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ARTICLE INFO ABSTRACT

Keywords: Climate change is increasing the frequency and intensity of heatwaves, often accompanied by power outages that
Precooling exacerbate indoor overheating and threaten human health. Precooling is a potential mitigation strategy for in-
Heatwave door overheating risks; however, few studies have systematically explored the impact of building design, cooling
'?}l:;iri; resilience capacity, and power-outage events on its performance. This study proposes an optimized precooling thermostat
Optimization schedule using Bayesian optimization to minimize thermal discomfort and cooling electricity costs. Based on this

strategy, Sobol sensitivity and parametric analyses were conducted to explore the effects and interactions of
building design parameters, cooling capacity, and power outage characteristics on thermal discomfort and
electricity costs. A prototype high-rise residential building in Chengdu, China, was used as a case study. The
results showed that thermal discomfort during power outages was primarily influenced by external wall insu-
lation, airtightness and internal thermal mass, whereas cooling electricity cost was mainly affected by
airtightness. Furthermore, the contribution of the internal thermal mass to reducing thermal discomfort
increased with cooling capacity, whereas the influence of airtightness diminished. This suggests that coordinated
optimization between cooling capacity and internal thermal mass is more effective than merely oversizing the
cooling system. Regarding power outage impacts, the optimized precooling strategy maintained acceptable in-
door comfort for approximately 6 h during morning outages, while only 2 h during afternoon outages. These
findings offer practical guidance for policymakers and residents seeking to maximize the benefits of precooling
strategies during heatwaves with power outages.

Sensitivity analysis

1. Introduction

Global climate change has significantly increased the frequency,
intensity, and duration of heatwaves in several parts of the world [1].
This global trend is manifested as extreme heatwaves in various regions.
For instance, in the UK, the daily maximum temperature exceeded 40 °C
for the first time on record in 2022 [2]. In China, the average number of
high-temperature days per year (daily maximum temperature > 35 °C)
has steadily increased over the past decades, from a historical average of
nine days to 16 days in 2022 [3]. The increasing frequency and severity
of heatwaves have sharply increased building cooling demand, posing
serious challenges to power supply reliability. Heatwaves can increase
the likelihood of power outages and prolong their duration [4]. A
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notable example is the 2022 Heatwave in Sichuan, China. According to
the Lancet Countdown 2023 report, the prolonged heatwave in 2022 in
the Sichuan region is expected to lead to a surge in cooling demand,
whereas drought conditions will reduce hydropower generation,
resulting in electricity rationing in the region [5].

Heatwaves accompanied by power outages can lead to a substantial
increase in indoor temperatures, significantly increasing the risk of
overheating in buildings. This issue is particularly critical in residential
buildings and vulnerable facilities, as populations such as the elderly,
children, and individuals with preexisting health conditions, who typi-
cally spend more time at home, are especially susceptible to heat-related
risks [6,7]. Previous studies have shown that when mechanical cooling
is disrupted during heatwave events, indoor heat index levels can
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escalate into the “danger” or even “extreme danger” zones, substantially
raising the likelihood of heat exhaustion, heat stroke, and other
heat-related illnesses [8-10]. Consequently, it is essential for govern-
ments, utility companies, and residents to take proactive measures to
enhance thermal resilience and mitigate the overheating risks posed by
heatwaves combined with power outages [11].

Precooling has been recognized as a potential solution for improving
thermal resilience during heatwave events with power outages. This
technique has been applied in demand response programs to shift
cooling loads from peak to off-peak hours by utilizing the thermal mass
of a building to store cooling energy in advance and release it later.
Typically, this is implemented by lowering the thermostat setpoint a few
hours before peak periods and increasing it during peak hours [12]. By
slowing the rate of increase in the indoor air temperature, precooling
makes it possible to reduce or avoid air conditioning (AC) operation
during on-peak periods. Notably, this strategy requires no additional
equipment or significant modifications to the existing AC systems,
making it relatively easy to implement in existing buildings. Moreover,
precooling may provide economic benefits because it enables residents
to take advantage of time-of-use electricity pricing by shifting part of the
cooling load to lower-cost periods [13].

Numerous studies have demonstrated that precooling can effectively
shift cooling loads from peak to off-peak hours, enhance peak load
reduction, reduce energy costs, and maintain indoor thermal comfort
[13]. These studies mostly used residential [14-18] and office buildings
[19-22] as case studies. Turner et al. assessed the precooling perfor-
mance of a one-story house with a light thermal mass across various U.S.
climate zones [14]. Their results showed that all the tested precooling
strategies successfully shifted at least 50 % of the peak-period cooling
loads to off-peak hours. Similarly, Stopps and Touchie simulated pre-
cooling and preheating setback controls for load shifting in high-rise
residential buildings in Canada and found that control strategy perfor-
mance varied among suites owing to differences in occupant behavior
[15]. They further recommended limiting the maximum temperature
setback during load shifting control to 3 °C to prevent frequent occupant
overrides [16]. Wang et al. developed an optimized precooling strategy
for a test house to minimize energy costs, achieving up to 50 % cost
savings compared with rule-based methods [23]. In addition to
simulation-based analyses, a few studies have employed field tests or
experimental methods to validate the effectiveness of precooling. Yin
et al. conducted field tests in 11 commercial buildings and observed
peak-period electricity demand reductions of 15-30 % [24]. Chen et al.
examined the potential of passive thermal mass and active storage sys-
tems in demand response programs using precooling and found that
passive thermal mass was effective for short-term events (up to 2 h),
whereas active storage was necessary for longer events [25]. Jiang et al.
conducted a four-month long-term field test in nine houses to evaluate a
model-predicted control-based precooling strategy, and the results
showed that the energy cost could be reduced by 28.7-51.3 % on hot
summer days [18]. These simulations and field studies demonstrate the
potential of precooling to reduce the peak loads and energy costs in
demand response programs. However, the aforementioned studies were
primarily conducted in the context of demand response, aiming to
reduce electricity consumption or minimize electricity costs, with in-
door thermal comfort being used as a constraint. These studies were
conducted under scenarios with uninterrupted power supply and
continuous air-conditioning operation.

