precool
ing strategy under three cooling capacities.

Cooling 
capacity 
(kW)

Electricity consumption 
(kWh)

Electricity cost 
(CNY)

PMVCE

1.8 36.1 15.8 0.32
2.7 38.3 15.9 0
3.6 38.5 16.0 0
4.5 39.1 16.3 0
5.4 39.3 16.4 0
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the sensitivity of the building design parameters varied little with 
cooling capacity. Airtightness remained the most influential factor, 
followed by the external wall insulation, whereas the effects of the other 
parameters were negligible.

4.3. Interactions between cooling capacity and internal thermal mass

This section further investigates the interaction between the cooling 
capacity and internal thermal mass during precooling. The selection of 
the internal thermal mass was categorized into three levels—low, me
dium, and high—corresponding to cases where the surface area of the 
internal thermal mass was set to one, two, and four times the floor area, 
respectively. For cooling capacity, five representative values were 
considered: 1.8, 2.7, 3.6, 4.5, and 5.4 kW. By combining these two pa
rameters, 15 configurations were simulated to evaluate the thermal 
discomfort during the outage period under Event 3.

The results are illustrated by the heatmap in Fig. 14. The most severe 
thermal discomfort occurred under the combination of the lowest 

cooling capacity and lowest internal thermal mass, with a PMVCE of 
13.38 h, while the combination of the highest cooling capacity and high 
internal thermal mass minimized thermal discomfort, reducing PMVCE 
to 0.38 h, highlighting the importance of coordinating cooling capacity 
with internal thermal mass. The figure shows that a higher internal 
thermal mass consistently reduced the PMVCE at a given cooling ca
pacity. Similarly, for a fixed internal thermal mass, increasing the 
cooling capacity reduces the PMVCE. However, the marginal benefits 
diminish once the cooling capacity exceeds 4.5 kW, because further 
increases provide little additional reduction in thermal discomfort. For 
example, at a cooling capacity of 5.4 kW combined with a high internal 
thermal mass, the PMVCE reached 0.38, which is only slightly lower 
than that 0.40 observed at 4.5 kW, representing a 5 % reduction. This 
indicates that, beyond this point, increasing the cooling capacity yields 
minimal additional improvement in mitigating thermal discomfort.

Fig. 10. a) Indoor air temperature and b) PMV profiles of precooling and without precooling during Event 2 (power outage: 13:00–19:00).
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Fig. 11. a) Indoor air temperature and b) PMV profiles of precooling and without precooling during Event 3 (power outage: 7:00–19:00).

Fig. 12. Electricity consumption, electricity cost, and thermal discomfort during the two power-outage events.
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Fig. 13. Sensitivity variation of the input parameters for a) thermal discomfort during power outage and b) electricity cost (CNY).

Fig. 14. PMVCE heat map under various cooling capacities and internal thermal mass levels.
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4.4. Implications for enhancing precooling effectiveness

The sensitivity analysis and simulation results provide valuable in
sights for the effective implementation of precooling strategies in resi
dential buildings. These implications can be summarized at three 
complementary levels: building envelope retrofitting, occupant 
behavior, and demand-side management during power outages.

4.4.1. Building envelope improvements
Sensitivity analysis indicated that external wall insulation has a 

dominant impact on the effectiveness of precooling strategies, particu
larly in mitigating thermal discomfort during power outages. The 
external walls of several existing residential buildings suffer from poor 
thermal performance owing to aging, material degradation, and the 
absence of insulation [43,44]. This low thermal resistance leads to a 
rapid indoor temperature rise and increased cooling energy losses, 
undermining both the energy efficiency and practical benefits of pre
cooling. Therefore, enhancing the external wall insulation in aging 
residential communities is crucial. This can reduce heating and cooling 
energy consumption while improving the resilience and effectiveness of 
precooling strategies during heatwave events. In the context of urban 
renewal, promoting insulation retrofits of external walls provides a dual 
benefit by supporting sustainable energy upgrades and enabling the 
successful implementation of advanced cooling measures, such as 
precooling.

4.4.2. Occupant behavior advice
The sensitivity analysis also highlighted that building airtightness 

plays a critical role in reducing cooling electricity consumption. Poor 
airtightness can lead to uncontrolled infiltration through open windows, 
door gaps, and shared ventilation shafts. Improving airtightness reduces 
cooling demand and financial burden and prolongs the duration of 
thermal comfort during subsequent outages. Residents can take practical 
measures, such as keeping windows and doors closed, minimizing the 
airflow between rooms with different thermal conditions, and avoiding 
frequent door or window operations. By limiting this airflow, the pre
cooling effect can be better preserved, thereby improving indoor ther
mal comfort and reducing overheating risks during critical periods.

