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A B S T R A C T

As there is a lack of resistance-capacitance (RC) modeling method and framework for universal applicability and 
standardized implementation to multizone building simulation practices, a novel hybrid RC modeling approach 
that combines physics-based principles (forward modeling) with real-world data calibration (inverse modeling) 
for building energy simulation is presented in this study. A simulation engine called RCBldEng that combines 
theoretical building physics with real world calibration capability is developed. Four RC model configurations 
are proposed and evaluated for different building types and thermal behaviors (4R1C, 6R1C, 7R1C, and 7R2C) 
with increasing model complexity. The EnergyPlus simulations of two prototype buildings and an educational 
building case study in the real world are used to test and validate the performance of the simulation engine. The 
results indicate that the inclusion of interzonal thermal coupling and dual capacitance mechanisms (7R1C and 
7R2C) substantially improves prediction accuracy leading to R2 values of up to 98.78% for office building cooling 
load prediction against EnergyPlus. For simplified building simulation model, configurations such as the 4R1C 
model are suitable, but the 7R2C model can better represent the thermal behavior of buildings with high effective 
thermal mass and multiple zones. Moreover, the differential evolution algorithm turns out to be an effective 
choice for model calibration for existing buildings, and real-world operational uncertainties due to seasonal 
variations can be important bias sources. It is shown that the computational efficiency of RCBldEng can be a 
competitive candidate in performing building simulation for preliminary design stage and optimization 
applications.

1. Introduction

How architectural design and engineering teams make rapid and 
effective green low-carbon architectural design decisions and apply 
energy-saving technologies while ensuring a good built environment has 
become an indispensable problem in achieving sustainable goal in the 
building sector [1,2]. Among them, building thermal load and energy 
consumption simulation calculations are essential methods and means 
for accurately evaluating energy consumption and carbon emission 
levels during the operation phase of a building when combined with 
appropriate emission factors and grid data [3]. Building energy simu
lation tools like EnergyPlus provide accurate thermal load predictions 
but require substantial computational resources, particularly when 
evaluating multiple design alternatives during early design stages [4]. 
This computational burden limits architects and engineers from con
ducting the exhaustive parametric studies essential for optimizing green 
building performance [5]. Considering this, reduced-order resistance-
capacitance (RC) network models offer a promising alternative by 

dramatically reducing simulation time while maintaining acceptable 
accuracy. However, existing RC modeling approaches face challenges: 
pure forward models lack calibration capability for existing buildings, 
while inverse data-driven methods cannot be applied to new designs 
without operational data. This study addresses this gap by developing 
RCBldEng - a hybrid RC modeling engine that combines theoretical 
building physics principles with real-world data calibration, enabling 
both new building design optimization and existing building retrofit 
analysis with computational efficiency 10–15 times faster than tradi
tional tools.

A novel hybrid RC building modeling approach is proposed in this 
study, which combines forward building physics principles (e.g. RC 
theory) with real world data calibration (inverse modeling). What dis
tinguishes this approach from existing RC modeling methods is the 
methodological integration that enables dual applicability within a 
single framework. Traditional RC modeling studies employ either for
ward methods—calculating parameters directly from known building 
physics properties—or inverse methods—identifying all parameters 
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through data-driven optimization of measured performance. The hybrid 
approach developed in this study differs fundamentally in three key 
aspects: (1) Selective parameter treatment: physics-based parameters 
(envelope thermal properties, geometry) are calculated using forward 
modeling, while uncertain parameters (effective thermal capacitance, 
infiltration rates) are calibrated through inverse optimization, rather 
than treating all parameters uniformly; (2) Universal applicability: the 
same modeling engine serves both new building design scenarios (where 
physical properties are specified but no operational data exists) and 
existing building analysis (where measured performance data enables 
calibration); (3) Progressive model framework: four distinct RC config
urations (4R1C through 7R2C) are systematically developed and vali
dated, with explicit model selection guidance based on building 
characteristics, interzonal coupling importance, and accuracy re
quirements. Different from traditional methods solely based on forward 
physics-based calculations or inverse data-driven parameter identifica
tion, the hybrid approach makes the model applicable to both new 
building design scenarios for which physical properties are known and 
existing building analysis for which calibration data is available.

2. Literature review

Current research efforts aimed at reducing building energy con
sumption focus on areas such as green building scheme optimization [6], 
building energy system optimization control [7], renewable energy 
application [8], and fault modeling analysis [9]. Typically, building 
energy simulation models can be categorized into white-box, black-box, 
and gray-box models. The white-box model is based on the conservation 
equations of mass, energy, and momentum. A notable feature of the 
white-box model is that each parameter has solid physical significance, 
hence it is also referred to as physics-based model. Basic inputs for the 
white-box building energy consumption model generally include 
building envelope structure, information on personnel and equipment 
schedules, HVAC system parameters, building environmental parame
ters, etc. The downside is its numerous input parameters, and lengthy 
modeling and calculation times, although the simulation results are 
relatively accurate. Current mature white-box model software includes 
EnergyPlus [10], TRNSYS [11], DeST [12,13], and eQuest [14].

The black-box model usually refers to the data-driven modeling 
method. Establishing an accurate black-box model requires abundant 
and high-quality training data and an appropriate algorithm [15]. 
Black-box modeling does not require researchers to have specialized and 
in-depth engineering knowledge background because it is a mapping of 
relationship between input and output data. Moreover, the black-box 
model has strong adaptability. The models can adjust with changes in 
training data. The drawbacks of the black-box model are also evident: 
high data quality requirements, low interpretability, high model 
training costs, and inability to be generalized to other buildings. For 
heating, ventilation, and air conditioning (HVAC) systems, the 
black-box model is mainly used for energy consumption estimation or 
load prediction, which can then be used for control, energy manage
ment, etc. Typical algorithms include linear regression [16], 
change-point linear methods [17], neural networks [18], tree-based 
algorithms [19], and support vector machines [20,21]. Recent de
velopments in data-driven building energy modeling have expanded to 
include deep learning architectures, digital twin frameworks, and 
hybrid physics-data approaches. Transformer-based models and graph 
neural networks have shown promise in capturing complex temporal 
and spatial dependencies in multizone buildings [22,23]. Digital twins 
integrating real-time data with physics-based models are increasingly 
deployed for building energy management and predictive control [24]. 
These emerging approaches demonstrate the growing trend toward 
combining physics-based knowledge with data-driven techniques, 
which aligns with the hybrid modeling philosophy adopted in this study. 
The gray-box model, on the other hand, combines the features of both 
white-box and black-box models and is also known as a reduced-order 

model or a simplified model [25].
Compared to the black-box model, the gray-box model has physical 

significance and is easier to interpret. Compared to the white-box model, 
its model is simpler with lower computational costs. Among them, the 
resistance-capacitance (RC) model is the most widely studied and 
applied gray-box model. The development of RC models for building 
thermal simulation has a rich history dating back several decades. The 
RC model is established through the circuit analogy, wherein parameters 
R analogous to resistance represent building thermal resistance, and 
parameters C analogous to capacitance represent building thermal 
capacitance. While connecting nodes represent temperature, and the 
temperature difference between nodes is analogous to the voltage dif
ference in circuits. The order of the RC model depends on the number of 
Cs, because for each C, its control method includes a differential equa
tion [26]. Currently, common RC model establishment methods include 
forward and inverse methods.

2.1. RC-based modeling for building energy simulation

Most of the current building load or energy consumption modeling 
based on the RC model requires the use of historical load or energy 
consumption data, with the main work being the parameter identifica
tion process of the RC model. This method is commonly referred to as the 
inverse method, which focuses on using data-driven methods to obtain 
resistance (R) and capacitance (C) values. In the domain of inverse 
modeling for buildings, ASHRAE's Inverse Model Toolkit (IMT) repre
sents an important contribution to the field. Developed as part of 
ASHRAE Research Project 1050 [27], the IMT provides standardized 
implementations of linear, change-point linear, variable-base degree-
day, and multi-linear regression data-driven models specifically 
designed for analyzing building energy consumption data.

Currently, data-driven methods for inversely determining system 
parameters mainly include regression algorithms [28,29], Gaussian 
regression models [30], sequential quadratic programming [31], and 
genetic algorithms [32,33]. Tian et al. invented a building dynamic 
room temperature prediction method based on the equivalent RC model, 
using a genetic algorithm (GA) for step-by-step model parameter iden
tification to obtain a parameter-determined equivalent RC model for 
predicting dynamic average room temperature [34]. Massa Gray and 
Schmidt proposed a hybrid model that combines the Gaussian regression 
model as part of machine learning with the 4R4C model to simulate 
building energy consumption of a single-zone office building in Stutt
gart, Germany, which is heated and cooled by radiators and chilled 
ceilings. The study found that, in terms of energy consumption predic
tion, the hybrid method has better predictive performance compared to 
the Gaussian-process-only or RC-only model [30]. Shen et al. adopted 
genetic algorithm to calibrate RC models for building thermal load 
calculation (sensible load) and energy use simulation under a changing 
future climate for retrofit optimization purposes at both building scale 
[35] and regional scale using archetype-based bottom up modeling [36,
37]. Li et al. established a radiating floor-water coupled 2R1C model for 
a radiant heating system, using genetic algorithm to identify optimal 
lumped thermal parameters including thermal resistances and capaci
tances from experimental data. The study focused on sensible heating 
loads only and included a simplified system model for the radiant floor 
heating system. The parameter identification process involved opti
mizing multiple RC parameters simultaneously from measured temper
ature and energy consumption data, addressing the inherent challenge 
of isolating individual thermal parameters from coupled system re
sponses [38]. The above studies used various data-driven methods for 
RC model parameter identification (determining the R and C values). 
Moreover, the size of the training dataset has a significant impact on 
system identification. The time span of the training set ranges from as 
short as 7 days [28] to as long as 60 days [39]. Massa Gray and Schmidt 
compared Gaussian processes with a physics-based gray-box RC model, 
finding that while Gaussian processes achieved better accuracy during 
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occupied periods, the RC model performed more consistently across 
different operational conditions [40]. However, their referenced build
ing energy use data that was used to calibrate the RC model is simulated 
by TRNSYS instead of metered data of a real building. The premise of 
using the inverse method is the appropriate calibration algorithm and a 
large amount of experimental data to obtain reasonable system param
eters and establish an energy consumption prediction model. Recent 
advances in inverse modeling have increasingly incorporated machine 
learning techniques and uncertainty quantification methods. Bayesian 
calibration approaches have gained prominence for their ability to 
quantify parameter uncertainty while optimizing model predictions [41,
42]. Physics-informed neural networks have emerged as promising tools 
for building energy modeling, combining data-driven learning with 
physical constraints [43]. Ensemble-based methods have also been 
developed to address prediction uncertainty in calibrated building 
models [44]. While these advanced techniques offer sophisticated un
certainty quantification, they often require substantial computational 
resources and expertise. In contrast, the differential evolution-based 
approach proposed in this work provides a balance between calibra
tion effectiveness, computational efficiency, and ease of implementa
tion, making it particularly suitable for practical building energy 
applications.

Another way to establish an RC model is the forward method, which 
establishes a thermal balance model for the building by defining 
building thermal parameters such as the thickness of the enclosure 
structure, heat transfer coefficient, and thermal storage heat capacity. In 
our previous work [33], we demonstrated that considering thermal 
transfer between multiple thermal zones can significantly impact the 
accuracy of RC model predictions for building load and indoor tem
perature, which motivated the development of the interzonal thermal 
coupling models presented in this study. R and C values are typically 
obtained based on fundamental heat transfer principles including 
conductive, convective, and radiative heat transfer through building 
envelope components (walls, windows, roofs), thermal mass properties 
(density, specific heat capacity, thickness), and surface heat transfer 
coefficients, or alternatively through field measurements of temperature 
and energy consumption data. In urban block-scale microclimate 
research, Bueno and others proposed a city canopy and building energy 
consumption prediction model based on the forward RC model to study 
the impact of urban heat island effects on building energy consumption 
[45]. Regarding building-scale energy consumption simulation, Vivian 
et al. compared a simplified 7R2C RC model against TRNSYS simulations 
for a single-zone residential building under four European climates 
(Continental, Mediterranean, Oceanic, and Subarctic) [46]. The hypo
thetical case study building was a single-floor structure with typical 
residential envelope characteristics and windows. The RC model pa
rameters were calibrated using building physics principles rather than 
inverse methods, and the results showed good agreement with TRNSYS 
energy consumption predictions across different climate zones. The 
premise of using the forward method is to obtain building physical pa
rameters (envelope thermal properties, geometry, thermal mass char
acteristics) to determine the RC network parameters (thermal 
resistances and capacitances), building operation conditions (occupancy 
schedules, internal loads, weather conditions), and establish the 

building thermal model that characterizes the building's thermal 
behavior. The literature search reveals that while RC thermal network 
models have a rich history dating back to early pioneers like Paschkis 
(1942) [47] and Robertson and Gross (1958) [48] who developed 
foundational RC approaches that later evolved into TETD/TA and 
CLTD/CLF/SCL methods, current research using forward RC model 
methods specifically for multi-thermal zone whole-building load simu
lation at the building scale still remains limited.

2.2. Whole-building energy simulation based on RC model

Table 1 summarizes the current building energy simulation models 
and platform development based on the RC model theory. Giretti et al. 
developed an energy consumption prediction model based on a three- 
order RC model in Modelica, which includes building modules, air 
conditioning modules, personnel information modules, and weather 
modules, and established a model parameter calibration process [49]. 
Coninck et al. established building models, thermal zone models, and 
air-conditioning models based on the Fastbuildings in the Modelica 
standard library. Using the Gray-box library in Python, they separately 
established energy consumption prediction models for single thermal 
zones and double thermal zones [50]. Remmen et al. established a 
reduced-order urban-scale building energy consumption prediction tool 
(TEASER) in Modelica, addressing issues of long computation time and 
large errors in urban-scale energy consumption predictions [51]. 
RC_BuildingSimulator is a building energy consumption simulation tool 
based on the Python programming language. This model is established 
based on the ISO 13790 standard recommended model and is a single 
thermal zone load simulation calculation tool [52]. However, the tool is 
not easy to use due to limited access to building modeling inputs. 
Additionally, there are some energy consumption simulation tools based 
on the RC model developed in C++ and R language [53].