In addition to evaluating the effectiveness of precooling measures,
several studies have investigated the potential factors influencing their
performance, including building insulation, structural and internal
thermal mass, AC system capacity, time-of-use electricity pricing, and
climate conditions. For example, Wang et al. investigated the influence
of the cooling capacity on precooling strategies across three capacity
levels and found that increasing the cooling capacity shortened the AC
system runtime but had little effect on the cooling energy consumption
or cost [17]. Lu et al. conducted a parametric analysis to analyze the
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effects of thermal mass, weather conditions, and energy prices on the
precooling performance [20]. Their results showed that buildings with a
heavy thermal mass offered greater potential for cost savings and peak
load reduction, albeit with an associated energy penalty. Their study
focused primarily on flexible cooling load management in commercial
buildings. Reza et al. analyzed the impact of various energy efficiency
measures on the energy cost of a precooling strategy and found that roof
insulation and lighting power density had the largest impact on energy
costs [26].

In summary, existing studies have extensively examined the effec-
tiveness of precooling in reducing peak loads and lowering energy costs
and have developed optimized operating schedules to achieve these
objectives. However, limited research has addressed the precooling
performance under combined heatwave and power-outage scenarios.
For example, one study evaluated the precooling effectiveness during
heatwaves, but the AC system remained in continuous operation, which
did not reflect the constraints under power-outage conditions [27].
Another study focusing on California suggested that heatwave-related
power outages longer than 2 h substantially increased the risk of in-
door overheating; however, this conclusion was based on conventional
AC operation without implementing precooling measures [28]. There-
fore, these two research questions remained unaddressed. The first is the
feasibility of applying precooling during heatwaves with power outages
and the extent to which precooling performance is influenced by various
factors in residential buildings. To address these questions, this study
developed an optimized precooling thermostat scheduling method using
a Bayesian optimization algorithm, aiming to minimize both indoor
overheating risks during outages and the economic burden on residents.
Second, sensitivity and parametric analysis was conducted to quantify
the impacts of the building design parameters, cooling capacity, and
outage event characteristics on overheating and energy cost. These
findings guide both policymakers and residents to maximize the benefits
of precooling strategies for reducing indoor overheating risks during
such events.

2. Methodology

The methodology of this study consisted of three primary steps, as
illustrated in Fig. 1. The first is the setting of the scenario. The scenario
set in this study was a historical five-day heatwave and power-outage
event. A prototype high-rise residential building was selected as a case
study. This scenario provides the simulation boundary conditions and
outage profiles used as inputs for the subsequent strategy development.
The second step was to develop an optimized precooling strategy and
evaluate its performance related to thermal discomfort and energy costs.
Finally, the impacts of building design parameters, cooling capacity, and
characteristics of power-outage events on the efficacy of precooling
were investigated using global sensitivity and parametric analyses.

2.1. Scenario setting

2.1.1. Weather data

The selection of heatwave events follows the definition proposed by
the China Meteorological Administration, where a heatwave was
defined as a period of three consecutive days with the daily maximum
temperatures exceeding 35 °C [29]. Chengdu experienced a severe
heatwave from August 8 to 24, 2022. A continuous five-day period was
selected from this event, during which the daily maximum temperature
exceeded 38 °C. The dry-bulb temperature and relative humidity of the
selected heatwaves are shown in Fig. 2. Weather data for the selected
heatwaves were collected from the ERAS5 dataset. ERA5 is a
fifth-generation reanalysis climate database produced by the European
Center for Medium-Range Weather Forecasts model, which has been
widely used for building simulation analysis [30]. The original meteo-
rological variables provided by the ERA5 dataset included the dry-bulb
temperature, dew point temperature, 10 m wind over the Earth’s
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Fig. 1. Methodology framework for this study.

surface, global horizontal irradiance, and direct normal irradiance.

2.1.2. Building energy model

This study selected a prototype high-rise tower residential building
in a hot summer and cold winter climate zone (Chengdu, China) to
evaluate the optimized precooling framework and conduct a sensitivity
analysis. High-rise apartments are one of the most typical housing types,
particularly in megacities with large populations. The geometric model
and layout of the prototype building are shown in Fig. 3. Each apartment
consisted of several types of zones, including residential bedrooms,
living rooms, kitchens, and bathrooms.

The building envelope thermal properties of the prototype buildings
were set according to the building energy efficiency standard for hot
summer and cold winter climate zones released in 2010, as listed in
Table 1. The airtightness was set to 0.6 ACH, assuming that the room
remains air-conditioned for most of the time except during power out-
ages, and occupants are unlikely to open windows under such conditions
to minimize heat exchange with the outdoor environment. This value
also fell within the typical range of air change rates established in a
previous study on representative residential building models [31]. In

terms of the internal heat gain, a typical household was assumed to
contain two adults. Occupancy schedules are determined based on a
typical daily routine in which at least one person is assumed to remain at
home throughout the day [32]. The lighting and electric equipment
schedules follow the occupancy patterns. In addition, this study also
analyzed the impact of a 10 % increase in internal heat gains on the
precooling performance. The detailed results of this analysis are pre-
sented in Appendix A.

For the AC system, this case study applied a split air conditioner,
which is a typical AC system in residential buildings. In each household,
the living room and bedroom were equipped with split air conditioners.
The living room had an area of 24 m?, and the default cooling capacity
was set to 3.6 kW. Once the cooling capacity was determined, precooling
strategies were implemented based on this capacity. Furthermore, the
default setting of internal thermal mass of furniture is 98,010 J/(m2~K),
and the surface area was twice the floor area. These values are adopted
from previous studies [27,33].

This study used EnergyPlus v24.2, a simulation engine, to develop
the building energy model. This simulation tool, supported by the
United States Department of Energy, and is an open-source program that
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Default cooling setpoint [ °C]

models heating, ventilation, cooling, lighting, water use, renewable
energy generation, and other building energy flows.

2.2. Optimized precooling strategy

An optimized precooling strategy was developed for a historical five-
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Table 1 day heatwave event that coincided with a power outage in 2022. The
able o . power-outage event lasted from 7:00 to 13:00. The precooling strategy
Key parameters for building energy modeling. ] . . S .
was implemented using a day-ahead rolling optimization scheme in
Parameters Value which the optimal temperature setpoints and start time were generated
Average window-to-wall ratio [—] 0.27 each day based on the daily weather conditions and internal heat gain
U-value of exterior wall [W/! (mz'zK)] 0.8 profiles. It should be noted that precooling was applied only to the living
U-value exterior window [W/(m™K)] 3.0 room because nighttime precooling could affect the thermal comfort of
U-value of roof [W/(m*K)] 1.0 ) . . .
Window SHGC 03 occupants’ sleep in the bedroom. Besides, occupants are likely to natu-
Lighting power density [W/m?] 4.0 rally choose the room that offers the most comfortable thermal envi-
Equipment power density [W/m?] 5.0 ronment, which would most probably be the pre-cooled living room.
Airtightness [ACH] 0.6 Therefore, occupants were assumed to most probably stay in the living
Rated cooling capacity [kW] 36 room during periods of power outages
Air conditioner COP [—] 3.0 g P p €S-
25