4.4.3. Demand-side management of power outages
Even with precooling, the timing and duration of power outages 

critically affect indoor thermal conditions. Simulation results under the 
precooling scenario show that if outages occur in the morning (starting 
at 07:00), residents can tolerate up to 6 h without severe thermal 
discomfort, whereas afternoon outages (starting at 13:00) should not 
exceed 2 h. This difference can be primarily explained by solar heat gain 
dynamics. As shown in Fig. C1, during afternoon power-outage event, 
solar heat gains transmitted through exterior windows reach a peak 
around 13:00–14:00 and subsequently remain at a relatively high level, 
leading to the cooling energy stored earlier in the morning to be rapidly 
depleted once the power outage occurs in the afternoon. This is also 
reflected in the indoor temperature response: within the first hour after 
the outage, indoor temperature rises by approximately 6.6 ◦C for the 
afternoon event, whereas the corresponding rise is only about 4.3 ◦C for 
the morning event. In addition, precooling performed in the morning 
inherently competes against rising outdoor temperatures and increasing 
solar heat gains, meaning that part of the cooling energy is consumed 
rather than stored within the thermal mass. As a result, a morning 
outage generally benefits more from precooling compared with an af
ternoon outage.

Therefore, if a power outage is unavoidable, demand-side manage
ment strategies should account for the outage timing and provide resi
dents with advance notice, enabling them to precool their homes [28,45,
46]. Careful scheduling of outages and informing households in advance 
can significantly reduce overheating risks during heatwaves.

4.5. Limitations and future work

This study has several limitations. Fixed occupancy schedules and 
typical internal heat gains were adopted to simulate the indoor air 
temperature and cooling electricity consumption, which may not fully 
capture the stochastic nature of occupant behavior throughout the day. 
Future work should adopt stochastic occupancy models to better reflect 
actual occupant behavior. Second, the findings were based on a single 
high-rise residential case study located in Chengdu, which limits the 
generalizability of the results to other building types and climate zones. 
Comparative studies involving different building types and climate re
gions would help investigate and extend the applicability of the pro
posed precooling strategies. In addition, this study assumed that natural 
ventilation remained closed in the target room, primarily based on the 
consideration that occupants are likely to keep windows shut to main
tain indoor comfort during power outages. However, window-opening 
behavior can be uncertain in residential buildings, and natural ventila
tion may influence the effectiveness of precooling [47]. Therefore, 
future work is needed to quantitatively evaluate precooling performance 
under stochastic window-opening behaviors and natural ventilation 
scenarios. Finally, the performances of the precooling strategies were 
evaluated through numerical simulations. A direct comparison with 
existing studies was not conducted because most prior work focuses on 
normal power-supply conditions, in which AC systems remain continu
ously operated, and the building is not in a free-floating mode. There
fore, the research scenario and boundary conditions in this study differ 
from those in existing literature. Future studies should include field 
experiments to verify the accuracy of the simulated results and assess the 
practical effectiveness of the optimized precooling strategies in resi
dential buildings.

5. Conclusions

This study investigated the effectiveness of adopting an optimized 
precooling strategy in a prototype residential building during heatwaves 
with power outages. A Bayesian optimization algorithm was employed 
to develop a precooling thermostat setpoint schedule aimed at mini
mizing both indoor overheating and cooling energy costs. Subsequently, 
the impacts of the building design parameters were evaluated using 
global sensitivity analysis, and the effects of cooling capacity and power- 
outage event characteristics were explored through parametric analysis. 
Over 3000 scenarios were simulated using the Sobol method. The sig
nificant findings are summarized as follows. 

1) The optimized precooling strategy demonstrated the most effective 
mitigation of thermal discomfort compared with both the baseline 
and fixed cooling schedules. In particular, indoor air temperature 
was maintained below 27 ◦C during the outage, with peak temper
ature reductions of up to 3.5 ◦C compared to the baseline and 1.7 ◦C 
compared to the fixed strategy. However, the total electricity costs 
did not increase significantly.

2) Sensitivity analysis revealed the distinct primary factors influencing 
thermal discomfort and electricity costs. Thermal discomfort was 
dominated by the external wall insulation, airtightness and internal 
thermal mass. Notably, external wall insulation consistently played a 
critical role in thermal discomfort mitigation across different cooling 
capacity levels. In contrast, the electricity cost was primarily gov
erned by airtightness, whereas the influence of other parameters was 
relatively small. This result highlights the significance of maintain
ing good room airtightness during power outages in reducing ther
mal discomfort and electricity costs, and provides practical guidance 
for occupant behavior.

3) An interaction between cooling capacity and internal thermal mass 
was observed. Specifically, as the capacity increased, the effect of the 
internal thermal mass became more significant while that of 
airtightness diminished. The combination of the lowest cooling 
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capacity and lowest internal thermal mass resulted in the most severe 
thermal discomfort, with a PMVCE of 13.38 h, whereas the combi
nation of the highest cooling capacity and internal thermal mass 
produced the lowest thermal discomfort, with a PMVCE of 0.38 h. 
However, when capacity exceeded a certain threshold (4.5 kW in this 
study), further increases provided only marginal benefits, suggesting 
that coordinated optimization of both parameters is more effective 
than simply oversizing the cooling system.