However, current research on multi-thermal-zone RC models rarely 
considers the coupled heat transfer issue between thermal zones. For 
example, Bacher and Madsen developed a multiple thermal zone RC 
model using inverse parameter identification based on data from a 
single-story experimental building, but their approach treated each zone 
independently without modeling interzonal heat transfer, limiting its 
applicability to buildings with significant thermal coupling between 
zones [54]. Similarly, Giretti et al. established a four-order RC model for 
energy consumption prediction that includes multiple building modules 
but does not account for thermal interactions between adjacent zones, 
which can lead to significant prediction errors in buildings with 
open-plan layouts or shared thermal masses [49]. A preliminary attempt 
by the author indicates that considering the thermal transfer between 
multiple thermal zones can significantly impact the accuracy of the RC 
model's predictions of the load and indoor temperature within a build
ing's thermal zone [33]. These limitations highlight the need for RC 
models that explicitly represent interzonal thermal coupling, which is a 
key contribution of our proposed 6R1C, 7R1C, and 7R2C models.

As the number of thermal zones increases, the complexity of the 
model also increases, which will put pressure on the computational cost. 
Recent studies have demonstrated that computational time for multi
zone building simulations can increase exponentially with zone count, 

Table 1 
Current progress on RC based building energy simulation tools.

Tool name Subject Order of 
the model

Model 
type

Thermal 
zone

Load 
calculation

Energy 
calculation

Thermal comfort 
calculation

Automated model 
calibration

Platform Ref

FastBuildings Building Multi- 
order

Inverse Multiple ✓ × × ✓ Modelica [50]

RC_BuildingSimulator Building First Forward Single ✓ ✓ × × Python [52]
ISOmodel Building First Forward Single ✓ ✓ × × C++ [53]
Giretti model Building Third Inverse Single ✓ ✓ × ✓ Modelica [49]
TEASER Urban Third Forward Multiple ✓ × × × Python/ 

Modelica
[51]
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particularly for detailed energy models [55,56]. Therefore, reasonable 
model order reduction and solution algorithms are needed to solve 
multi-thermal-zone problems [57,58]. Overall, most of the existing 
related research is limited to the development of single thermal zone 
models or multizone models with limited zones and lack universal tool 
that can be widely applied to RC modeling for buildings [25]. Their 
building simulation functions are usually incomplete (such as lack of 
energy consumption calculations, thermal comfort models and calcula
tions, and automatic model calibration functions), and the computa
tional accuracy does not look promising. Moreover, by treating 
multizone building as single thermal zone building can lead to biased 
simulation results [59]. The fundamental problem lies in the current 
lack of a comprehensive, accurate, and universally applicable forward 
RC model-based multi-thermal-zone building energy consumption 
modeling method and scheme.

2.3. Motivation and contribution of this research

Since current research based on RC models mainly focuses on the 
inverse method, and research related to the forward method is currently 
only for single thermal zone buildings (or simplifying multizone build
ings into a single model), its practicality and applicability cannot 
address the huge computational cost incurred by “massive simulation 
scenarios” in the process of building energy-saving design optimization 
and iteration. Recent reviews of gray-box modeling approaches [25,60] 
have identified the need for comprehensive, validated RC modeling 
frameworks that can handle multizone buildings with interzonal ther
mal coupling while maintaining computational efficiency. In some of the 
latest research, advanced building simulation methods increasingly 
emphasize the integration of physics-based and data-driven approaches 
[61], which motivates our hybrid modeling strategy. The fundamental 
gap here for RC modeling lies in the lack of a unified framework that can 
leverage both theoretical building physics and empirical calibration 
data depending on data availability. In view of this, this study aims to 
develop a fast simulation method for building multi-thermal-zone 
building energy consumption based on hybrid RC model that com
bines theoretical building physics principles (forward modeling) with 
real-world data calibration (inverse modeling), which has robust model 
interpretability, fast solution speed, and affordable calculation bias. The 
research attempts to explore the computational cost and accuracy of the 
model algorithm at different model orders, solution methods, and 
building types.

The development of the proposed dedicated simulation engine 
(RCBldEng) in this research helps address a critical gap: existing RC 
modeling implementations lack the integration of forward and inverse 
capabilities within a unified, accessible tool. While academic studies 
have demonstrated various RC modeling techniques, practitioners face 
significant barriers including: (1) absence of standardized multizone RC 
simulation tools with comprehensive building physics modules, (2) 
fragmented implementations requiring users to develop custom models 
for each application, and (3) lack of automated calibration workflows 
for existing buildings. RCBldEng overcomes these limitations by 
providing a complete, validated simulation engine with structured text- 
based inputs, automated parameter optimization, and progressive model 
complexity options. The developed engine can provide architects and 
engineers with a lightweight alternative for low-cost modeling, fast 
simulation, and comparison of building energy consumption, and a non- 
user-intervention module for automatic calibration of existing building 
model parameters. Executable program on Windows platform has been 
developed based on the proposed modeling method and published on 
GitHub (can be found in the Code Availability section). The research 
deliverables of this work can be generalized and widely applied to rapid 
iteration and comparative evaluation of low-energy consumption 
building design schemes for new and existing buildings. RCBldEng has 
prospective practical application value in building design, energy-saving 
and emission reduction optimization related problems.

Hence, the primary objectives of this research are threefold: (1) to 
develop and validate four progressive RC model configurations (4R1C 
through 7R2C) that systematically incorporate interzonal thermal 
coupling and dual capacitance mechanisms for improved multizone 
building prediction; (2) to create a hybrid modeling framework inte
grating forward physics-based calculations with inverse data-driven 
calibration, enabling universal application to both new building 
design and existing building retrofit; and (3) to implement these 
methods in RCBldEng, a computationally efficient simulation engine 
with comprehensive validation across building types and climate zones 
to establish practical model selection guidelines. Fig. 1 provides a visual 
summary of the research rationale, showing the challenges in current 
building simulation approaches, the proposed hybrid RC modeling so
lution, and the expected benefits of this methodology.

3. Methodology

3.1. The proposed hybrid RC models

3.1.1. RC model without interzonal thermal coupling
The proposed 4R1C model has two temperature nodes (see Fig. 2), 

which are Ta and Tm. Ta and Tm represent internal air node and thermal 
mass node, respectively. 

To − Ta

Rv
+

Tm − Ta

Rim
+ Qhvac + Qair = 0 (1) 

Cm
dTm

dt
=

To − Tm

Rwin
+

To − Tm

Rex
+

To − Tm + (Qhvac + Qair)Rv

Rim + Rv
+Qsol + Qint

(2) 

where. 

To: Outside air temperature (K);
Ta: Indoor air temperature of the zone (K)
Tm: Temperature of the building's envelope thermal mass (K)
Rv: Thermal resistance for ventilation and infiltration heat transfer 
between outdoor and indoor air (m2K/W);
Rwin: Thermal resistance of windows (m2K/W);
Rim: Thermal resistance between internal opaque structures and 
thermal mass (m2K/W);
Rex: Thermal resistance of external opaque envelope elements (m2K/ 
W);
Qhvac: Heat flux delivered by the HVAC system to the zone (W);
Qair: Convective heat flux from internal sources directly to indoor air 
(people, equipment, lighting) (W);
Qint : Radiative heat flux from internal sources to surfaces (people, 
equipment, lighting) (W);
Qsol: Solar radiation heat flux absorbed by the building's thermal 
mass(W);
Cm: thermal capacity of internal thermal mass per building area (J/ 
m2K)

The 4R1C model presented is a simplified yet effective representa
tion of a building's thermal behavior, particularly when considering 
scenarios where interzonal thermal interactions are negligible. With 
only two temperature nodes—Ta and Tm—the model can capture the 
primary thermodynamic interactions in most typical building environ
ments. The thermal mass node (Tm) represents the combined thermal 
mass of the building opaque structures, including both internal struc
tures and the mass embedded within the building envelope. In this 
model, the temperature node Ta denotes the air temperature inside the 
building. It is influenced by external weather conditions, characterized 
by To, and the building's HVAC system Qhvac, and internal air exchanges 
Qair. Thermal resistances, namely Rv and Rim, dictate the heat flow that is 
exchanged between the external environment and the internal air, and 
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between the internal air and the building's thermal mass, respectively.
The second node, Tm, represents the temperature of the building's 

thermal mass, capturing the aggregate behavior of building structures 
and contents. It balances the influences from external conditions T0, 
internal loads Qint , solar gains Qsol, and interactions with the internal air 
node. Its dynamic behavior is defined by Cm, which is the thermal ca
pacity of the building's internal mass.

3.1.2. RC models with interzonal thermal coupling and different parameters
Interzonal thermal coupling can play a critical role in capturing the 

intricate thermal interactions between different zones within a building. 

Hence, three distinct RC models—6R1C, 7R1C, and 7R2C—have been 
proposed to address these complexities. The structures of the three 
models, including the 4R1C model without interzonal thermal coupling, 
are plotted together in Fig. 3. 

• The 6R1C model

To − Ta

Rv
+

Tm − Ta

Rim
+ Qhvac + Qair = 0 (3) 

Fig. 1. Research rationale flowchart.

Cm
dTm

dt
=

To − Tm

Rwin
+

To − Tm

Rex
+
∑

i

Taz,i − Tm

Rif ,i
+
∑

i

Taz,i

Riw,i
+

To − Tm + (Qhvac + Qair)Rv

Rim + Rv
+Qsol + Qint (4) 
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where. 

Taz,i: Indoor air temperature of the ith adjacent zone(K);
Rif ,i: Thermal resistance of the interior floor/ceiling between the 
current zone and the ith adjacent zone (m2K/W);
Riw,i: Thermal resistance of the interior wall between the current zone 
and the ith adjacent zone(m2K/W);

The 6R1C model has two temperature nodes Ta and Tm as well, but it 
takes into account the heat fluxes between the current zone and all the 
adjacent zones. Its structure recognizes the importance of the building's 
internal zones in shaping its thermal behavior, which is essential for 
larger structures or those with prominent internal heat sources or sinks. 
By considering both the external environment and neighboring zones, 
this model offers a more comprehensive thermal view of single zone 

behaviors, and their adjacent interactions compared to the 4R1C model. 

• The 7R1C model

The 7R1C model has three temperature nodes, namely Ta,Ts and Tm, 
in which Ts represents the central mass node. 

Qhvac +Qair =
Ta − To

Rv
+

Ta − Ts

Ria
(5) 

Tm − Ts

Ria
+

To − Ts

Rwin
+
∑

i

Taz,i − Ts

Riw,i
+

To − Ts + (Qhvac + Qair)Rv

Ria + Rv
+Qint = 0

(6) 

Cm
dTm

dt
+

Tm
1

1
Ria+Rv+

1
Rwin

+ 1
Riw

+ Rim
=

To − Tm

Rex
+

Ts − Tm

Rim
+
∑

i

Taz,i − Tm

Rif ,i
+
∑

i

Taz,i

Riw,i

+ Qsol + Qint

(7) 

where. 

Ts: Temperature of the zone's interior surfaces (m2K/W);
Ria: Thermal resistance between indoor air and interior surfaces 
(represents the inverse of the convective heat transfer coefficient) 
(m2K/W)

Advancing from the 6R1C configuration, the 7R1C model introduces 
an additional node, Ts, to represent the temperature of interior surfaces 
within the thermal zone (such as internal walls, floors, and ceilings). 
This distinction separates the interior surfaces and indoor furnishings 
(Ts) from the thermal mass embedded within building opaque elements 
(Tm). The resistances related to internal walls and floors of neighboring 
zones (Riw,i and Rif ,i) enable the modeling of heat transfer between 
adjacent thermal zones. In this way, the 7R1C provides a layered 
approach to capturing both the different thermal time constants within a 
zone and the heat exchange between zones. 

• The 7R2C model

Fig. 2. The proposed 4R1C model without interzonal thermal coupling.

Fig. 3. The proposed RC models with different modeling parameters: a) 4R1C w/o coupling; b) 6R1C; c) 7R1C; d) 7R2C.
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Qhvac +Qair =
Ta − To

Rv
+

Ta − Ts

Ria
(8) 

Cs
dTs

dt
=

Tm − Ts

Rim
+

To − Ts

Rwin
+
∑

i

Taz,i − Ts

Riw,i
+

To − Ts + (Qhvac + Qair)Rv

Ria + Rv

+ Qint (9) 

Cm
dTm

dt
+

Tm
1

1
Ria+Rv+

1
Rwin

+ 1
Riw

+ Rim
=

To − Tm

Rex
+

Ts − Tm

Rim
+
∑

i

Taz,i − Tm

Rif ,i
+
∑

i

Taz,i

Riw,i

+ Qsol + Qint

(10) 

where. 

Cs: Thermal capacitance of interior surfaces and furnishings per unit 
floor area(J/m2K)

Building upon the foundation of the 7R1C, the 7R2C model further 
introduces the Cs term, capturing the thermal storage capability of the 
central thermal mass mode Ts. This distinction in capacitance—Cm for 
peripheral mass and Cs for central mass—gives the 7R2C model a refined 
representation of energy storage and discharge dynamics. This dual- 
capacitance mechanism can ensure a more detailed exhibition of how 
heat flows within different building components compared with the 
7R1C model, making it especially useful for buildings undergoing pro
nounced day-night thermal variations.