2.2.1. Optimization problem formulation

To optimize the precooling strategy of a residential thermal zone
during summer mornings, a multi-objective optimization problem was
formulated to minimize the daily cooling electricity cost and thermal
discomfort. The decision variables included the precooling temperature
setpoint and start time. Once precooling begins, the air conditioner
operates continuously until a power outage begins, maintaining a con-
stant thermostat setpoint to maximize thermal storage. The objective
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function is defined as shown in Eq. (1). This formulation seeks to
determine the globally optimal precooling setpoint and start time within
the optimization horizon.

min f(Tset7 t) =w 'CPMV,..,",. + W2-Cac_cost_norm (€9)

Here, T, denotes the precooling temperature setpoint ( °C) during
the precooling period and serves as a decision variable. It is constrained
between 20.0 °C and 26.0 °C, with a resolution of 0.5 °C. The variable t
represents the start time of pre-cooling, ranging from 01:00-07:00, with
a resolution of 0.5 h. Cpyy_norm iS the normalized thermal discomfort
measured by the predicted mean vote (PMV), as shown in Equation (2);
Cac_cost_norm 1S the normalized daily electricity cost (CNY) of the AC
system and accounts for the dynamic electricity pricing and cooling
energy consumed, as shown in Eq. (3). The two objective terms in the
optimization function, including thermal discomfort and daily cooling
electricity cost, were normalized before aggregation to eliminate the
influence of unit differences and ensure comparability. The weighting
factors w; and w; refer to the relative significance of minimizing energy
cost and maintaining thermal comfort, respectively. In this study, both
weights were set to one (w; = w, = 0.5) to give equal significance to
energy cost and thermal comfort in the optimization process. In addi-
tion, the effects of different combinations of weighting coefficients on
the precooling optimization outcomes were examined. A sensitivity
analysis was conducted by varying the relative weighting between the
two objectives, and the comparison result is provided in Appendix B.

_ PMVCE — PMVCE,;,
" PMVCEox — PMVCE, i,

@

CrMViom

c _ Eac — Eac_min 3
AC_cost_norm — &= ( )
EAC_max - EAC_min

/ max(0, PMV(t) — PMViy)dt @

t

PMVCE =

Here, PMVCE is the cumulative predicted mean vote exceedance
hour, defined as a metric for quantifying indoor thermal discomfort. t;
and t, denote the start and end times of the power outage (h), respec-
tively, and PMV,;, denotes the PMV threshold for thermal comfort. In this
study, PMV was calculated assuming a metabolic rate of 1.2 met,
clothing insulation of 0.5 clo, and air velocity of 0.15 m/s, while the
mean radiant temperature was taken from the EnergyPlus simulation
results. PMVy, was set to 0.7, based on the comfort zone defined by ISO
7730 [34]. PMVCE,. and PMVCE,;, denote the maximum and mini-
mum values of PMVCE, respectively; E,c represents the daily total
electricity cost; Exc_max and Exc_min indicate the maximum and minimum
values of E4c, respectively.

The cooling electricity cost was calculated using the real-time-of-use
tariff in Chengdu during the summer of 2022. An off-peak rate of 0.239
CNY/kWh was applied from 23:00 to 07:00; a mid-peak rate of 0.497
CNY/kWh was applied from 07:00 to 14:00 and 21:00 to 23:00; and an
on-peak rate of 0.754 CNY/kWh was applied from 14:00 to 21:00.

2.2.2. Optimization algorithm

This study adopts a Bayesian optimization algorithm to solve the
optimization problem. The primary motivation for selecting this algo-
rithm was the complexity and computational expense of the building
energy model constructed using EnergyPlus. Despite simplifying the
optimization problem to only two decision variables, each evaluation
still requires an entire building performance simulation, which is time-
consuming. Bayesian optimization is a probabilistic global optimization
framework that is particularly suitable for problems in which objective
evaluations rely on expensive simulations, such as building energy
simulations. It uses a probabilistic agent model to approximate the true
objective function based on the data obtained from previous evaluations
[35]. Bayesian optimization is a type of prior-informed search that
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leverages the performance of previously evaluated hyperparameters to
guide the selection of subsequent candidates. In each iteration, a
Gaussian Process was fitted to the observed samples, and the resulting
posterior distribution was combined with an acquisition function to
determine the next sampling point. This algorithm improves the effi-
ciency of the optimization process by efficiently exploiting historical
information. This study used the Bayesian optimization Python package
Bayesian-optimization. The Bayesian optimization process was initialized
with 20 random samples to construct the surrogate model, followed by
50 iterations of guided sampling based on the acquisition function.

2.2.3. Cooling strategies for comparison

To evaluate the performance of the optimized precooling strategy,
two additional cooling strategies were selected for comparison. The first
is the baseline strategy, in which no precooling is applied. According to
the occupied schedule in the living room, the occupied hours are from
09:00 to 21:00, and the desired indoor air temperature in the summer is
25 °C. Therefore, the AC operates from 13:00 to 21:00, as it remains off
during the scheduled power outage from 07:00 to 13:00. The tempera-
ture setpoint is 25 °C. The second is a fixed precooling strategy, in which
the AC is scheduled with a constant setpoint of 25 °C and runs contin-
uously throughout the day, except during the outage period. Table 2
presents a brief introduction to the three cooling strategies.

2.3. Sensitivity and parametric analysis

To investigate the critical factors influencing the effectiveness of
precooling during power outage periods, three categories of factors were
considered: (1) building design parameters, (2) cooling capacity, and (3)
the characteristics of power outage events. Building design parameters
involve multiple uncertain variables with potentially nonlinear effects
and interactions and were therefore examined using a global sensitivity
analysis. The cooling capacity and power-outage events were analyzed
using a parametric approach because these factors are characterized by a
limited range of representative values.

2.3.1. Sensitivity analysis

Sensitivity analysis can be categorized into two types: local and
global. Local sensitivity analysis evaluates the effect of small perturba-
tions in a single input parameter on the output while keeping all other
parameters fixed, capturing only the local linear response and failing to
reflect nonlinearities or interactions over the full input space [36]. To
overcome these limitations, this study employed a global sensitivity
analysis using the Sobol method. This variance-based method de-
composes the variance of the model output into contributions attribut-
able to individual input parameters and their interactions [37]. The
Sobol method defines two critical indices: first-order and total-order.
The first-order index is the proportion of the output variance
explained by a single parameter, while holding all others fixed. A higher
first-order index indicates that the parameter has a strong independent
effect on output. However, in high-dimensional problems, first-order
indices alone may not fully explain the output variance because the
interactions between the parameters can be significant [38]. To address
this issue, Saltelli et al. introduced a total-order index that captures the
overall contribution of a parameter, including both its direct effect and
all interaction effects with other parameters [38]. By comparing the

Table 2
Cooling strategies in this study.