4) The precooling performance was influenced by the timing and 
duration of power- outage events. Specifically, morning outages can 
last up to approximately 6 h without causing severe thermal 
discomfort, whereas afternoon outages should be limited to no more 
than 2 h. In terms of electricity costs, for a morning outage lasting 6 
h, implementing precooling did not result in a significant increase 
compared with no precooling. However, for afternoon outages, the 
electricity costs increased by 28 %, and for morning outages 
extending up to 12 h, the costs increased by 46 %.

This study demonstrates the potential of applying precooling stra
tegies to residential buildings during heatwaves with power outage 
events. The findings provide methodological support and behavioral 
guidance for mitigating overheating risks using precooling under heat
wave conditions and power outages.
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Appendix A. Impact of internal heat gain on precooling performance

To analyze the effect of internal heat gains on precooling performance, the internal heat gains from occupants, lighting, and equipment were 
increased by 10 % relative to the default settings. The optimized precooling schedule during the selected heatwave period is in Table A1. Compared 
with the precooling schedule obtained under the original settings, small changes in precooling schedules were observed on August 11, 12, and 13, 
namely a 0.5-hour increase in the precooling duration and a 0.5 ◦C decrease of the setpoint. This means that increasing internal heat gains by 10 % 
leads to a slightly higher precooling intensity. For thermal comfort during power outage, indoor temperature profiles remain largely unchanged, as 
shown in Fig. A1, indicating that the tolerance duration during power outages is only minimally affected. This outcome can be explained by the fact 
that internal gains primarily come from occupants, whereas lighting and plug-load equipment cease operation during power outages and therefore do 
not contribute additional heat.

Table A1 
The schedule of the optimized precooling strategy.

Date Temperature setpoint ( ◦C) Precooling time (h)

2022/8/10 20 7
2022/8/11 20.5 5.5
2022/8/12 20.5 4
2022/8/13 20.5 7
2022/8/14 20 7

Fig. A1. Indoor air temperature profiles under two internal heat gain scenarios.
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Appendix B. Influence of objective function weights

To evaluate how the weighting between thermal discomfort during power outages and electricity cost influences the precooling performance, a 
sensitivity analysis was conducted by varying the weighting coefficients of the two objectives. The weighting coefficients w1 and w2 correspond to 
thermal discomfort and electricity cost. Across scenarios 1 to 4, the value of w1 increases from 0.5 to 0.8, while w2 decreases from 0.5 to 0.2 
accordingly. This shift reflects the fact that, during outage periods, maintaining habitable indoor conditions is essential for occupants’ thermal safety, 
while electricity cost becomes a secondary concern. For each configuration, the corresponding optimized precooling strategy was obtained, and the 
results are presented in Table B1.

These results reveal that even under the default setting with equal weight configuration (w1 = w2 = 0.5), thermal discomfort was already reduced 
to a relatively low level, with PMVCE of 0.76 h. When the comfort weighting increased, PMVCE decreased to 0.52 h, indicating a moderate 
improvement. However, further increasing the comfort weighting did not lead to additional reductions. Regarding electricity cost, it remained nearly 
unchanged across all weighting configurations. This finding indicates that thermal discomfort and electricity cost may not be in a strict trade-off 
relationship. Instead, there exists a zone of synergy where precooling simultaneously improve thermal comfort without incurring additional en
ergy cost. As a result, adjusting the weighting coefficients does not dramatically change the optimal solution.

Table B1 
Precooling performance of four weighting configurations.

Configuration w1 w2 Electricity cost (CNY) PMVCE (h)

1 0.5 0.5 16.28 0.76
2 0.6 0.4 16.27 0.58
3 0.7 0.3 16.26 0.52
4 0.8 0.2 16.27 0.52

Appendix C. Heat gain dynamics of window solar radiation and wall convection

To further explain the differences in precooling performance observed between the two power-outage events, heat-flux related outputs were 
exported from the simulation. Specifically, heat gain rates per unit area of window-transmitted solar radiation and interior wall-surface convection 
were extracted and analyzed to clarify their combined influence on precooling performance, as shown in Fig. C1. The window-transmitted solar 
radiation rate begins increasing shortly after sunrise and reaches a peak of approximately 12 W/m² around 13:00–14:00, while remaining at a 
relatively high level for several hours in the afternoon. However, the wall-surface convection heat gain rate is much smaller in magnitude and rises 
more slowly during the power outage period. It should be noted that positive values of the wall convection heat gain rate indicate that heat transferred 
from the wall into the indoor air, whereas negative values reflect heat being absorbed by the wall. 
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Fig. C1. Heat gain rates of window-transmitted solar radiation and exterior wall convection under a) Event 1 and b) Event 2.

Data availability

Data will be made available on request.
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