The 7R2C model introduces a second thermal capacitance Cs for 
interior surfaces and furnishings in addition to existing envelope ther
mal capacitance Cm which represents progress in our RC modeling 
framework. Building upon a dual capacitance model allows the recog
nition of different thermal mass sources in building elements, the 7R2C 
model separates building interior from opaque structure elements to 
create different thermal time constants in a single zone since the thermal 
mass in indoor furnishings and building opaque elements can behave 
differently due to their response to indoor and outdoor heat flows. The 
7R2C model can deliver benefits for simulations of buildings with sub
stantial mass distributions in either their envelope or interiors as well as 
for fast-changing environmental conditions. The two-capacitance model 
can also improve calibration procedure because thermal properties from 
interior and envelope masses can be calibrated respectively.

For multizone buildings, all thermal zones are modeled simulta
neously within a coupled system of differential equations. At each time 
step, the thermal states (temperatures) of all zones are solved together, 
with interzonal heat transfer terms 

( ∑ (
Taz,i − Tm

)
/Rif ,iand

∑(
Taz,i −

Tm
)
/Riw,i) explicitly linking adjacent zones through shared internal 

surfaces. This simultaneous solution approach ensures that thermal in
teractions between zones are properly represented throughout the 
simulation, distinguishing our method from simplified approaches that 
treat zones independently or use sequential solution procedures.

3.2. Modeling structure of forward parameters

The forward modeling and the model inputs collection of a building's 
energy consumption encompasses several key modules, each intricately 
contributing to the building's overall thermal performance and energy 
use. 

• Meteorological Input:

The standard weather files, such as the widely used EPW (EnergyPlus 
Weather) files, serve as input. 

• Building Geometry Model:

This model proposes the use of structured text as a means to provide 

parameter entries for modeling. Users can parametrically modify model 
inputs in the text domain. All related model parameters are organized 
and compiled using an object-oriented modular mindset, setting the 
stage for the integration of the simulation algorithms and parametric 
design platforms proposed in this project. 

• Occupancy Behavior Model:

To reflect the heterogeneous user behavior habits in multi-thermal 
zone models, a parameterized textual input system is constructed. This 
system covers space occupancy habits, HVAC system usage patterns, 
appliance usage, and lighting habits, thereby structuring user behavioral 
parameters for the simulation algorithms of this project. 

• Infiltration or Natural Ventilation Model:

The heat exchange from infiltration is typically calculated using 
lumped parameters. The model offers two infiltration calculation 
methods as detailed in Appendix A: a 'constant' method using predefined 
air change rates (ACH), and a 'real' method that dynamically computes 
infiltration based on temperature differences and wind conditions ac
cording to ISO 13789 and ISO 15242 standards. The 'real' method ac
counts for both stack effect and wind-driven infiltration, combining 
them through a quadrature sum approach. For natural ventilation, the 
model implements behavior-dependent algorithms with opening factors 
that vary with environmental conditions. 

• Solar Radiation Model:

The model uses obtained climatic parameters to generate hourly 
calculations for direct beam radiation and diffuse and reflected radiation 
and total radiation across the building's different oriented sides. The 
calculations conform to the ISO 52010 standard method using adapta
tions specified in Appendix B. The model includes solar geometry ele
ments (declination, hour angle, altitude, and azimuth) together with 
surface orientation and anisotropic sky conditions. The transmission of 
direct beam radiation depends on the outcome of incidence angle cal
culations. The diffuse component calculates radiation through an 
anisotropic sky model that adjusts its correction factors from 0.45 to 1.0 
according to the incident angle. Moreover, the model calculates ground- 
reflected radiation based on ground reflectivity factors. The solar radi
ation heat gain for the building is calculated through the method in 
Appendix B while using outdoor temperature together with relative 
humidity and solar azimuth and altitude measurements. 

• Convective Heat Transfer Coefficient Modeling and Calculation:

For convective heat transfer, the convective heat transfer coefficient 
significantly affects the model's predictive accuracy. For exterior sur
faces, the model implements convective heat transfer coefficient calcu
lations in accordance with McAdams's method as described in 
EnergyPlus Engineering Reference [62]. The wind-dependent heat 
transfer coefficients are implemented using the correlation hc,ext = 5.7 
+ 3.8v, where v is wind speed in m/s. 

• Calculation of Shading Coefficient:

The heat from solar radiation inside a building is closely related to 
the shading coefficient of the window. This coefficient is influenced by 
shading devices and solar incidence angle. Most RC modeling related 
studies treat windows as pure resistance without adequately considering 
the shading coefficient provided by shading devices. Therefore, the 
developed engine separately considers the indoor solar radiation heat 
gain, integrating the shading coefficient analogous to the heat transfer 
coefficient into the energy consumption simulation algorithm. Shading 
coefficient calculations follow geometric modeling principles as detailed 
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in Appendix C, providing solar reduction factors (SRF) for common 
shading devices including overhangs, fins, and horizon obstructions. For 
overhangs, projection angles typically range from 15◦ to 60◦, with the 
calculation accounting for both geometric shading of direct beam radi
ation and partial reduction of diffuse radiation (typically 10–50% 
depending on configuration). Similar geometric principles apply to 
vertical fins, with solar azimuth replacing altitude in the calculations. 
The model includes dynamic shading control with temperature thresh
olds (26 ◦C for residential and 23 ◦C for commercial buildings) to acti
vate shading during overheating periods. 

• Thermal Parameters of Building Envelope Model:

The thermal parameters of the building envelope are modularized 
based on their types. For instance, the window module, which is treated 
as one of the objects in the envelope settings, includes parameters like 
heat transfer coefficient, solar radiation absorption rate, emissivity, and 
transmittance. This model integrates all the thermal parameters of en
velopes, including windows, walls, roofs, and floors, according to ther
mal zones. 

• Simplified HVAC System Performance Curving Method:

Central to this study is a simplified performance curve method for the 
HVAC system. Concerning the primary energy consumption for heating 
and cooling, a performance curve approach is endorsed. Users are 
required to input the energy efficiency of the heating and cooling source 
at intervals of partial load conditions. This method simulates the energy 
performance of the heating and cooling system under varying load 
conditions. Upon receiving the energy efficiency inputs for each partial 
load stage, linear interpolation is employed to emulate the system's 
performance curve. This approach is designed to streamline model in
puts. Moreover, if no HVAC sizing details are provided, the system is 
assumed to cater to the heating and cooling demands of all zones. If the 
heating or cooling load surpasses the system's capacity, the indoor 
temperature will be calculated by governing energy conservation 
equation as stated in Equations ((1), (3), (5) and (8). Moreover, detailed 
calculation methods for building energy use and onsite renewable 

energy production can be found in Appendix D and Appendix E.
By establishing the above modules with hierarchical modeling ar

chitecture (zone to building) as shown in Fig. 4, combined with the 
coupling of thermal flows in thermal zones, a building thermal load 
simulation method based on the forward RC model is formed. A multi- 
thermal zone building energy simulation model architecture is thus 
formed, allowing the further assessment of its performance in calcu
lating the load and energy consumption of an entire building.

The engine uses tailor-made structured text-based modeling files that 
are designed with simplicity and clarity so that users can easily define 
and tweak model parameters without steep learning curve. This is to 
ease the fight with engineers, preventing them from developing their 
own custom models. This simplifies the data input process and the 
process of modifications to allow easy iterations and modifications for 
the researchers and the building professionals. Secondly, the model in
formation collection structure of the RC based simulation engine was 
implemented in Python 3.9 environment.

3.3. Solving approaches

The RCBldEng simulation engine implements three distinct numer
ical methods for solving the thermal network equations: the Euler 
method, Crank-Nicolson method, and Runge-Kutta method. Each 
method offers different characteristics in terms of stability, accuracy, 
and computational efficiency.

3.3.1. Euler method
The Euler method, also known as the forward Euler method, repre

sents the simplest explicit time integration scheme. For a given time step 
Δt, the method advances the solution by approximating the derivative 
using forward differences. In the context of building thermal simulation, 
the temperature at the next timestep is calculated as: 

Tn+1 =Tn +
Δt
C

(qtot − BTn) (11) 

where Tn represents the temperature at the current time step, C is the 
thermal capacitance, qtot is the total heat gain, and B represents the sum 
of heat transfer coefficients. While computationally efficient, this 

Fig. 4. The hierarchical architecture of model information collection.
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method's accuracy is proportional to the time step size, and it may 
exhibit numerical instability for large time steps or when modeling 
systems with rapid thermal responses.

3.3.2. Crank-Nicolson method
The Crank-Nicolson method improves upon the Euler method by 

employing a semi-implicit approach that averages the solution between 
the current and next time steps. This results in a second-order accurate 
scheme in time, expressed as: 

Tn+1 =
Tn(C − 0.5BΔt) + Δtqtot

C + 0.5BΔt
(12) 

This method provides better stability characteristics compared to the 
Euler method and maintains reasonable accuracy even with larger time 
steps. The Crank-Nicolson scheme is particularly effective for building 
energy simulations where thermal processes typically evolve gradually, 
making it the default solver in the engine.

3.3.3. Runge-Kutta method
For applications requiring higher accuracy, the fourth-order Runge- 

Kutta method (RK4) is implemented. This method evaluates the tem
perature derivative at multiple points within each time step, providing a 
more accurate approximation of the solution trajectory. The RK4 
implementation follows: 

k1 =
Δt
C

(qtot − BTn) (13) 

k2 =
Δt
C

(

qtot − B
(

Tn +
k1

2

))

(14) 

k3 =
Δt
C

(

qtot − B
(

Tn +
k2

2

))

(15) 

k4 =
Δt
C

(qtot − B(Tn + k3)) (16) 

Tn+1 =Tn +
1
6
(k1 +2k2 +2k3 + k4) (17) 

While computationally more intensive than the other methods, RK4 
provides good accuracy and stability, particularly valuable when 
modeling buildings with complex thermal interactions or rapid tem
perature changes.

3.3.4. Adaptive error control and solver selection
The solver implementation includes adaptive error control mecha

nisms to ensure solution accuracy. For each time step, the temperature 
change is monitored, and if it exceeds specified thresholds, the solution 
process can automatically adjust by either reducing the time step or 
switching to a more stable numerical method. This adaptive approach 
helps maintain simulation stability while optimizing computational 
resources.

The simulation engine allows users to select the preferred numerical 
method based on their specific requirements. The Crank-Nicolson 
method is set as the default solver due to its balanced performance 
characteristics. For cases where computational speed is paramount, the 
Euler method can be selected, while the RK4 method is available for 
applications demanding higher accuracy. All methods are implemented 
with an hourly time step (3600s) as the standard temporal resolution, 
though the framework supports variable time-stepping if required for 
specific applications.

The solving approaches are integrated with the engine's thermal 
capacity limitation handling (by user input), ensuring that when the 
thermal load is over the top of HVAC system capacity, the numerical 
solution remains stable and physically meaningful while respecting the 
specified heating and cooling capacity limits.

3.4. Calibration of hard-to-determine modeling parameters (inverse 
modeling)

For existing buildings, it is inevitable to determine uncertain pa
rameters that have a bearing on the model's outcome. Some of the pa
rameters like the building geometry or the material properties are easy 
to obtain or quantify while others like the thermal capacitors and system 
efficiencies are not easy to obtain. These difficult to quantify parameters 
are important to model the real thermal performance of the building and 
the efficiency of the HVAC systems. However, their identification is 
usually more complex especially when the model is for existing build
ings where design information might be incomplete or inaccessible.

3.4.1. Differential evolution algorithm implementation
To address this challenge, this study adopts the differential evolution 

(DE) algorithm [63]—a robust and efficient global optimization tech
nique known for its capability to tackle complex, non-linear, and 
multidimensional problems. In essence, DE is a population-based opti
mization algorithm. It begins with a randomly generated population of 
potential solutions (vectors). Over successive iterations, these vectors 
evolved by combining the processes of mutation, crossover, and selec
tion. The primary advantage of DE over other optimization techniques 
lies in its ability to maintain population diversity and avoid premature 
convergence to local minima, making it particularly suitable for cali
brating complex building energy models. It has good convergence when 
it is dealing with model parameter identification if the number of tar
geted parameters is not too large [64].

3.4.2. Fitness function definition
In the context of this study, each vector in the DE algorithm repre

sents a potential set of values for the hard-to-determine parameters. The 
goodness of fit of each vector (i.e., how well the associated parameters 
enable the simulation model to reproduce actual building behavior) is 
evaluated using a fitness function based on the root-mean-square error 
(RMSE) between the model's predicted heating and cooling energy use 
and the observed data from the building (with equal weights). A lower 
RMSE indicates a better fit between the model's predictions and the 
observed data, guiding the DE algorithm in its search for the optimal 
parameter set. To mathematically represent, if P denotes the predicted 
energy use and O represents the observed data, the RMSE is defined as: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Pi − Oi)
2

n

√

(18) 

where n is the total number of data points. The aim of the DE algorithm, 
in this scenario, is to minimize this RMSE value, thereby deriving the 
most suitable values for the hard-to-determine parameters. The fitness 
function of the DE algorithm then can be described as: 

F=
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(PCEi − OCEi)
2

n

√

+
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(PHLi − OHLi)
2

n

√

(19) 

where PCE,OCE,PHE,OHE represent predicted cooling energy con
sumption, observed cooling energy consumption, predicted heating 
energy consumption, observed heating energy consumption. Three 
different modes of time granularity are provided in this developed 
calibration procedure: hourly, daily, and monthly. Users can define at 
what time granularity they need the calibration scheme to be run. It is 
worth noting that while the DE-based calibration approach is employed 
here for existing building modeling, it is not used for the building pre- 
design stage due to the lack of real-world observational data in this case.

3.4.3. Hyperparameter configuration and user flexibility
To further enhance the adaptability and effectiveness of the DE- 

based calibration approach, the engine offers users the flexibility to 
tweak the hyperparameters of the DE algorithm. Such customization 
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ensures that the calibration process can be finely tuned to meet the 
specific needs of individual building scenarios or to align with the 
preferences of the modeler. The key hyperparameters available for 
tuning include. 