Strategy AC operation hours Temperature setpoint ( °C)

Baseline Regular cooling: 13:00-21:00 25

Fixed 00:00-7:00, 13:00-00:00 25

Optimized  Precooling: determined by Precooling period: determined by
optimization. optimization.

Regular cooling: 13:00-21:00 Regular cooling: 25
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first- and total-order indices, it is possible to distinguish between pa-
rameters with dominant direct effects and those whose significance
arises primarily through interaction effects.

The objective of the sensitivity analysis is to identify the building
design parameters that most significantly influence the effectiveness of
the precooling strategies. The parameters considered included external
envelope insulation, internal thermal mass, and airtightness. Table 3
summarizes the selected parameters and their corresponding ranges,
which were determined based on standard building practices and rele-
vant literature. In this study, variations in internal thermal mass were
achieved by modifying its surface area, while other properties, such as
density and specific heat, remained unchanged. The internal thermal
mass ranged from 0.5 to 4 times the room floor area. This range was
chosen to represent buildings with varying levels of internal thermal
storage, from sparsely furnished to heavily furnished spaces [33]. For
the range of airtightness, the air change rate was varied from 0.5 to 3.0
ACH. The lower limit corresponds to the minimum requirement in
Chinese standard for indoor air quality in residential buildings, and the
upper limit is determined by large-scale airtightness measurements of
Chinese residential buildings, which reported that the 95th-percentile
air change rate was below 1.5ACH, while the maximum value reached
3.1ACH in summer conditions [39]. Therefore, this study selected
3.0ACH as the upper limit representing older and poor airtightness
performance.

Sampling was performed using the Saltelli method, an enhanced
sampling strategy typically used in Sobol sensitivity analysis [40]. The
samples were generated based on the parameter ranges listed in Table 3.
For the Sobol index, the minimum sample size is N x (2k + 2), where N
is the base sample size, ranging from 16, 32, ..., 1024, and k is the
number of input parameters [40]. In this study, 3072 samples were used,
with N set to 256, balancing accuracy and computational cost. Sensi-
tivity analysis was performed using the SALib Python package [41].

2.3.2. Parametric analysis

The cooling capacity of an AC system is a critical factor influencing
the effectiveness of precooling strategies. Previous studies have shown
that the precooling performance decreases as the AC cooling capacity
decreases [27]. To investigate the impact of cooling capacity on pre-
cooling effectiveness, five representative cooling capacity levels were
considered: 0.5, 0.75, 1.0, 1.25, and 1.5 times the default capacity.
These values correspond to 1.8, 2.7, 3.6, 4.5, and 5.4 kW, respectively.
Each configuration was analyzed and compared to evaluate its influence
on precooling performance in terms of thermal discomfort and elec-
tricity cost.

For power outage events, two significant characteristics were
considered: the power outage duration and occurrence time. Outage
duration refers to the total period during which electricity is unavai-
lable, whereas the time of occurrence indicates the specific time of day
when the outage occurs. Both characteristics can directly affect the
ability of precooling to maintain thermal comfort during outage periods.
Based on these characteristics, three representative outage scenarios are
defined as follows:

a) Event 1: Power outage from 07:00 to 13:00 (default case).
b) Event 2: A power outage occurs from 13:00 to 19:00, coinciding with
the period of the highest outdoor air temperatures and peak solar

Table 3

Summary of building design parameters.
Parameter Range
U-value of exterior wall [W/(m*K)] 0.3-1.4
U-value of exterior window [W/(mZ-K)] 2.0-6.0
Window SHGC [—] 0.3-0.7

Ratio of internal thermal mass surface area to floor area [—] 0.5-4
Airtightness [ACH] 0.5-3.0
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radiation. This scenario was intended to evaluate the precooling
performance under the most severe weather conditions of the day.
c) Event 3: The outage extended to 12 h, from 07:00 to 19:00. This
prolonged blackout scenario was designed to evaluate the effec-
tiveness of precooling strategies under extended outage conditions.

3. Results
3.1. Results of the optimized precooling strategy

During the five-day heatwave, the optimized precooling strategy
showed variations in both the temperature setpoint and duration of
precooling, as shown in Fig. 4. The temperature setpoint was 20.5 °C on
August 11, and 21 °C on August 12 and 13, compared to 20 °C on August
10 and 14. The precooling duration also varied with time. On August 10,
13, and 14, the pre-cooling lasted for 7 h, whereas on August 11 and 12,
a shorter duration of 4.5 h was adopted. Notably, although the outdoor
temperature on August 10 was not the highest among the five-day
heatwave period, the optimized strategy adopted the longest precool-
ing duration with a lower setpoint of 20 °C. This is primarily attributed
to the absence of on the preceding day, which leads to internal heat
accumulation and requires extended precooling for effective cooling and
energy storage.

The simulation results for the indoor air temperature profiles of the
baseline, fixed, and optimized precooling strategies are shown in Fig. 5
(a). The baseline scenario had the highest indoor air temperatures, with
peak values exceeding 30 °C during the power outage period. The fixed
strategy reduced the temperature below 29 °C across the power outages.
In contrast, the optimized precooling strategy provided the most effec-
tive thermal mitigation, with the indoor air temperature remaining
around or even below 27 °C throughout the outage periods, lowering the
peak temperatures by up to 3.5 °C compared to the baseline and by 1.7
°C relative to the fixed strategy.

Fig. 5(b) shows the hourly cooling load profiles for the three cooling
strategies. The optimized precooling strategy required nighttime oper-
ation of air conditioners while significantly lowering the starting cooling
load after a power outage compared to the other two strategies. Addi-
tionally, the cooling loads during the afternoon period (13:00-21:00)
were also lower. These reductions indicate that the building successfully
stored a considerable amount of cooling energy in the thermal mass
during the precooling periods, effectively decreasing the cooling load
during the power recovery periods.