1. Mutation Rate - This parameter determines the extent to which the 
population's vectors are perturbed. It essentially controls the degree 
of exploration in the search space. Its default values are provided as a 
range from 0.7 to 1, allowing for variability in exploration intensity. 
For all validation cases in this study, F = 0.8 was used.

2. Recombination Rate - Set at a default of 0.8, this hyperparameter 
governs the fraction of the donor vector that's mixed with the target 
vector, influencing the information exchange rate between different 
potential solutions. This default value (CR = 0.8) was maintained 
across all case studies.

3. Population Multiplier - The population size is a critical factor in the 
DE algorithm's success. By default, it is set at a multiplier of 20, 
ensuring a sufficiently diverse set of initial solutions for the cali
bration problem. For a calibration problem with n parameters, the 
population size is 20n. For example, for a case study with 3 calibrated 
parameters (Cm, Cs, and internal wall U-value), the population size 
was 60.

4. Maximum Iteration - This parameter dictates the number of itera
tions the algorithm runs before terminating. Its default value is set at 
100, balancing the need for a thorough search with computational 
efficiency. All calibration runs used this maximum iteration limit.

5. Convergence Tolerance - Defined at a default of 0.01, this hyper
parameter establishes the threshold for convergence. If the change in 
fitness values between consecutive iterations is less than this 
threshold, the algorithm deems the solution as having converged. 
Convergence was achieved when the improvement in fitness func
tion between consecutive iterations fell below 0.01, typically 
occurring within 40–60 iterations for the case studies presented.

The DE algorithm follows the rand/1/bin strategy, where mutation 
uses the formula: Vi,g+1 = Xr1,g + F(Xr2,g - Xr3,g), where Vi,g+1 is the 
mutant vector, Xr1,g, Xr2,g, Xr3,g are three randomly selected distinct 
population members, and F is the mutation rate. Binomial crossover is 
applied with probability CR. Parameter bounds for the education 
building calibration are specified in Table 2, with the search space 
constrained by physical feasibility ranges derived from building audit 
data and material property databases."

The process becomes more versatile because users are allowed to 
modify these hyperparameters. The defaults provided here are derived 
from extensive testing and have reliably performed across a wide range 
of building types, but the ability to adjust them provides some robust
ness of the engine even in unusual or challenging calibration environ
ments. To make the calibration procedure more versatile and applicable 
to diverse building types and scenarios, users are given the flexibility to 
choose which modeling parameters they want to calibrate. Table 2
shows an example of the modeling parameters available for calibration 
in this version. The calibration information shown in Table 2 is used for 
the calibration of the case study education building that will be 
described in Section 3.6.

The program takes the value of "-1″ as a unique identifier that signals 
certain parameters won't be included in the calibration procedure. That 
allows users to remove parameters you know or perceive as unimportant 
for calibration. If users want to calibrate a parameter, they can give a 
range of reasonable value within which the DE algorithm searches the 
optimal value.

Furthermore, to maintain clarity, organization, and ease of access, all 
this calibration information—both for modeling parameters and DE 
hyperparameters—is stored in a structured text-based file, specifically 
named “calibration_parameter.txt”. The format shown here is an intui
tive way to review and modify the calibration parameters, enabling the 
user to quickly prepare the simulation for calibration and ensuring 
reproducibility and transparency throughout the calibration process. 
This design choice ensures that the calibration settings integrate seam
lessly with other computational tools, and that users have a straight
forward path to audit, review, or modify the calibration settings.

3.4.4. Calibration workflow
The calibration process follows a systematic workflow designed to 

optimize hard-to-determine parameters while preserving physics-based 
calculations for well-characterized building properties. The procedure 
consists of six main steps as illustrated in Fig. 5. 

Step 1: Data Preparation and Parameter Selection - Users specify 
which modeling parameters require calibration by defining search 
ranges in the 'calibration_parameter.txt' file, with '-1′ values indi
cating parameters to be held constant at their physics-based values. 
Measured energy consumption data (heating and cooling) is pre
pared at the selected time granularity (hourly, daily, or monthly). 
For the education building case study, three parameters were 
selected for calibration (Cm, Cs, internal wall U-value) while all 
other parameters were calculated from building audit data.
Step 2: Initial Population Generation - The DE algorithm generates an 
initial population of candidate parameter sets using Latin Hypercube 
Sampling within the specified bounds. Population size is determined 
by the population multiplier (default 20) times the number of cali
brated parameters, ensuring adequate search space coverage.
Step 3: Forward Simulation - For each candidate parameter set, 
RCBldEng performs a complete annual simulation using the forward 
modeling framework described in Section 3.2, with calibration pa
rameters overriding their default physics-based values while all 
other parameters remain unchanged.
Step 4: Fitness Evaluation - The fitness function (Equation (19)) 
calculates the weighted RMSE between simulated and measured 
energy consumption for both heating and cooling. Lower fitness 

Table 2 
Information collection for model parameter calibration.

Parameter Range Parameter Range

Building Heat Capacity 
(m)

40000 400000 Internal Floor 
Material U-value (W/ 
m2K)

1 10

Building Heat Capacity 
(s)

40000 400000 Air Infiltration Rate 
(h− 1)

− 1

Effective Mass Area 
(m2)

0.1 5 Air Infiltration Style − 1

External Wall Material 
U-value (W/m2K)

− 1 Lighting Load (W/ 
m2)

− 1

External Wall Material 
Absorptivity

− 1 Plug Load (W/m2) − 1

Internal Wall Material 
U-value (W/m2K)

1 6 Heating COP − 1

Window Material U- 
value (W/m2K)

− 1 Cooling COP − 1

Window Material 
Emissivity

− 1 Heating Supply Air 
Temperature (◦C)

− 1

Window Material 
SHGC

− 1 Cooling Supply Air 
Temperature (◦C)

− 1

Roof Material U-value 
(W/m2K)

− 1 HVAC Distribution 
Loss Coefficient

− 1

Roof Material 
Absorptivity

− 1 Heating Temperature 
Setpoint (◦C)

− 1

External Floor Material 
U-value (W/m2K)

− 1 Cooling Temperature 
Setpoint (◦C)

− 1

Hyperparameters of DE

Mutation Rate 0.7 1 ​ ​ ​
Recombination Rate 0.8 ​ ​ ​
Population Multiplier 20 ​ ​ ​
Maximum Iteration 100 ​ ​ ​
Convergence Tolerance 0.01 ​ ​ ​
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values indicate better agreement between model predictions and 
observations.
Step 5: Population Evolution - The DE algorithm applies mutation 
(Vi,g+1 = Xr1,g + F(Xr2,g - Xr3,g)), crossover with probability CR, and 
selection operations to evolve the population toward optimal 
parameter values. The algorithm tracks convergence by monitoring 
the improvement in best fitness value between consecutive 
generations.
Step 6: Convergence and Validation - When the fitness improvement 
falls below the convergence tolerance (default 0.01) or the maximum 
iteration limit is reached, the algorithm terminates and returns the 
optimal parameter set. The calibrated model is then validated against 
a held-out test period to assess predictive performance on unseen 
data.

This automated workflow requires no user intervention beyond 
initial parameter range specification, enabling consistent and repro
ducible calibration across different building types and datasets.

3.5. Simulation of prototype buildings

3.5.1. Prototype building models
The validation and performance assessment of the developed RC- 

based simulation engine are grounded on two prototype buildings: a 
detached house and a medium-sized office building as shown in Fig. 6. 
The EnergyPlus models of two prototype buildings from the U.S. 
Department of Energy (DOE), specifically from the commercial and 
residential prototype model series, are remodeled in RCBldEng, ensuring 
the representation of climate-dominant and internal-load dominant 
building types [65]. Both prototype buildings adhere to the ASHRAE 
90.1–2013 standard, underlining their commitment to energy efficiency 
and sustainable design. ASHRAE 90.1–2013 is a well-established stan
dard in the building industry, widely adopted for its benchmarks and 
guidelines on energy-efficient design and practices [66]. Adherence to 
this standard ensures that the case study buildings reflect contemporary 
building design practices, especially in the context of energy efficiency. 
The occupancy and building use schedule have been visualized in Fig. 7, 
and the indoor cooling and heating setpoint schedule can be found in 
Fig. 8.

Fig. 5. Flowchart of the automated calibration workflow using Differential Evolution algorithm for parameter identification of existing building cases in RCBldEng.

Fig. 6. The two DOE EnergyPlus prototype building models.
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The building simulation uses IWEC (International Weather for En
ergy Calculations) weather data in EPW format for Shanghai, China. The 

IWEC dataset, developed by ASHRAE, represents typical weather con
ditions derived from long-term hourly observations and is comparable to 
the TMY (Typical Meteorological Year) datasets used in the United 
States. Shanghai is in the ASHRAE 3A climate zone, which has a warm 
and moist climate, hot summers and mild winters. The IWEC data here 
provides the annual baseline for the developed RC model simulation 
engine, which encapsulates several thermal load conditions across 
different seasons, and consequently presents a complete assessment. As 
a reference simulation engine for building energy simulation, Ener
gyPlus [10], the popular and well-known building energy simulation 
software is used, to compare and to establish a performance baseline. 
The version of EnergyPlus that was used for this study is 9.5. It is a good 
yardstick against which the RC based simulation engine outcomes can be 
gauged. This comparative approach provides an understanding of the 
fidelity and reliability of the developed RC based engine. The proposed 
four RC model configurations are considered, 4R1C, 6R1C, 7R1C and 
7R2C, for a more complete comparison. The structure of this assessment 
can facilitate a thorough analysis of the developed engine's accuracy, 
robustness, computational cost, and versatility with respect to various 
modeling complexities.

3.5.2. Cross-climate zone validation
We further conducted the testing for the proposed RC modeling 

methods by integrating three cities with different climates into the 
assessment of two prototype buildings. For all climate zones in this 
analysis, we used IWEC (International Weather for Energy Calculations) 
weather data in EPW format. The selected climate zones for this study 
encompass a wide variety of climatic environments to assess the 
methodology. 

1. Shanghai (ASHRAE Climate Zone 3A): This climate comprises of hot 
summers alongside mild winters due to its warm and moist envi
ronment. Significant seasonal changes can occur in this climate re
gion which requires both heating systems and cooling systems 
throughout the entire year.

2. Guangzhou (ASHRAE Climate Zone 1A): Hot and humid climate with 
minimal seasonal variation. The climate zone has cooling-dominated 
conditions that create higher cooling requirements than heating re
quirements during all periods of the year.

3. Shenyang (ASHRAE Climate Zone 7): This climate zone faces severe 
cold conditions which extend across long heating seasons while 
remaining short in summer periods. At this climate zone the heating 
necessities outweigh cooling requirements due to its lengthy winter 
season.

We evaluated the performance of four RC model configurations from 
4R1C model all they way to 7R2C model across the three climate zones 
using TMY weather data for both residential houses and medium office 
buildings. Each climate zone received analyzes of model accuracy based 
on R2 values plus NRMSE (normalized root mean squared error) for 
hourly load predictions along with NRMSE for daily peak load 
predictions.

3.5.3. EnergyPlus validation configuration
To ensure fair comparison between RCBldEng and EnergyPlus sim

ulations, consistent modeling assumptions and calculation settings were 
implemented. The EnergyPlus simulations used the following key 
configurations:

Timestep and Convergence Settings. 

• Simulation timestep: 4 timesteps per hour (15-min intervals) for 
EnergyPlus; 1-h timestep for RCBldEng

• Heat balance algorithm: Conduction Transfer Function (CTF) 
method

• Zone air heat balance algorithm: Third Order Backward Difference

Fig. 7. Building occupancy and use schedule for the two prototype buildings.

Fig. 8. Indoor cooling and heating setpoint schedule of the two proto
type buildings.
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•Convergence limits: 0.04 ◦C for zone temperature, 0.4 W for zone 
load

Solar and Shading. 

• Solar distribution: FullInteriorAndExterior
• Shading calculations: AverageOverDaysInFrequency with 20-day 

frequency
• Surface convection algorithm: TARP (Thermal Analysis Research 

Program) for interior and exterior surfaces

HVAC System Modeling. 

• Ideal loads air system for load calculations (no detailed HVAC system 
modeling to enable direct thermal load comparison)

• Heating and cooling availability: Based on schedules shown in Fig. 7
• Temperature setpoints: As specified in Fig. 8

Weather Data Processing. 

• IWEC weather files for Shanghai, Guangzhou, and Shenyang in EPW 
format

• Identical weather data used for both EnergyPlus and RCBldEng 
simulations

• Ground temperatures calculated using Kusuda-Achenbach model in 
EnergyPlus; monthly average ground temperatures extracted and 
used in RCBldEng

The RCBldEng simulations replicated these thermal boundary con
ditions using the forward modeling parameters calculated from the same 
building geometry, envelope properties, internal loads, and schedules. 
This approach isolates the impact of the RC model simplifications from 
differences in HVAC system modeling or calculation algorithms.

3.6. Test on existing building

The developed simulation engine RCBldEng was also tested on an 
existing building to evaluate the efficacy and accuracy of its application 
to real world scenarios. An education building in Philadelphia, U.S., was 
selected as a testbed for this purpose. Local weather station on site has 
been installed for building simulation with onsite hourly weather data. 
This building, which houses laboratories, classrooms, lecture halls, and 
offices, is an appropriate candidate for a comprehensive evaluation since 
the thermal loads and the energy usage pattern of each function are 
different.