To quantitatively compare the performance of the three different
strategies, the electricity consumption, electricity cost, and PMVCE
during the heatwave are shown in Fig. 6. The optimized strategy
exhibited the highest total electricity consumption owing to the
extended operation of the air conditioner during nighttime hours for
precooling, with an increase of 41 %. However, this did not correspond
to a significant increase in electricity costs because the differences
among the three strategies were relatively small. This was primarily
because the cooling energy storage during off-peak hours helped reduce
cost increases, even though the total energy consumption was higher.
Therefore, the optimized precooling strategy did not impose an addi-
tional economic burden on the building occupants. The optimized pre-
cooling eliminated thermal discomfort during power-outage periods,
achieving a 100 % reduction in PMVCE compared with the baseline.
This indicates its substantial contribution to maintaining indoor thermal
comfort under heatwave conditions. The baseline yielded the highest
PMVCE value, indicating the highest overheating risk during power
outage periods, while the fixed strategy provided moderate improve-
ment in both cost and thermal comfort but remained less effective than
the optimized precooling strategy. Overall, these results demonstrate the
effectiveness of the optimized precooling strategy in balancing thermal
comfort and cost efficiency despite the higher total electricity
consumption.
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Fig. 4. Cooling schedule of the optimized precooling strategy.

3.2. Impacts of building design parameters

The Sobol sensitivity analysis results for thermal discomfort and
electricity costs are presented in Fig. 7. The analyzed input variables
included the U-values of the external walls and windows, SHGC,
airtightness, and internal thermal mass. These parameters contributed to
the variance in thermal discomfort and electricity costs. In this figure,
the first-order index represents the direct contribution of each variable
to output variance, whereas the total-order index accounts for both the
individual effects and their interactions with other variables. A higher
Sobol index indicates a stronger influence of input parameters on the
output variance. Notably, the differences between the first-order and
total-order Sobol indices were small, suggesting that the effects of the
parameters were primarily direct rather than that resulting from
interactions.

For thermal discomfort, the external wall U-value, internal thermal
mass and airtightness were identified as the dominant contributors, with
total-order Sobol indices of 0.55, 0.24, 0.22, respectively. The SHGC had
a relatively minor effect, with a total-order index of approximately 0.05.
In contrast, the electricity cost was predominantly influenced by the
airtightness, which had a total-order Sobol index of 0.9, followed by the
external wall U-value (0.08), whereas the internal thermal mass and
window U-value had negligible effects. These results highlight that
external wall insulation, airtightness and internal thermal mass are key
to reducing thermal discomfort, whereas airtightness is the dominant
factor in cooling electricity costs.

3.3. Impacts of AC cooling capacity

This section investigates the impact of different cooling capacities on
the optimized precooling schedule for this building. Fig. 8 illustrates the
variation in the precooling setpoints and durations from August 10 to 14
under five different cooling capacity scenarios, corresponding to 1.8,
2.7, 3.6, 4.5, and 5.4 kW. The optimized precooling strategies varied
with the cooling capacity. As the cooling capacity increased, the pre-
cooling setpoint could be raised or the precooling duration shortened.
Nevertheless, once the cooling capacity exceeded 4.5 kW, the optimized
precooling strategy remained largely unchanged.

The indoor air temperature and cooling load profiles for the three
different cooling capacities are shown in Fig. 9, and the corresponding
cooling electricity consumption and costs are summarized in Table 4.
The results indicated that cooling capacity primarily affected cooling

speed. When the cooling capacity was 1.8 kW, it was sometimes insuf-
ficient to reach the desired temperature setpoint during the precooling
period. In contrast, cooling capacities of 2.7 kW or higher reduced the
indoor air temperature to the setpoint within approximately 2 h,
whereas the highest capacity (5.4 kW) reached the setpoint in less than
30 min. This demonstrates that a higher cooling capacity substantially
enhances the cooling speed.

However, the effect of the cooling capacity on mitigating indoor
overheating and reducing cooling electricity costs was found to be
relatively limited. As shown in Fig. 9 and Table 4, except for the 1.8 kW
case, the indoor air temperature trajectories during the outage periods
were almost identical across different AC sizes, and the PMVCE was
reduced to zero. The 1.8 kW case was an exception because the insuf-
ficient cooling capacity prevented the setpoint temperature from being
consistently reached during nighttime precooling. This resulted in a
higher initial air temperature before the outage and, consequently, a
greater overheating risk during the subsequent power-outage hours.
Regarding electricity consumption and cost, although a higher capacity
led to higher instantaneous cooling loads during precooling, the total
electricity consumption and associated costs were only slightly affected.
Specifically, increasing the cooling capacity from 1.8 kW to 5.4 kW
resulted in an approximately 8 % increase in cooling electricity con-
sumption and a 5 % increase in electricity cost.

3.4. Impacts of power-outage events

To further evaluate the effectiveness of the precooling strategy under
various power-outage scenarios, two additional events were analyzed.
Event 2 represented an afternoon outage (13:00-19:00) with a 6-hour
outage duration, during which precooling was conducted from 06:00
to 13:00. At the baseline of this event, air conditioner was assumed to
operate from 08:00 to 13:00 and from 19:00 to 21:00, with a tempera-
ture setpoint of 25 °C prior to the outage. Event 3 corresponded to a
prolonged outage lasting 12 h, from 07:00 to 19:00, with precooling
conducted from 0:00 to 07:00. For both events, the optimized precooling
strategy was implemented and compared with a no-precooling baseline.

The indoor air temperature and PMV profiles for these two events are
shown in Figs. 10 and 11. In Event 2, without precooling, the indoor air
temperature exceeded 30 °C, reaching a peak of 30.9 °C. The PMV values
rose above +1.0 and even reached +1.5 in some hours. With optimized
precooling, the temperature remained basically below 29 °C, with a
maximum of 29.5 °C, and the PMV values were generally within +1.0.
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Fig. 5. a) Indoor temperature and b) cooling load profiles of the three cooling strategies.
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Fig. 6. Electricity consumption, electricity cost, and PMVCE of the three cooling strategies.

76 % reduction, as shown in Fig. 12.

Consequently, the PMVCE decreased from 16.4 h to 3.9 h, representing a
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Fig. 7. First- and total-order of the Sobol index of input parameters for a)
thermal discomfort and b) energy cost (CNY).

In Event 3, the thermal discomfort became more severe. Without
precooling, the PMV exceeded +2.0, indicating a state of heat stress that
poses a considerable risk to occupant health. In contrast, with the
application of precooling, the indoor thermal risk was significantly
mitigated, with PMV peaks maintained around +1.0 and always below
+1.5. Accordingly, the PMVCE reduced from 83.9 h to 8.0 h, achieving a
90 % decrease. These results confirmed the effectiveness of optimized
precooling in mitigating overheating and enhancing indoor thermal
resilience during outages.