The first step was the collection of known (forward) modeling pa
rameters. Essential parameters were extracted leveraging an energy 
audit of the building. In this case, the data gathered from energy audit 
becomes the modelling parameters to determine the modelling inputs 
and the test was based on real world situation. Nevertheless, although 
energy audits are by their very nature very detailed, some modeling 
parameters are inherently difficult to determine with high precision. It is 
these hard-to-determine parameters which serve an essential role in 
capturing the intricate building thermal behavior, and overall energy 
efficiency. To address this challenge, the study used available designed 
calibration procedures as described in Section 3.4. The DE algorithm can 
be used to identify and optimize these elusive parameters underpinned 
by this procedure. The objective is for the RC model to be not only 
informed but also fine-tuned with the building specific characteristics 
derived from the calibration. The results from this test can provide some 
tangible evidence of the engine's capability and its applicability to non- 
trivial simulation of building energy situations.

3.6.1. Known modeling parameters (forward modeling)
Table 3 provides an exhaustive summary of the building envelope, 

detailing both the opaque and transparent segments. The data 

showcases the surface areas of each envelope component, segregated by 
orientation – South (S), East (E), North (N), West (W), and Roof. 
Notably, it also offers insights into below-grade opaque sections, an 
indispensable component when considering subterranean heat gains or 
losses.

The building's functional use and its consequent energy consumption 
patterns are deeply influenced by its occupancy and usage schedule. 
depicts the building's typical weekday and weekend schedules for 
various aspects: occupancy, equipment usage, lighting, and HVAC op
erations. As described in Section 3.2, the modeling information is fed 
into the engine via a tailor-designed structured text file, ensuring that 
the model is both accurate and reflective of the building's actual oper
ational conditions. The occupancy and building use schedule for the 
existing education building is depicted in Fig. 9.

3.6.2. Calibration of hard-to-determine modeling parameters (inverse 
modeling)

Hard-to-determine modeling parameters are those difficult to 
determine due to their complex interactions, latent effects, or the 
absence of direct measurement methods. The inverse modeling pro
cedure, the solution of adjusting the unknown parameters using obser
vational data and simulation results, can be applied as a solution. 
Section 3.4 presents a calibration scheme for the identification of these 
parameters, which are effective. The calibration process adjusts these 
hard to determine parameters such that the simulation outcomes for the 
model match observations of how the building performs in terms of 
energy. Most parameters were derived directly from the energy audit for 
the case of the education building, particularly the thermophysical 
properties of the structure and envelopes. This left a handful of crucial 
parameters that needed identification via the calibration scheme. The 
calibration information of the following parameters for the education 
building case study are reflected in Table 2:

Thermal Capacity of the Building: The ability of the building's thermal 
energy storage can be described by two distinct parameters: Cm for the 
1st order RC model, Cs for the 2nd order RC model. Thermal capacities, 

Table 3 
Summary of modeling information of the education building envelope in each 
orientation.

Orientation Opaque envelope 
(m2)

Window (m2) Below Grade Opaque 
(m2)

S 343.6 275.7 121.9
E 632.7 422.5 159.6
N 400.4 221.3 118.1
W 604.5 457.1 134.0
Roof 2111.6 0.0 0.0

Fig. 9. Occupancy and building use schedule of the education building.
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as difficult to measure directly, play a key role in the time a building 
takes to heat up or cool down.

U-value of Internal Wall: The U value is a description of how well a 
certain material is an insulator. Internal wall U values, although 
important to energy efficiency, are not always easily available, unlike 
external components.

U-value of Internal Floor: presents how much heat transfers through 
the floor structure is determined by its U-value, just like the internal 
wall. This becomes crucial in multistoried buildings.

It is noteworthy that although system efficiency of heating and 
cooling sources is typically a key calibration parameter, it is not required 
for this building. The education building receives district steam and 
chilled water with directly metered consumption, eliminating the need 
to calibrate source efficiency. Only distribution losses are considered in 
the model, as the metered data already accounts for the source energy.

3.6.3. Data processing and quality control
In this research, measured energy data for the education building 

was collected from building-level meters for a consecutive year. Hourly 
steam consumption for heating was converted to thermal energy. Chilled 
water energy was directly measured by BTU meters and validated 
against supply/return temperature differential and flow rate. On-site 
weather station measurements included dry-bulb temperature, relative 
humidity, wind speed, and global horizontal irradiance at hourly reso
lution with 98.5% data completeness.

A double MAD (median absolute deviation) method was used to 
recognize and remove outliers in the building energy use data. One of 
the common methods to identify and remove outliers in one- 
dimensional data is to mark as a potential outlier any point that is 
more than two standard deviations from the mean. However, the pres
ence of outliers is also likely to have a strong effect on the mean and the 
standard deviation, making this technique unreliable. So, it is recom
mended to use a measure of distance that is robust against outliers. MAD 
is good in dealing with this kind of problem because it uses the mean 
absolute deviation from the median. However, MAD outlier recognition 
requires that the data distribution not be skewed or asymmetric. It works 
well with, for example, a symmetric statistical distribution like normal 
distribution, or uniform distribution. For asymmetric distributions, 
double MAD should be used. This is a synergy of two MAD methods: (1) 
the mean absolute deviation from the median of all points less than or 
equal to the median, and (2) the mean absolute deviation from the 
median of all points greater than or equal to the median. The former is 
used to calculate the distance from the median of all points less than or 

equal to the median; the latter is necessary to calculate the distance for 
points that are greater than the median. By using this double MAD-based 
outlier removal method, it is possible to recognize and remove the 
outliers that exist in the building energy use data. The percentage-based 
outlier removal method, which screens outliers by the top percentage of 
biased points, was compared with the double MAD-based method in 
Fig. 10. Percentage-based removal, most of the time, removes too many 
incorrectly identified outliers that are actually valid data points. The red 
points shown in the figure above are the outliers detected by the two 
different methods. The comparison between the two on campus build
ing's energy use data before and after outlier removing are also plotted 
below. It can be seen that the double MAD based method is successful at 
handling the outliers in the building energy use data.

4. Results and analysis

4.1. Simulation of the prototype buildings

For an effective and comprehensive understanding of the accuracy 
and applicability of the RC-based models introduced, their performance 
was juxtaposed with the renowned existing building energy simulation 
tool, EnergyPlus. For the two prototype buildings, the performance of 
the proposed models with and without interzonal thermal coupling are 
compared with EnergyPlus simulation results and discussed in the 
following sections.

4.1.1. The simulation results of the model without interzonal thermal 
coupling

The hourly heating and cooling load simulation results were first 
analyzed to explore the applicability of the 4R1C model without inter
zonal thermal coupling, as shown in Fig. 11. The cooling load was 
calculated by EnergyPlus and shown by the blue line and by the 4R1C 
model predictions shown by the orange line. The comparative results 
between the EnergyPlus predictions and the 4R1C model for a detached 
house and an office building are shown in this figure. The trend delin
eated by the EnergyPlus simulations was very well reproduced by the 
4R1C model results for the detached house. The reason for this 
reasonably close adherence is the simpler architectural design of the 
detached house, which has only three zones. The spatial segmentation of 
such a simple model is devoid of complexity so that the interzonal effects 
are minimal, and the 4R1C model produces quite accurate hourly 
heating and cooling load predictions without accounting for interzonal 
thermal transfer.

Fig. 10. Comparison of percentile-based and MAD-based outlier removal methods.
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However, when analyzing the office building, a building that is 
inherently more complex structure with more than 10 zones, the sce
nario changes. The 4R1C model simulation results show significant 
discrepancies, which are consistent with this heightened complexity. In 
particular, the 4R1C model is seen to have interzonal thermal coupling 
that is absent. Interzonal thermal transfer biases sum together to lead to 
significant overprediction of the cooling load by the 4R1C model in 
summer months. In particular, this overestimation is particularly pro
nounced during peak cooling periods. On the other hand, during winter 
months, the model exhibits a tendency to underestimate heating loads, 
and the variance turns out to be most significant during the peak heating 
periods. The bifurcation in the results between the detached house and 
office building highlights the important role that interzonal thermal 
transfers play, particularly in buildings containing multiple zones. This 
provides a critical indication of the limitations of the 4R1C model when 
applied to complex structures and highlights the importance of models 
that are capable of representing interzonal thermal dynamics in such 
situations.

4.1.2. The simulation results of the models with interzonal thermal coupling
The hourly simulation results with internzonal thermal coupling 

over a spread of ten randomly selected continuous days during winter, 
summer, and transitional seasons are further studied in Fig. 12. When 
comparing the 7R2C model to the 6R1C and 7R1C models, it becomes 
clear that the 7R2C model outperforms the other models in accuracy. 
However, this superior performance is subtly shown and the differences 
between models are almost imperceptible using time series plots. Thus, 
analytical efforts were continued in the scatter plots shown in Fig. 13
that compare the hourly predictions of EnergyPlus against each of the 
RC models throughout the year. These plots also support a noticeable 
increase in prediction accuracy as we move from the 4R1C model to the 
more complicated 7R2C model, especially for the residential building 

prototype.
The office building exhibits markedly different heating and cooling 

load profiles compared to the residential house, primarily due to dif
ferences in surface-area-to-volume ratio, occupancy schedules, envelope 
properties, and internal load intensity. Fig. 14 illustrates the hourly 
simulation results for the office building using EnergyPlus and the RC 
models (6R1C, 7R1C, and 7R2C). The 7R2C model, with its intricate 
structure, emerges as the best performing model in terms of minimizing 
biases relative to EnergyPlus. Its capability in predicting heating and 
cooling loads is especially conspicuous during transitional seasons. 
Complementing this observation, Fig. 15, the scatter plot reflecting the 
simulation accuracy of the models for the office buildings, demonstrates 
hierarchical performance. While both the 4R1C and 6R1C models 
exhibit less persuasive performance relative to the 7R models for hourly 
heating and cooling load predictions, the 7R2C model comfortably takes 
the lead over the 7R1C.

4.1.3. Cross-climate zone performance analysis
To assess the robustness and generalizability of the proposed RC 

models, we conducted validation across three distinct climate zones: 
Shanghai (3A, warm-moist), Guangzhou (1A, hot-humid), and Shenyang 
(7, severe cold). Table 4 presents a comprehensive validation results for 
both prototypical residential house and medium office building across 
these climate zones.

Our findings demonstrate universal applicability because model ac
curacy shows steady growth when complexity increases across each 
climate region. Across all climates the residential building cooling load 
predictions show R2 values increase from 0.88 to 0.90 for the 4R1C 
model to 0.98 for the 7R2C model. The R2 values of the 4R1C model for 
the office building rise from 0.90 to 0.93 before reaching 0.99 when 
using the 7R2C model. The steady improvement in prediction results 
demonstrates that complex RC models deliver benefits irrespective of 

Fig. 11. Hourly simulation results of EnergyPlus and the 4R1C model for the two prototype buildings.
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the selected climate zone.
Certain trends in terms of model performance that are related to 

climate variation become visible during this validation process. The hot 
and humid conditions of Guangzhou produce superior cooling load 
prediction accuracy among all climate zones and particularly affect the 
performance of office buildings. The cooling-dominated building con
ditions and stable daily temperature patterns explain this observation. 
The heating load predictions for the office building in Guangzhou 
display lower correlation values compared to other testing areas, mainly 
because of the building's limited heating usage period.

The 7R2C model delivers best heating load prediction outcomes in 
Shenyang's severe winters across all building types as it achieves the 
highest R2 values across every climate zone. The dual capacitance 
mechanism proves essential for capturing thermal mass effects which 
occur during extended heating periods with major differences between 
indoor and outdoor temperatures. The increased thermal capacitance in 
the 7R2C model yields its greatest prediction benefits during heating 
load forecasting in the Shenyang climate zone.

The cross-climate validation showed how different climatic condi
tions affect which RC model configurations prove optimal. Buildings 
located in severe cold regions with noticeable seasonal changes will gain 
significant accuracy improvements when using the 7R2C model to 
forecast heating loads. The 7R1C model also shows good accuracy and 
operational efficiency for hot and humid climates when focused on 
cooling-dominated building operations. The 7R1C model has achieved 
good performance measures in Shanghai's mild climate zone where 
heating and cooling durations exist while the 7R2C model provides 
minimal additional benefits. The identified findings enrich our model 
selection process by adding climate-condition adaptability to the 
assessment framework which includes building design characteristics 
and simulation end goals we previously introduced.

4.2. Simulation of the existing case study building

For the task of simulating energy use in the real-world educational 
structure, the 7R2C model was the most suitable according to the results. 
This decision was influenced by the building's distinct attributes, espe
cially its thermal capacity, internal load intensity, and the distribution of 
thermal zones. Given the multifaceted nature of the building edifice, a 
simplified approach was imperative for efficiency in the RC-based 
modeling. Consequently, the building's layout was delineated into 
eighteen primary thermal zones. This consolidation was achieved by 
merging zones that exhibited analogous functionalities and occupancy 
dynamics. These thermal zones, coupled with the detailing of the 
building's thermophysical characteristics, form the backbone of the 
simulation process. Table 5 lists these specifics, ranging from the net 
building floor area to the calibrated modeling parameters, Cm and Cs, 
which have been derived through inverse modeling. The subsequent 
sections will provide a closer look at these simulations, elucidating the 
7R2C model's performance against the educational building's real-world 
energy dynamics.

Fig. 16 provides an illustrative comparison between the energy use 
predicted by the 7R2C model and the actual metered data for the 
educational building. This juxtaposition is particularly significant for 
understanding the model accuracy and precision in replicating real- 
world energy use patterns, especially concerning heating and cooling. 
As elucidated in the preceding sections, the building's heating and 
cooling provisions are sourced from the local district energy provider, 
specifically in the forms of steam and chilled water. Looking into the 
winter season's data, it is evident that the 7R2C model's predictions for 
steam usage align well with the actual metered consumption. However, 
the situation is slightly different when examining the chilled water usage 
for cooling. While the general trend of the predicted values aligns with 
the metered data, there are certain deviations with metered hourly 

Fig. 12. Hourly simulation results of EnergyPlus and the 6R1C, 7R1C, and 7R2C model for the residential house.
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energy use. These discrepancies are more pronounced in predicting 
cooling energy use.