The effective duration of thermal comfort maintained by precooling
was also analyzed. In Event 2, the acceptable duration of thermal
comfort maintenance was approximately 2 h, whereas in Event 1

Building and Environment 291 (2026) 114235

(07:00-13:00 outage), it was 6 h. This difference reflects the effect of the
outage time. For an outage of the same duration beginning in the af-
ternoon, precooling is less effective owing to higher outdoor air tem-
peratures and greater solar gains. In Event 3, when the power outage
occurred in the morning and lasted 12 h, precooling could maintain the
indoor conditions within the comfort zone for approximately 6 h, except
on the first day, when it lasted only approximately 2 h. However, after
13:00, the indoor PMV values increased sharply, resulting in the highest
level of thermal discomfort.

In terms of electricity consumption and cost, the precooling scenario
consumed more electricity than scenarios without precooling. This also
led to an increase in power costs, with a 28 % increase in electricity costs
for Event 2 and 46 % increase in electricity costs for Event 3. Among the
three events, Event 2 exhibited the highest electricity cost, primarily
because precooling was conducted during daytime hours when elec-
tricity prices were relatively higher.

4. Discussion
4.1. Explanation of the impacts of building design parameters

The results of the Sobol sensitivity analysis show that the primary
factors influencing thermal discomfort and electricity costs related to
the precooling performance are distinct. External wall insulation is the
dominant contributor to thermal discomfort, followed by internal
thermal mass. During power outages, heat transfer through external
walls dominates the cooling energy loss, increasing both the indoor air
temperature and the mean radiant temperature, thereby exacerbating
thermal discomfort. Airtightness can increase thermal discomfort
through air exchange; however, its impact is relatively minor in this
study because of the upper limit considered (3.0 ACH). Internal thermal
mass primarily affects thermal discomfort by storing cooling energy
during precooling and slowing the rate of temperature rise as it shifts,
rather than reducing cooling demand.

Airtightness was identified as the primary contributor to electricity
cost. Poor airtightness accelerates the loss of cooled indoor air and the
infiltration of hot outdoor air, thereby increasing the cooling demand
and electricity consumption. In addition, it introduces additional latent
heat, which further increases the cooling load. The influence of external
wall insulation on electricity costs was relatively small. This is primarily
because of the thermal inertia of both the walls and the internal thermal
mass; when leveraged through precooling, the buffer temperature rises
and mitigates the peak cooling demand.

To place the results of this study into a broader research context, the
main sensitivity analysis findings are compared with those reported in
previous studies focusing on similar precooling applications. For
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Fig. 8. Optimized precooling strategies under varying cooling capacities.
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Table 4
Electricity consumption, electricity cost, and PMVCE of the optimized precool-
ing strategy under three cooling capacities.

Cooling Electricity consumption Electricity cost PMVCE
capacity (kwWh) (CNY)

(kW)

1.8 36.1 15.8 0.32
2.7 38.3 15.9 0

3.6 38.5 16.0 0

4.5 39.1 16.3 0

5.4 39.3 16.4 0

instance, a comparable study conducted in Australia reported that peak-
load reduction potential of precooling exhibited a strong sensitivity to
star-rating levels, reflecting improvements in both envelope perfor-
mance and airtightness can benefit precooling performance [42].
However, the study did not identify which specific envelope improve-
ments had the most important effect on peak-load reduction or cost
outcomes. Another similar study compared precooling performance

08/12 12:00 4

10
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08/13 06:00 4
08/13 12:00 4
08/13 18:00 4
08/14 00:00 4
08/14 06:00 -
08/14 12:00 4
08/14 18:00 4
08/15 00:00 4

. a) Indoor air temperature and b) cooling load profiles under different cooling capacities.

related to energy cost savings and peak load reduction under light,
medium and heavy thermal mass configurations, and found heavy
thermal mass was the most effective [20]. In comparison, the findings in
this study also reflect the effects of thermal mass on improving thermal
discomfort during power outages.

4.2. Sensitivity analysis under different cooling capacities

Fig. 13 presents the Sobol total-order sensitivity index of the pa-
rameters under the five cooling capacities. For thermal discomfort, the
external wall insulation consistently played a dominant role, whereas
the influence of airtightness decreased and that of the internal thermal
mass increased with a higher cooling capacity. At a low cooling capacity
(e.g., 1.8 kW), airtightness plays a more significant role than the internal
thermal mass because the limited cooling output makes indoor tem-
peratures highly sensitive to infiltration. As the cooling capacity
increased (e.g., 3.6 kW), enhanced precooling and greater thermal
storage utilization reduced this sensitivity, highlighting the need to
coordinate the cooling capacity with passive thermal characteristics to
fully leverage the benefits of precooling. Regarding the electricity cost,
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Fig. 10. a) Indoor air temperature and b) PMV profiles of precooling and without precooling during Event 2 (power outage: 13:00-19:00).

the sensitivity of the building design parameters varied little with
cooling capacity. Airtightness remained the most influential factor,
followed by the external wall insulation, whereas the effects of the other
parameters were negligible.

4.3. Interactions between cooling capacity and internal thermal mass

This section further investigates the interaction between the cooling
capacity and internal thermal mass during precooling. The selection of
the internal thermal mass was categorized into three levels—low, me-
dium, and high—corresponding to cases where the surface area of the
internal thermal mass was set to one, two, and four times the floor area,
respectively. For cooling capacity, five representative values were
considered: 1.8, 2.7, 3.6, 4.5, and 5.4 kW. By combining these two pa-
rameters, 15 configurations were simulated to evaluate the thermal
discomfort during the outage period under Event 3.

The results are illustrated by the heatmap in Fig. 14. The most severe
thermal discomfort occurred under the combination of the lowest

11

cooling capacity and lowest internal thermal mass, with a PMVCE of
13.38 h, while the combination of the highest cooling capacity and high
internal thermal mass minimized thermal discomfort, reducing PMVCE
to 0.38 h, highlighting the importance of coordinating cooling capacity
with internal thermal mass. The figure shows that a higher internal
thermal mass consistently reduced the PMVCE at a given cooling ca-
pacity. Similarly, for a fixed internal thermal mass, increasing the
cooling capacity reduces the PMVCE. However, the marginal benefits
diminish once the cooling capacity exceeds 4.5 kW, because further
increases provide little additional reduction in thermal discomfort. For
example, at a cooling capacity of 5.4 kW combined with a high internal
thermal mass, the PMVCE reached 0.38, which is only slightly lower
than that 0.40 observed at 4.5 kW, representing a 5 % reduction. This
indicates that, beyond this point, increasing the cooling capacity yields
minimal additional improvement in mitigating thermal discomfort.
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Fig. 11. a) Indoor air temperature and b) PMV profiles of precooling and without precooling during Event 3 (power outage: 7:00-19:00).

I Precooling

[ No precooling

Event2 Event3

Event 1

(4) IDAINd

Event3

Event2

Event 1

(AND) 3502 A31011309|3

Event3

Event2

Event 1

o o o o o
< m —

o~
(UM>) uondwnsuod A3101309|3

Fig. 12. Electricity consumption, electricity cost, and thermal discomfort during the two power-outage events.

12



X. Liu et al. Building and Environment 291 (2026) 114235

I AC=1.8 [ AC=2.7 [ AC=3.6 [ AC=4.5 [ AC=5.4

0.5
0.4
(V]
E
$ 0.3
|_
)]
0.2
0.1
0.0 o
§ & R
3 \<°'° &
? er
&
(2
&

B AC=1.8 e AC=2.7 e AC=3.6 [ AC=4.5 [ AC=5.4

o
o

ST Value
©
»

©
[N}

0.0-

b)

Fig. 13. Sensitivity variation of the input parameters for a) thermal discomfort during power outage and b) electricity cost (CNY).

12
Low thermal mass 13.38 9.23 8.68 8.53 8.50
10

g £
. L
Medium thermal mass -y O
6 >
=
o

-4

High thermal mass -  5.13 0.97 0.48 0.40 0.38 )

1.8 2.7 36 45 5.4
Cooling capacity (kW)

Fig. 14. PMVCE heat map under various cooling capacities and internal thermal mass levels.



X. Liu et al.
4.4. Implications for enhancing precooling effectiveness

The sensitivity analysis and simulation results provide valuable in-
sights for the effective implementation of precooling strategies in resi-
dential buildings. These implications can be summarized at three
complementary levels: building envelope retrofitting, occupant
behavior, and demand-side management during power outages.

4.4.1. Building envelope improvements

Sensitivity analysis indicated that external wall insulation has a
dominant impact on the effectiveness of precooling strategies, particu-
larly in mitigating thermal discomfort during power outages. The
external walls of several existing residential buildings suffer from poor
thermal performance owing to aging, material degradation, and the
absence of insulation [43,44]. This low thermal resistance leads to a
rapid indoor temperature rise and increased cooling energy losses,
undermining both the energy efficiency and practical benefits of pre-
cooling. Therefore, enhancing the external wall insulation in aging
residential communities is crucial. This can reduce heating and cooling
energy consumption while improving the resilience and effectiveness of
precooling strategies during heatwave events. In the context of urban
renewal, promoting insulation retrofits of external walls provides a dual
benefit by supporting sustainable energy upgrades and enabling the
successful implementation of advanced cooling measures, such as
precooling.

4.4.2. Occupant behavior advice

The sensitivity analysis also highlighted that building airtightness
plays a critical role in reducing cooling electricity consumption. Poor
airtightness can lead to uncontrolled infiltration through open windows,
door gaps, and shared ventilation shafts. Improving airtightness reduces
cooling demand and financial burden and prolongs the duration of
thermal comfort during subsequent outages. Residents can take practical
measures, such as keeping windows and doors closed, minimizing the
airflow between rooms with different thermal conditions, and avoiding
frequent door or window operations. By limiting this airflow, the pre-
cooling effect can be better preserved, thereby improving indoor ther-
mal comfort and reducing overheating risks during critical periods.

4.4.3. Demand-side management of power outages

Even with precooling, the timing and duration of power outages
critically affect indoor thermal conditions. Simulation results under the
precooling scenario show that if outages occur in the morning (starting
at 07:00), residents can tolerate up to 6 h without severe thermal
discomfort, whereas afternoon outages (starting at 13:00) should not
exceed 2 h. This difference can be primarily explained by solar heat gain
dynamics. As shown in Fig. C1, during afternoon power-outage event,
solar heat gains transmitted through exterior windows reach a peak
around 13:00-14:00 and subsequently remain at a relatively high level,
leading to the cooling energy stored earlier in the morning to be rapidly
depleted once the power outage occurs in the afternoon. This is also
reflected in the indoor temperature response: within the first hour after
the outage, indoor temperature rises by approximately 6.6 °C for the
afternoon event, whereas the corresponding rise is only about 4.3 °C for
the morning event. In addition, precooling performed in the morning
inherently competes against rising outdoor temperatures and increasing
solar heat gains, meaning that part of the cooling energy is consumed
rather than stored within the thermal mass. As a result, a morning
outage generally benefits more from precooling compared with an af-
ternoon outage.

Therefore, if a power outage is unavoidable, demand-side manage-
ment strategies should account for the outage timing and provide resi-
dents with advance notice, enabling them to precool their homes [28,45,
46]. Careful scheduling of outages and informing households in advance
can significantly reduce overheating risks during heatwaves.
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4.5. Limitations and future work

This study has several limitations. Fixed occupancy schedules and
typical internal heat gains were adopted to simulate the indoor air
temperature and cooling electricity consumption, which may not fully
capture the stochastic nature of occupant behavior throughout the day.
Future work should adopt stochastic occupancy models to better reflect
actual occupant behavior. Second, the findings were based on a single
high-rise residential case study located in Chengdu, which limits the
generalizability of the results to other building types and climate zones.
Comparative studies involving different building types and climate re-
gions would help investigate and extend the applicability of the pro-
posed precooling strategies. In addition, this study assumed that natural
ventilation remained closed in the target room, primarily based on the
consideration that occupants are likely to keep windows shut to main-
tain indoor comfort during power outages. However, window-opening
behavior can be uncertain in residential buildings, and natural ventila-
tion may influence the effectiveness of precooling [47]. Therefore,
future work is needed to quantitatively evaluate precooling performance
under stochastic window-opening behaviors and natural ventilation
scenarios. Finally, the performances of the precooling strategies were
evaluated through numerical simulations. A direct comparison with
existing studies was not conducted because most prior work focuses on
normal power-supply conditions, in which AC systems remain continu-
ously operated, and the building is not in a free-floating mode. There-
fore, the research scenario and boundary conditions in this study differ
from those in existing literature. Future studies should include field
experiments to verify the accuracy of the simulated results and assess the
practical effectiveness of the optimized precooling strategies in resi-
dential buildings.