The challenge of simulating real-world energy consumption in 
buildings can be filled with intricacies primarily due to the uncertainties 
associated with operational conditions and building occupancy. The 
pronounced seasonal discrepancies stem from varying operational un
certainties between heating and cooling seasons. During summer (July 
15–30), the education building experiences irregular occupancy due to 
reduced course schedules and variable laboratory usage, introducing 
substantial uncertainty in internal heat gains (±40% from nominal 
values). Occupant-controlled window opening during mild conditions 
creates unmodeled natural ventilation, while dynamic blind adjust
ments alter solar heat gains beyond the simplified shading model's 
capability, contributing to the cooling underprediction. Conversely, 
winter heating (January 15–30) exhibits better accuracy due to pre
dictable semester schedules, minimal window operation, and reduced 
solar variability. The heating overprediction suggests the model does not 
fully capture thermostat setback practices during unoccupied periods 
and district heating system response delays. These seasonal variations 
highlight the fundamental trade-off in RC modeling between capturing 
primary thermal dynamics and accepting bounded uncertainty in 
occupant-driven variables, making the approach suitable for monthly 

energy trends and retrofit analysis rather than hour-by-hour operational 
control.

As depicted in Fig. 17, a comparative analysis of the aggregated 
monthly energy usage for both chilled water and steam presents 
insightful conclusions. The side-by-side representation of actual con
sumption and the 7R2C model's predictions serve to underline the 
model's efficacy in mirroring monthly energy use trends. The accuracy 
with which the proposed RC model simulates monthly energy con
sumption is good. Despite the intricacies that might influence a build
ing's energy profile, the model manages to capture the overarching 
trends and patterns. This level of precision, especially when applied at a 
monthly aggregate level, provides a promising indication of the model's 
robustness.

The ability of the 7R2C model to simulate monthly energy con
sumption with such precision underscores its potential utility in broader 
applications. For instance, when attempting to optimize a building's 
energy consumption, designers and engineers are often faced with 
innumerable combinations of physical parameters. Each of these com
binations can influence the building's energy profile in unique ways. The 
RC model's proficiency in accurately predicting monthly energy trends 
showcases its potential as a powerful tool in such optimization 
processes.

Fig. 13. Scatter plots of simulation accuracy of the 4R1C, 6R1C, 7R1C, and 7R2C model for the residential buildings (True value (kWh): EnergyPlus, Predicted value 
(kWh): RC model).
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To provide a comprehensive quantitative assessment of the model 
performance, Table 6 summarizes the statistical metrics for the educa
tion building case study at hourly and monthly time granularities.

Table 6 demonstrates that the calibrated 7R2C model achieves good 
predictive accuracy with monthly NRMSE of 17.85% for heating and 
10.99% for cooling, and minimal annual bias (MBE <4%). At hourly 
resolution, NRMSE increases to 18.04–21.46%, reflecting challenges in 
capturing short-term operational variations. The hourly MBE reveals 
systematic directional biases: 11.37% heating overprediction and 
11.38% cooling underprediction, consistent with the operational un
certainty discussion in this section regarding irregular occupancy pat
terns and thermostat practices. Despite these hourly-level biases, the low 
monthly MBE values demonstrate that errors largely offset over coarser 
granularity. The higher cooling RMSE indicates greater prediction 
variability due to complex interactions between solar gains, internal 
loads, and occupant-controlled shading. Overall, these metrics validate 
that the model provides reliable predictions for retrofit analysis and 
energy management, particularly for monthly and seasonal assessments.

5. Discussions

5.1. Comparative analysis of different RC models and their selection

In this study, a comparative analysis of RC model configuration is 
performed to gain insights into the relation between model complexity 
and simulation accuracy. The introduction of interzonal thermal 
coupling brings marked improvement, which is most apparent in the 
transition from the 4R1C model to more sophisticated ones. The 7R2C 
model shows superior accuracy than the 4R1C model for residential 
buildings, with R2 values of 97.81% and 98.74% for cooling and heating 
loads respectively, compared to the 89.51% and 96.12% R2 value of the 
4R1C model. The improvement aligns with Vivian et al.’s study [46]. 

Office buildings exhibit inherently higher complexity of thermal in
teractions and thus the performance differentiation is more pronounced. 
With R2 values for cooling load prediction up to 98.78%, 7R2C model 
demonstrates the importance of simulating interzonal thermal dynamics 
in complex building structure.

For peak cooling load predictions in residential buildings, the 7R2C 
model demonstrates superior stability (NRMSE of 4.47%) due to its dual 
capacitance representation of thermal storage effects. While the 7R1C 
model achieves comparable accuracy in many situations, thermal mass 
representation remains a crucial factor in model selection. In particular, 
the increase in the number of capacitors in the 7R2C model was found to 
be especially advantageous when dealing with buildings with significant 
thermal mass, as in the case of the office building. This is in line with 
previous findings by that thermal mass modeling is needed to make 
accurate building energy predictions.

The influence of interzonal thermal coupling varies substantially by 
building typology. The simpler 6R1C model is able to provide viable 
accuracy for residential prototypes with three thermal zones. Yet in 
office buildings with many zones, more sophisticated interzonal thermal 
coupling in the models 7R1C and 7R2C is needed for reliable pre
dictions. The relationship between building complexity and model so
phistication required can add practical guidance for model selection in 
different applications as per this study. This work provides a feasible 
framework for model selection based on the building characteristics and 
simulation requirements. The 6R1C model tends to produce sufficient 
accuracy for simple residential structures with few thermal zones. The 
7R2C model can capture thermal dynamics with enhanced capability in 
predicting the peak load of complex commercial buildings as well as 
applications where the peak load prediction needs to be predicted with 
high precision. This selection guidance will help the practical applica
tion of RC modeling with building energy simulation by providing a 
balance between model sophistication and practicality.

Fig. 14. Hourly simulation results of EnergyPlus and the 6R1C, 7R1C, and 7R2C model for the office buildings.
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To provide more specific guidance for model selection, Table 7
presents a decision matrix based on building characteristics and simu
lation requirements. This matrix synthesizes the quantitative perfor
mance metrics presented in Table 4 with computational efficiency 
considerations.

The selection criteria are derived from the following findings. 

1. Building zoning complexity: Buildings with more than 4 thermal zones 
show at least 3–4% improvement in R2 values when using 7R1C or 
7R2C models compared to simpler models.

2. Thermal mass consideration: Buildings with high thermal mass (con
crete structures, massive floors/walls) benefit from the dual capaci
tance representation in the 7R2C model, improving NRMSE for peak 
load predictions by approximately 0.5–1.5% compared to the 7R1C 
model.

3. Accuracy requirements: For applications requiring heating/cooling 
load predictions with NRMSE <3%, at least the 7R1C model should 
be used for complex buildings. For NRMSE <5%, the 6R1C model is 
typically sufficient for residential buildings.

4. Seasonal considerations: During transition seasons, the 7R2C model 
reduces NRMSE for cooling load predictions by 0.8–1.2% compared 
to the 7R1C model for complex commercial buildings.

5. Computational constraints: For large-scale parametric studies 
requiring thousands of simulations, the computational efficiency of 
the 6R1C model (12x faster than EnergyPlus) may be prioritized over 
the marginal accuracy improvements of more complex models.

5.2. Computational efficiency versus accuracy loss

The computational performance analysis of different RC model 
configurations reveals significant efficiency advantages over traditional 
simulation methods while maintaining acceptable accuracy levels. The 
evaluations are conducted on a Surface laptop equipped with an 11th 
Gen Intel(R) Core (TM) i7-1185G7 processor clocked at 3.00 GHz and 
complemented by 16 GB RAM. As shown in Table 8, the computational 
time requirements for RC models are substantially lower than Ener
gyPlus simulations across both building types. For the detached resi
dential house, the simulation time reduces from 22.3 s with EnergyPlus 
to a range of 1.5–2.1 s across different RC models. Similarly, for the 
medium office building, the computation time decreases from 54.7 s to 
3.2–5.3 s.

As RC model complexity increases, the 4R1C model remains fastest 
(1.5s for residential, 3.2s for office). Adding interzonal thermal coupling 
in the 6R1C model increases computation time by 27–44%, while the 

Fig. 15. Scatter plots of simulation accuracy of the 4R1C, 6R1C, 7R1C, and 7R2C model for the office buildings (True value (in kWh): EnergyPlus, Predicted value 
(kWh): RC model).
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transition from 7R1C to 7R2C introduces minimal overhead, indicating 
that the second capacitance node has limited computational impact. For 
preliminary building design and optimization processes, the computa
tional advantages are particularly important. Architects and engineers 
need to quickly assess many design alternatives in early design stages or 
for existing building retrofit [67]. The parametric study using Ener
gyPlus that runs from hours to days to understand the effects of building 
orientation, window to wall ratios, and envelope materials can now be 
computed in minutes to hours using the developed RC modeling engine, 

leading to more detailed design space exploration. The implications can 
be substantial for optimization related research. For example, to perform 
genetic algorithm optimization with 100 generations, 50 individuals per 
generation would require 5000 simulation runs. With the 7R2C model, 
the computation time of a medium office building will reduce from 76 h 
to 7 h when compared to EnergyPlus, which helps to make complex 
optimization studies feasible in affordable project timeframes.

RC configurations also have promising scalability prospects with a 
near-linear increase in computation time from residential to office 
building simulations. This scaling behavior indicates that the compu
tational cost of RCBldEng is still viable as building complexity grows. 
These results suggest that the 4R1C or 6R1C models can provide sub
stantial computational savings without compromising reasonable ac
curacy where speed of analysis is critical, such as at early design stages 
or large-scale optimization studies. Yet, the modest extra computational 
cost of using the 7R2C model is justified for applications where accuracy 
is important due to its superior performance in predicting peak loads 
and in dealing with complex thermal interactions.

5.3. Real-world application and practical implications

The application of the RC model to the education building case study 
reveals the practical implementation challenges and capabilities. Com
parisons with metered data show good agreement for monthly energy 
consumption predictions, especially in the spring semester when 
building operation patterns are more regular. The simulation results 
provide important considerations for practical applications, with 

Table 4 
Performance of RC models across different climate zones for residential and office buildings.

Climate Zone Building Type Model R2 of CL R2 of HL NRMSE of CL NRMSE of HL NRMSE of daily peak CL NRMSE of daily peak HL

Shanghai Residential 4R1C 0.895 0.961 5.92% 5.42% 4.14% 3.21%
​ ​ 6R1C 0.92 0.969 5.04% 4.66% 3.93% 3.10%
​ ​ 7R1C 0.967 0.986 3.25% 3.19% 5.00% 3.14%
​ ​ 7R2C 0.978 0.987 2.69% 2.99% 4.47% 3.50%
​ Office 4R1C 0.925 0.869 8.41% 3.75% 13.40% 14.20%
​ ​ 6R1C 0.955 0.893 4.73% 3.21% 4.42% 3.69%
​ ​ 7R1C 0.985 0.969 2.84% 1.56% 3.92% 3.36%
​ ​ 7R2C 0.988 0.983 2.48% 1.17% 3.63% 2.09%
Guangzhou Residential 4R1C 0.903 0.954 5.83% 5.56% 4.08% 3.34%
​ ​ 6R1C 0.927 0.961 4.97% 4.83% 3.86% 3.25%
​ ​ 7R1C 0.972 0.966 3.18% 3.42% 4.95% 3.31%
​ ​ 7R2C 0.981 0.978 2.62% 3.21% 4.41% 3.62%
​ Office 4R1C 0.931 0.852 8.21% 3.82% 12.95% 14.62%
​ ​ 6R1C 0.962 0.882 4.63% 3.25% 4.36% 3.73%
​ ​ 7R1C 0.987 0.951 2.75% 1.67% 3.87% 3.45%
​ ​ 7R2C 0.989 0.964 2.42% 1.39% 3.61% 2.24%
Shenyang Residential 4R1C 0.881 0.945 6.01% 5.29% 4.21% 3.15%
​ ​ 6R1C 0.916 0.963 5.12% 4.53% 3.98% 3.04%
​ ​ 7R1C 0.964 0.987 3.31% 3.07% 5.06% 3.08%
​ ​ 7R2C 0.975 0.988 2.76% 2.88% 4.53% 3.42%
​ Office 4R1C 0.907 0.883 8.78% 3.84% 14.51% 13.93%
​ ​ 6R1C 0.943 0.904 4.95% 3.19% 4.62% 3.57%
​ ​ 7R1C 0.978 0.974 3.02% 1.45% 4.12% 3.21%
​ ​ 7R2C 0.981 0.983 2.57% 1.06% 3.75% 1.94%

Table 5 
Forwardly modeled parameters and the calibration of hard-to-determine pa
rameters of the 7R2C model.

Model parameter Value Unit

Net building floor area 7781.4 m2
Number of occupants 650 /
Indoor temperature setpoint (summer) 25 ◦C
Indoor temperature setpoint (winter) 19 ◦C
External wall U-value 1.9 W/m2K
Window U-value 4.3 W/m2K
Window solar heat gain coefficient 0.56 /
Roof U-value 1.4 W/m2K
Below-grade U-value 2.85 W/m2K
Lighting intensity 13.02 W/m2

Equipment intensity 63.51 W/m2

Calibrated internal wall U-value 2.54 W/m2

Calibrated Cm 164427 J/m2K
Calibrated Cs 38792 J/m2K

Fig. 16. Hourly energy use predictions versus the metered hourly energy use.
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prediction accuracy showing distinct seasonal behavior and larger dis
crepancies during summer months due to irregular building usage pat
terns. This observation aligns with Yan et al.'s findings regarding 
operational uncertainties in building energy modeling [68].