5. Conclusions

This study investigated the effectiveness of adopting an optimized
precooling strategy in a prototype residential building during heatwaves
with power outages. A Bayesian optimization algorithm was employed
to develop a precooling thermostat setpoint schedule aimed at mini-
mizing both indoor overheating and cooling energy costs. Subsequently,
the impacts of the building design parameters were evaluated using
global sensitivity analysis, and the effects of cooling capacity and power-
outage event characteristics were explored through parametric analysis.
Over 3000 scenarios were simulated using the Sobol method. The sig-
nificant findings are summarized as follows.

1) The optimized precooling strategy demonstrated the most effective
mitigation of thermal discomfort compared with both the baseline
and fixed cooling schedules. In particular, indoor air temperature
was maintained below 27 °C during the outage, with peak temper-
ature reductions of up to 3.5 °C compared to the baseline and 1.7 °C
compared to the fixed strategy. However, the total electricity costs
did not increase significantly.

2) Sensitivity analysis revealed the distinct primary factors influencing
thermal discomfort and electricity costs. Thermal discomfort was
dominated by the external wall insulation, airtightness and internal
thermal mass. Notably, external wall insulation consistently played a
critical role in thermal discomfort mitigation across different cooling
capacity levels. In contrast, the electricity cost was primarily gov-
erned by airtightness, whereas the influence of other parameters was
relatively small. This result highlights the significance of maintain-
ing good room airtightness during power outages in reducing ther-
mal discomfort and electricity costs, and provides practical guidance
for occupant behavior.

An interaction between cooling capacity and internal thermal mass

was observed. Specifically, as the capacity increased, the effect of the

internal thermal mass became more significant while that of
airtightness diminished. The combination of the lowest cooling

3
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capacity and lowest internal thermal mass resulted in the most severe
thermal discomfort, with a PMVCE of 13.38 h, whereas the combi-
nation of the highest cooling capacity and internal thermal mass
produced the lowest thermal discomfort, with a PMVCE of 0.38 h.
However, when capacity exceeded a certain threshold (4.5 kW in this
study), further increases provided only marginal benefits, suggesting
that coordinated optimization of both parameters is more effective
than simply oversizing the cooling system.

4) The precooling performance was influenced by the timing and
duration of power- outage events. Specifically, morning outages can
last up to approximately 6 h without causing severe thermal
discomfort, whereas afternoon outages should be limited to no more
than 2 h. In terms of electricity costs, for a morning outage lasting 6
h, implementing precooling did not result in a significant increase
compared with no precooling. However, for afternoon outages, the
electricity costs increased by 28 %, and for morning outages
extending up to 12 h, the costs increased by 46 %.

This study demonstrates the potential of applying precooling stra-
tegies to residential buildings during heatwaves with power outage
events. The findings provide methodological support and behavioral
guidance for mitigating overheating risks using precooling under heat-
wave conditions and power outages.
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Appendix A. Impact of internal heat gain on precooling performance

To analyze the effect of internal heat gains on precooling performance, the internal heat gains from occupants, lighting, and equipment were
increased by 10 % relative to the default settings. The optimized precooling schedule during the selected heatwave period is in Table Al. Compared
with the precooling schedule obtained under the original settings, small changes in precooling schedules were observed on August 11, 12, and 13,
namely a 0.5-hour increase in the precooling duration and a 0.5 °C decrease of the setpoint. This means that increasing internal heat gains by 10 %
leads to a slightly higher precooling intensity. For thermal comfort during power outage, indoor temperature profiles remain largely unchanged, as
shown in Fig. A1, indicating that the tolerance duration during power outages is only minimally affected. This outcome can be explained by the fact
that internal gains primarily come from occupants, whereas lighting and plug-load equipment cease operation during power outages and therefore do

not contribute additional heat.

Table A1

The schedule of the optimized precooling strategy.

Date Temperature setpoint ( °C) Precooling time (h)
2022/8/10 20 7

2022/8/11 20.5 5.5

2022/8/12 20.5 4

2022/8/13 20.5 7

2022/8/14 20 7
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Fig. Al. Indoor air temperature profiles under two internal heat gain scenarios.
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Appendix B. Influence of objective function weights

To evaluate how the weighting between thermal discomfort during power outages and electricity cost influences the precooling performance, a
sensitivity analysis was conducted by varying the weighting coefficients of the two objectives. The weighting coefficients w; and w, correspond to
thermal discomfort and electricity cost. Across scenarios 1 to 4, the value of w; increases from 0.5 to 0.8, while w, decreases from 0.5 to 0.2
accordingly. This shift reflects the fact that, during outage periods, maintaining habitable indoor conditions is essential for occupants’ thermal safety,
while electricity cost becomes a secondary concern. For each configuration, the corresponding optimized precooling strategy was obtained, and the
results are presented in Table B1.

These results reveal that even under the default setting with equal weight configuration (w; =wy = 0.5), thermal discomfort was already reduced
to a relatively low level, with PMVCE of 0.76 h. When the comfort weighting increased, PMVCE decreased to 0.52 h, indicating a moderate
improvement. However, further increasing the comfort weighting did not lead to additional reductions. Regarding electricity cost, it remained nearly
unchanged across all weighting configurations. This finding indicates that thermal discomfort and electricity cost may not be in a strict trade-off
relationship. Instead, there exists a zone of synergy where precooling simultaneously improve thermal comfort without incurring additional en-
ergy cost. As a result, adjusting the weighting coefficients does not dramatically change the optimal solution.

Table B1
Precooling performance of four weighting configurations.

Configuration w1 wa Electricity cost (CNY) PMVCE (h)
1 0.5 0.5 16.28 0.76
2 0.6 0.4 16.27 0.58
3 0.7 0.3 16.26 0.52
4 0.8 0.2 16.27 0.52

Appendix C. Heat gain dynamics of window solar radiation and wall convection

To further explain the differences in precooling performance observed between the two power-outage events, heat-flux related outputs were
exported from the simulation. Specifically, heat gain rates per unit area of window-transmitted solar radiation and interior wall-surface convection
were extracted and analyzed to clarify their combined influence on precooling performance, as shown in Fig. C1. The window-transmitted solar
radiation rate begins increasing shortly after sunrise and reaches a peak of approximately 12 W/m? around 13:00-14:00, while remaining at a
relatively high level for several hours in the afternoon. However, the wall-surface convection heat gain rate is much smaller in magnitude and rises
more slowly during the power outage period. It should be noted that positive values of the wall convection heat gain rate indicate that heat transferred
from the wall into the indoor air, whereas negative values reflect heat being absorbed by the wall.
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Fig. C1. Heat gain rates of window-transmitted solar radiation and exterior wall convection under a) Event 1 and b) Event 2.
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