The calibration process indicates that accurate parameter identifi
cation is of critical importance and shows that calibrated values for 

internal wall U-value and thermal capacitance can be obtained through 
the differential evolution algorithm under physical constraints. In 
practice, implementation is highly influenced by data availability and 
quality. Basic building geometry and envelope properties are generally 
available, but the detailed operational data that is required for model 
calibration can sometimes be missing. Hourly metered data was avail
able to support the education building case study in this research, yet 
such extensive information is not necessarily ubiquitous, jeopardizing 
the potential in achieving accuracy and reliability of calibration and 
prediction. Moreover, due to the structured text-based input system of 
the RCBldEng model, it is practical in terms of model modification and 
scenario testing. However, simplifications of complex phenomena such 
as thermal bridges and dynamic occupant behavior may involve sys
tematic uncertainties. For the case study, the current implementation 
used a simplified approach to represent district heating and cooling, 
which will be sufficient for the education building case, however, bias 
might be introduced in modeling more complex HVAC configurations. 
Beyond energy prediction, the practical implications extend to potential 
building operation optimization. Implementation of the model in real 
time control applications can be feasible with careful consideration of 
prediction uncertainty. Rapidly evaluating different operational sce
narios could help make more informed decisions in building design or 
management for facilities linked to district energy.

5.4. Limitations and future research

In this study, the proposed RC based simulation engine has shown 
promising prospects in terms of the prototype and real building appli
cations. However, a number of limitations and future development op
portunities should be discussed. Although this implementation is useful 
for many applications, there are still constraints to the current imple
mentation, which could be addressed by further research in the future. 
Future validation work should incorporate standardized test cases from 
ASHRAE Standard 140, which provides comprehensive building enve
lope and system test cases developed by SERI/NREL. These cases would 
offer additional benchmarks against which to evaluate the performance 
of different RC model configurations across controlled scenarios.

Regarding model generalization capability, this study included a 
comprehensive cross-climate validation across three distinct ASHRAE 
climate zones (Shanghai 3A, Guangzhou 1A, Shenyang 7) for both res
idential and commercial buildings, totaling 24 building-climate combi
nations with R2 values of 0.88–0.99. The validation demonstrates that 
model accuracy improvements from increased complexity remain 
consistent across all climates, with the 7R2C model showing particular 
advantages in severe cold climates for heating loads and the 7R1C model 
achieving excellent accuracy in cooling-dominated climates. However, 
the validation focused on buildings with typical envelope constructions 
meeting ASHRAE 90.1–2013 standards and standard HVAC operation 
modes; performance for buildings with latest envelope techniques (i.e. 
highly glazed façades, phase change materials, dynamic insulation) or 
advanced HVAC strategies (i.e. demand-controlled ventilation, radiant 
systems, predictive control) requires further investigation.

As for calibration data requirements, when metered energy con
sumption is unavailable for existing buildings, alternative approaches 
include short-term measurement campaigns (1–2 weeks), utility bill- 
based monthly calibration, or benchmarking against similar building 

Fig. 17. Monthly energy use predictions versus the metered monthly en
ergy use.

Table 6 
Quantitative performance metrics of the 7R2C model for the education building 
case study.

Time Granularity Energy 
Source

RMSE 
(kWh)

NRMSE 
(%)

MBE 
(%)

Cooling 
Season 
(Jul)

Hourly Chilled 
Water

134.77 21.46 − 11.38

Heating 
Season 
(Jan)

Hourly Steam 83.22 18.04 11.37

Annual Monthly Chilled 
Water

34534.59 10.99 3.97

Annual Monthly Steam 40215.15 17.85 1.01

Note: RMSE = Root Mean Square Error; NRMSE = Normalized Root Mean 
Square Error; MBE = Mean Bias Error.

Table 7 
RC model selection decision matrix.

Building 
Characteristics

Simulation 
Purpose

Recommended 
RC Model

Computational 
Efficiency

Simple residential 
(1–3 zones)

Early design 
exploration

4R1C 15x faster than 
EnergyPlus

Simple residential 
(1–3 zones)

Load analysis 6R1C 12x faster than 
EnergyPlus

Simple residential 
(1–3 zones)

Peak load 
analysis

7R1C 11x faster than 
EnergyPlus

Complex commercial 
(5+ zones)

Early design 
exploration

6R1C 12x faster than 
EnergyPlus

Complex commercial 
(5+ zones)

Load analysis 7R1C 11x faster than 
EnergyPlus

Complex commercial 
(5+ zones)

Peak load 
analysis

7R2C 10x faster than 
EnergyPlus

High thermal mass 
buildings

Retrofit 
analysis

7R2C 10x faster than 
EnergyPlus

Low thermal mass 
buildings

Retrofit 
analysis

7R1C 11x faster than 
EnergyPlus

Any building during 
transition seasons

Cooling load 
prediction

7R2C 10x faster than 
EnergyPlus

Table 8 
Computational performance of the proposed RC models.

Model Detached house Medium office

EnergyPlus 22.3s 54.7s
4R1C 1.5s 3.2s
6R1C 1.9s 4.6s
7R1C 2.0s 5.1s
7R2C 2.1s 5.3s
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archetypes with conservative assumptions validated through sensitivity 
analysis. In addition, the current simplified HVAC representation may 
not adequately capture complex control strategies, variable refrigerant 
flow systems, or thermal storage, limiting accuracy for buildings with 
advanced HVAC configurations. The lack of explicit psychrometric 
modeling—including moisture balance equations and humidity 
dynamics—restricts applicability to buildings with strict humidity con
trol requirements (laboratories, museums) and may underestimate 
latent loads in humid climates, though sensible loads remain accurately 
predicted. These limitations, along with simplified occupancy modeling 
and the assumption of well-mixed zone air, define the model's appro
priate scope as a tool for monthly energy trends, early-stage design 
comparison, and retrofit measure evaluation rather than detailed oper
ational control or specialized environmental conditioning applications. 
Additionally, while the current validation focuses on whole-building 
aggregated loads, future work should include zone-level validation to 
diagnose potential systematic biases across different orientations 
(south/north), locations (core/perimeter), and floor levels (upper/ 
lower), which would provide deeper insights into the model's spatial 
accuracy and help identify specific scenarios where model refinements 
may be needed.

At this point, urban scale application both offers challenges and 
presents opportunities for future development and extension of this 
study [55]. This suggests the potential in scaling to district or urban 
scale simulations, but additional complexities like building shadowing 
effects, urban heat island impacts, and district energy system in
teractions should be addressed [69,70]. Further exploration of the po
tential for real time applications is warranted in the context of 
developing robust control algorithms that can leverage the model's 
predictions while dealing with operational uncertainties.

6. Conclusions

In this research, a novel hybrid modeling approach that integrates 
the strengths of both forward and inverse modeling methods through the 
development of the RCBldEng simulation engine is introduced. The 
approach bridges the theoretical and practice by combining theoretical 
building physics principles with real-world energy use data calibration. 
Four RC model configurations (4R1C, 6R1C, 7R1C, and 7R2C) are pro
posed and developed to cater to varying levels of building complexity, 
with each model configured to provide an advantage in specific 
applications.

A dual-capacitance model which coupled the thermal behavior of the 
interzonal zones and modeled the effect of interzonal thermal coupling 
and heat transfer was developed (7R2C) and finds superior performance 
in modeling complex building thermal behavior, especially in the case of 
buildings with high indoor thermal mass. The 4R1C model is compu
tationally efficient but lacks the ability to describe the dynamics of 
interzonal interactions. The 7R2C model aligns the closest with Ener
gyPlus results, particularly for buildings with significant thermal mass, 
while still maintaining substantially faster computation times. For sit
uations where real time simulations are needed or when limited 
computational resources are available, this computational efficiency 
becomes vital. Moreover, the application of the model to an educational 
building case study shows that the model can handle real-world 

scenarios. The differential evolution algorithm is shown to effectively 
identify hard-to-determine parameters, but seasonal prediction accuracy 
variations suggest that consideration of operational uncertainties is 
essential. The structured text-based modeling approach can be useful for 
early-stage design analysis and retrofit studies since it allows rapid 
scenario testing and model modification.

It is shown that the RC-based approach has significant advantages in 
computational cost for design optimization and parametric studies. The 
comprehensive exploration of design alternatives in a matter of minutes 
rather than hours, allows for better informed decision making in 
building design and operation. For applications where rapid analysis is 
desired, i.e., early-stage design evaluation or large-scale optimization 
studies, these benefits are particularly pronounced. This research offers 
a methodology for choosing and implementing RC models depending on 
the building characteristics and simulation requirements. The results 
provide practical guidelines to strike a balance between model sophis
tication and computational efficiency and suggest opportunities for 
future development of RC based simulation engines. Future work in
cludes enhanced representation of complex HVAC systems, more user- 
friendly interfaces, and urban-scale applications. In short, this 
research shows that RC-based building energy simulation engines can 
provide viable alternative to traditional dynamic simulation methods, 
especially for cases where fast analysis or extensive parametric studies 
are needed, which may facilitate more efficient and sustainable building 
energy solutions.

Code availability

The RCBldEng simulation engine (v1.2) developed in this research is 
available as a Windows executable, which can be downloaded on 
GitHub at https://github.com/andersonspy/RCBIdEng/releases/tag/ 
v1.2.0. The program runs on Windows operating systems and requires 
minimal installation. The executable and example files can be down
loaded in compressed file, and users can follow the instruction in the 
user manual to perform building energy simulation using the RC 
modeling approach introduced in this paper.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

I would sincerely thank Professor Bill Braham and Alex Waegel from 
the Center for Environmental Building + Design at the University of 
Pennsylvania for their remarkable assistance and support at the early 
stages of the development of RCBldEng when I was pursuing my Ph.D. a 
decade ago. I am also particularly indebted to the late Professor Godfried 
Augenbroe from Georgia Institute of Technology, who offered profound 
insights on RC building simulation as well as encouragement that 
inspired this work. My ten-year winding journey in developing the 
RCBldEng would not have been possible without their mentorship and 
encouragement.

Appendix A: Infiltration and Natural Ventilation Model

This appendix describes the mathematical formulation of the infiltration and natural ventilation model used in the simulation engine.

A.1 Infiltration Model

The infiltration model is based on the principle of air leakage through building envelopes due to pressure differences caused by temperature 
differentials (stack effect) and wind.
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A.1.1 'Real' Infiltration Method
The 'real' infiltration method combines models for stack effect and wind-driven infiltration.

A.1.1.1 Stack Effect. The stack effect model is based on the buoyancy-driven airflow due to temperature differences between indoor and outdoor air: 

qv,stack =max
(

0.0146 ⋅ Fr ⋅ finf ⋅ (0.7 ⋅ h ⋅ |Te − Tset|)
0.667

,0.001
)

where qv,stack is the volumetric flow rate due to stack effect [m3/s], Fr is the reference flow rate [m3/s], finf is the infiltration fraction [− ], h is the zone 
height [m], Te is the outdoor temperature [K], and Tset is the indoor set temperature [K]. The constant 0.7 accounts for the average height of neutral 
pressure level in buildings.

A.1.1.2 Wind Effect. The wind effect model is based on the pressure differences created by wind around the building. It also follows the orifice 
equation: 

qv,wind =0.0769 ⋅ Fr ⋅ finf ⋅
(
ΔCp⋅vsite⋅w2

s
)0.667 

where qv,wind is the volumetric flow rate due to wind effect [m3/s], ΔCp is the pressure coefficient difference [− ], vsite is a site-specific factor [− ], and ws 
is the wind speed [m/s]. The pressure coefficient difference accounts for the distribution of wind pressure on the building façade.

A.1.1.3 Combined Stack and Wind Effect. The combined effect is modeled using a quadrature sum approach, which accounts for the fact that stack and 
wind effects are not simply additive: 

qv,sw =max
(
qv,stack, qv,wind

)
+

0.14⋅qv,stack⋅qv,wind

Fr⋅finf 

A.1.1.4 Final Infiltration Rate. The final infiltration rate considers any additional pressure differences and ensures non-negative values: 

qv,inf =max
(

0, − qv,diff

)
+ qv,sw 

where qv,diff is a term accounting for the pressure-induced ventilation flow rate difference between supply and exhaust air streams.

A.1.2 'Constant' Infiltration Method
The constant infiltration method uses a simplified approach based on a reference flow rate and infiltration fraction: 

qv,inf = Fr⋅finf 

A.2 Natural Ventilation Model

When ventilation type is not mechanical, the natural ventilation model is activated. The natural ventilation model is based on the principles of 
airflow through naturally opened windows or vents, when the proper opening pattern is taken for buoyancy-driven or wind-driven airflow.

A.2.1 Ventilation Speed
The ventilation speed model combines wind speed and temperature difference effects: 

V =0.01+0.001 ⋅ w2
s +0.0035 ⋅ h⋅|Tset − Te|

A.2.2 Environmental Factors
The model includes factors to account for the impact of wind and temperature on occupant behavior regarding window opening:
Wind factor: 

Ywind =min(max(1 − 0.1 ⋅ ws, 0),1)

Temperature factor: 

Ytemp =min(max(Te /25.0+0.2,0), 1)

Opening factor: 

Ropw =Ywind⋅Ytemp 

A.2.3 Natural Ventilation Rate
The natural ventilation rate is modeled based on the orifice equation, considering the opening area and ventilation speed: 
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qv,airing =Ropw⋅
3.6⋅500⋅Aow⋅

̅̅̅̅
V

√

Af 

where Aow is the opening area [m2] and Af is the floor area [m2].
A.2.4 Natural Ventilation Control

The model includes a simple control strategy based on cooling demand and outdoor temperature: 

Vhrs =

{
1 if qC > 0 and Te < Tset and Te > 16◦C

0 otherwise 

where qC is the cooling demand and NVhrs is the calculated natural ventilation hours.

A.3 Total Ventilation and Heat Transfer

A.3.1 Total Ventilation Rate
The total ventilation rate combines mechanical supply, infiltration, and natural ventilation: 

qv,tot = qv,supp + qv,inf + qv,NV 

A.3.2 Ventilation Heat Transfer Coefficient
The ventilation heat transfer coefficient is based on the heat capacity of air and the total ventilation rate: 

Hve =
1.2
3.6

⋅qv,tot 

where 1.2 is the volumetric heat capacity of air [kJ/(m3⋅K)].

Appendix B. Solar Radiation Calculation Model

This appendix describes the simplified solar radiation calculation model used in the building energy simulation engine. The model calculates 
various solar parameters and radiation components for different surface orientations.

B.1 Solar Position Calculations

B.1.1 Day of Year
The day of the year (Ydate) is calculated based on the month and day: 

Ydate =

{
Ydate,i− 1 + dayi − dayi− 1 if monthi = monthi− 1

Ydate,i− 1 + 1 otherwise 

where, Ydate: the cumulative date-related value; Ydate,i− 1: The previous value of Ydate, where the subscript i − 1 denotes the preceding iteration or time 
step; dayi: The current day of the month; dayi− 1: The previous day of the month; monthi: The current month; monthi− 1: The previous month;

B.1.2 Solar Time
The model calculates several time-related parameters:
Solar time variable (τ): 

τ=2π(Ydate − 1)
365 

Equation of Time (ET): 

ET =2.2918(0.0075+ 0.1868 cos τ − 3.2077 sin τ − 1.4615 cos 2 τ − 4.089 sin 2 τ)

Apparent Solar Time (AST): 

AST= hour +
ET
60

+
longitude − LSM

15 

where LSM is the Local Standard Time Meridian.

B.1.3 Solar Angles
Solar declination (δ): 

δ=23.45 sin
(

Ydate + 284
365

⋅ 2π
)
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Hour angle (θh): 

θh =15(AST − 12)

Solar altitude (β): 

sin β= cos ϕ cos δ cos θh + sin ϕ sin δ 

where φ is the latitude.
Solar azimuth (ψ): 

sin ψ=
sin θh cos δ

cos β 

cos ψ=
cos θh cos δ sin ϕ − sin δ cos ϕ

cos β 

B.2 Surface Solar Radiation Calculations

For each surface orientation, the model calculates.

B.2.1 Surface Solar Azimuth (γ):

γ=
⃒
⃒ψ − ψsurface

⃒
⃒

B.2.2 Angle of Incidence (θ):

cos θ= cos β cos γ sin σ + sin β cos σ 

where σ is the surface tilt angle.

B.2.3 Direct Beam Component (Et,b):

Et,b =

{
0 if 90◦ < γ < 270◦ or cos θ < 0

Eb cos θ otherwise 

where Et,b is the direct normal irradiance.

B.2.4 Diffuse Component (Et,d):

Y =max
(
0.45,0.55+0.437 cos θ+ 0.313 cos2 θ

)

Et,d =

{
Ed(Y sin σ + cos σ) if σ ≤ 90◦

EdY sin σ if σ > 90◦

where Ed is the diffuse horizontal irradiance.

B.2.5 Ground-Reflected Component (Et,r):

Et,r =(Eb sin β+Ed)rg
1 − cos σ

2 

where rg is the ground reflectivity.

B.2.6 Global Solar Radiation (GSR):

GSR=Et,b + Et,d + Et,r 

B.3 Solar Irradiation on Tilted Surfaces

For various tilt angles, the model calculates solar irradiation: 

Esol =
Egh

sin β
(
cos β sin σ cos

(
ψ − ψsurface

)
+ sin β cos σ

)

where Egh is the global horizontal irradiance.
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Appendix C. Solar Reduction Factors

The model calculates solar reduction factors for various shading devices.
B.3.1 Overhang:

SRFoverhang =

max
(

0, 1 − 0.5 tan i
tan(90◦ − max(β,0◦))

)

Et,b +

(

1 − i
90◦

)

Et,d + Et,r

GSR 

B.3.2 Fin:

SRFfin =

max
(

0, 1 − 0.5 tan i
tan(90◦ − |ψ− ψsurface|)

)

Et,b + Et,d + Et,r

GSR 

B.3.3 Horizon:

SRFhorizon =

⎧
⎨

⎩

1 −
Et,b

GSR
if max (β, 0◦)

1 otherwise
< i 

where i is the shading device angle.

Appendix D. Building Energy Use Calculation Method

This part describes the simplified HVAC energy use calculation model implemented in the building energy simulation engine. The model calculates 
energy consumption for heating, cooling, ventilation, and domestic hot water (DHW) for each thermal zone.

D.1 Supply Air Flow Rates

The model calculates supply air flow rates for heating and cooling: 

Vh,supply =
qH

3600ρ
(
Tsupply,H − Tair,hc

)

Vc,supply =
qC

3600ρ
(
Tair,hc −

(
Tsupply,C + ΔTreheat

))

where Vh,supply and Vc,supply are the heating and cooling supply air flow rates [m3/h/m2], qH and qC are the heating and cooling demands [W/m2], ρ is 
the air density [kg/m3], Tsupply,H and Tsupply,C are the supply air temperatures for heating and cooling [◦C], Tair,hc is the zone air temperature [◦C], and 
ΔTreheat is the reheat temperature difference [◦C].

D.2 Fan Energy Consumption

The fan volume and energy consumption are calculated as: 

Vfan =max
(
Vh,supply,Vc,supply

)
+ Vexh 

Efan =max
(
Vfan

)
PfanfcontrolfBAC,e 

where Vexh is the exhaust air flow rate, Pfan is the fan power [W/(m3/s)], fcontrol is the fan flow control factor, and fBAC,e is the building automation and 
control (BAC) factor for energy.

D.3 Pump Energy Consumption

The model calculates water flow rates and pump volumes for heating and cooling: 

Vw,h =
qH,HVAC

ρ(
w c

(p,wΔTw,H )

)

Vw,c =
qC,HVAC

ρwcp,wΔTw,C 
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where Vw,h and Vw,c are the heating and cooling water flow rates [m3/h], ρw is the water density, cp,w is the specific heat capacity of water, and ΔTw,H 

and ΔTw,C are the water temperature differences for heating and cooling. The pump volumes are then calculated based on the pump control strategy.
D.4 HVAC System Efficiency

The model calculates heating and cooling system efficiencies using performance curves: 

etaheat =PLVh
(
qH,HVAC

/
qH,max

)
⋅ηheat,nom 

COPcool =PLVc
(
qC,HVAC

/
qC,max

)
⋅COPcool,nom 

where PLVh and PLVc are the part load value curves for heating and cooling, and ηheat,nom and COPcool,nom are the nominal efficiencies. qH,HVAC and 
qC,HVAC are the hourly heating and cooling demand, and qC,max and qH,max are the maximum heating and cooling output of the HVAC system.

D.5 Distribution Losses and Final Energy Consumption

The model accounts for distribution losses: 

fdem,heat =max

(

0.1,
∑

qH,HVAC
∑

qH,HVAC +
∑

qC,HVAC

)

fdem,cool =max
(

1 − fdem,heat ,0.1
)

ηdist,heat =
1

1 + aheat + fwaste

/
fdem,heat 

ηdist,cool =
1

1 + acool + fwaste

/
fdem,cool 

where:
fdem,cool represents the fraction of cooling demand; fdem,heat is the fraction of heating demand; ηdist,heat and ηdist,cool are the efficiency of heating and 

cooling distribution; aheat and acool are coefficients related to heating and cooling losses; fwaste represents the fraction of waste energy.
Final energy consumption for heating and cooling: 

Eheat =

(
qH,HVAC + qH,loss

)
fBAC,hc

ηheat 

Ecool =

(
qC,HVAC + qC,loss

)
fBAC,hc

COPcool 

where qH,loss and qC,loss are the distribution losses, and fBAC,hc is the BAC factor for heating and cooling.

D.6 Domestic Hot Water (DHW) Demand

The DHW demand is calculated based on the occupancy profile: 

QDHW =12⋅DHW⋅4.18⋅1000⋅45⋅Af 

qDHW =QDHW⋅
focc
∑

focc 

where DHW is the daily hot water consumption [m3/m2/day], Af is the floor area [m2], and focc is the occupancy fraction.

Appendix E. Onsite Renewable Energy Production Calculation Model

E.1 Photovoltaic (PV) System Energy Generation

The model calculates the solar irradiation incident on the PV panels and the resulting energy generation.

E.1.1 Solar Irradiation on PV Panels
The solar irradiation on PV panels Esol,PV is determined based on the PV panel area, angle, and orientation: 

Esol,PV =

⎧
⎨

⎩

Egh
/
1000 if PV angle = 0◦

Esol,θ,ψ
/
1000 if PV angle > 0◦

0 if PV area = 0 
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where. 

Egh is the global horizontal irradiation [W/m2]
Esol,θ,ψ is the solar irradiation on a tilted surface with angle θ and orientation ψ [W/m2]

E.1.2 PV Energy Generation
The energy generated by the PV system is calculated as: 

Egen,PV =Esol,PV⋅Ppk⋅fperf ⋅3600000 

where. 

Egen,PV is the energy generated by the PV system [J]
Esol,PV is the solar irradiation on PV panels [kWh/m2]
Ppk is the peak power of the PV system [kW]
fperf is the performance factor of the PV system [− ]
3600000 is the conversion factor from kWh to J

E.2 Solar Water Heating (SWH) System

The model calculates the solar irradiation incident on the SWH collectors.

E.2.1 Solar Irradiation on SWH Collectors
The solar irradiation on SWH collectors (Esol,SWH) is determined based on the collector area, angle, and orientation: 

Esol,SWH =

⎧
⎨

⎩

Egh
/
1000 if SWH angle = 0◦

Esol,θ,ψ
/
1000 if SWH angle > 0◦

0 if SWH area = 0 

E.2.2 SWH Energy Gain
The energy gain of the SWH system is calculated as: 

Egain,SWH = Esol,SWH⋅3600000 

where. 

Egain,SWH is the energy gain of the SWH system [J]
Esol,SWH is the solar irradiation on SWH collectors [kWh/m2]

E.3 Model Implementation Notes

If the PV or SWH area is zero or if there are invalid inputs, the respective solar irradiation is set to zero. The model uses pre-calculated solar 
irradiation data for tilted surfaces (Esol,θ,ψ) stored in the solar calculation dictionary which is calculated based on Appendix C.

The performance factor (fperf ) for the PV system accounts for various system losses and inefficiencies. The model assumes that the SWH energy gain 
is directly proportional to the incident solar irradiation, without considering system efficiency or heat losses. For a more accurate estimation, 
additional factors such as collector efficiency, heat exchanger effectiveness, and storage losses should be incorporated.

E.2 Wind Turbine Energy Generation

If wind turbines are present, the energy generation is calculated as: 

Egen,wind =0.5ρairNAsweptηturbinev
3
wind⋅3600 

where ρair is the air density, N is the number of turbines, Aswept is the swept area, ηturbine is the turbine efficiency, and vwind is the wind speed.

Appendix F. Forward Model Parameter Calculations

F.1 Thermal Resistances Calculation

F.1.1 Envelope Thermal Resistances
The thermal resistances of building envelope components are calculated from their U-values and areas: 
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Rex =
1

∑

i
(Ui⋅Ai)opaque 

Rwin =
1

∑

i
(Ui⋅Ai)window 

where Ui is the heat transfer coefficient (W/m2K) and Ai is the corresponding surface area (m2).

F.1.2 Ventilation and Infiltration Resistance
Ventilation resistance is calculated based on the air exchange rate and air properties: 

Rv =
1

1.2⋅ACH⋅Vzone/3.6 

where ACH is the air changes per hour (h− 1), Vzone is the zone volume (m3), and 1.2 represents the volumetric heat capacity of air (kJ/m3K).

F.1.3 Internal Resistances
Internal resistances between air and surfaces, and between surfaces and thermal mass: 

Ria =
1

hin⋅At 

Rim =
1

him⋅Am 

where hin is the interior convective heat transfer coefficient, him represents the conduction coefficient between surfaces and mass, At is the total surface 
area, and Am is the effective mass surface area in m2.

F.1.4 Interzonal Thermal Resistances
For thermal coupling between zones: 

Riw,i =
1

Uiw⋅Aiw,i 

Rif ,i =
1

Uif ⋅Aif ,i 

where Uiw and Uif are the heat transfer coefficients of internal walls and floors, and Aiw,i and Aif ,i are the corresponding areas between the current zone 
and adjacent zone i.

F.2 Thermal Capacitances Estimation

The thermal capacitances are calculated as: 

C=
∑

i
ρi⋅cp,i⋅di⋅Ai 

where ρi is the density (kg/m3), cp,i is the specific heat capacity (J/kgK), di is the effective thickness (m), and Ai is the area (m2) of the respective 
building element.

F.3 Heat Gains Calculation

F.3.1 Internal Heat Gains
Internal heat gains from occupants, equipment, and lighting are calculated as: 

Qint = qocc⋅focc + qapp⋅fapp + qli⋅fli 

where qocc,qapp, and qli are the heat gain densities (W/m2) from occupants, appliances, and lighting, and focc, fapp, and fli are the corresponding time- 
dependent fractions.

F.3.2 Solar Heat Gains
Solar heat gains through windows and opaque surfaces: 
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Qsol =

∑

i,j

(
SRFi,j⋅GSRj⋅Ai,j⋅(1 − FFi)⋅SHGCi

)

Af
+

∑

i,j

(
GSRj⋅Ai,j⋅Ui⋅αi⋅rse

)

Af 

where SRFi,j is the solar reduction factor (accounting for shading devices), GSRj is the global solar radiation on surface j, Ai,j is the area, FFi is the frame 
factor, SHGCi is the solar heat gain coefficient, Ui is the U-value, αi is the absorption coefficient, rse is the external surface resistance, and Af is the floor 
area.

Data availability

Data will be made available on request.
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