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ARTICLE INFO ABSTRACT

Keywords: As there is a lack of resistance-capacitance (RC) modeling method and framework for universal applicability and

Building simulation standardized implementation to multizone building simulation practices, a novel hybrid RC modeling approach

EC model that combines physics-based principles (forward modeling) with real-world data calibration (inverse modeling)
nergy use

for building energy simulation is presented in this study. A simulation engine called RCBIdEng that combines
theoretical building physics with real world calibration capability is developed. Four RC model configurations
are proposed and evaluated for different building types and thermal behaviors (4R1C, 6R1C, 7R1C, and 7R2C)
with increasing model complexity. The EnergyPlus simulations of two prototype buildings and an educational
building case study in the real world are used to test and validate the performance of the simulation engine. The
results indicate that the inclusion of interzonal thermal coupling and dual capacitance mechanisms (7R1C and
7R2C) substantially improves prediction accuracy leading to R? values of up to 98.78% for office building cooling
load prediction against EnergyPlus. For simplified building simulation model, configurations such as the 4R1C
model are suitable, but the 7R2C model can better represent the thermal behavior of buildings with high effective
thermal mass and multiple zones. Moreover, the differential evolution algorithm turns out to be an effective
choice for model calibration for existing buildings, and real-world operational uncertainties due to seasonal
variations can be important bias sources. It is shown that the computational efficiency of RCBIdEng can be a
competitive candidate in performing building simulation for preliminary design stage and optimization

Model calibration
Parametric optimization

applications.

1. Introduction

How architectural design and engineering teams make rapid and
effective green low-carbon architectural design decisions and apply
energy-saving technologies while ensuring a good built environment has
become an indispensable problem in achieving sustainable goal in the
building sector [1,2]. Among them, building thermal load and energy
consumption simulation calculations are essential methods and means
for accurately evaluating energy consumption and carbon emission
levels during the operation phase of a building when combined with
appropriate emission factors and grid data [3]. Building energy simu-
lation tools like EnergyPlus provide accurate thermal load predictions
but require substantial computational resources, particularly when
evaluating multiple design alternatives during early design stages [4].
This computational burden limits architects and engineers from con-
ducting the exhaustive parametric studies essential for optimizing green
building performance [5]. Considering this, reduced-order resistance--
capacitance (RC) network models offer a promising alternative by
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dramatically reducing simulation time while maintaining acceptable
accuracy. However, existing RC modeling approaches face challenges:
pure forward models lack calibration capability for existing buildings,
while inverse data-driven methods cannot be applied to new designs
without operational data. This study addresses this gap by developing
RCBIdEng - a hybrid RC modeling engine that combines theoretical
building physics principles with real-world data calibration, enabling
both new building design optimization and existing building retrofit
analysis with computational efficiency 10-15 times faster than tradi-
tional tools.

A novel hybrid RC building modeling approach is proposed in this
study, which combines forward building physics principles (e.g. RC
theory) with real world data calibration (inverse modeling). What dis-
tinguishes this approach from existing RC modeling methods is the
methodological integration that enables dual applicability within a
single framework. Traditional RC modeling studies employ either for-
ward methods—calculating parameters directly from known building
physics properties—or inverse methods—identifying all parameters
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through data-driven optimization of measured performance. The hybrid
approach developed in this study differs fundamentally in three key
aspects: (1) Selective parameter treatment: physics-based parameters
(envelope thermal properties, geometry) are calculated using forward
modeling, while uncertain parameters (effective thermal capacitance,
infiltration rates) are calibrated through inverse optimization, rather
than treating all parameters uniformly; (2) Universal applicability: the
same modeling engine serves both new building design scenarios (where
physical properties are specified but no operational data exists) and
existing building analysis (where measured performance data enables
calibration); (3) Progressive model framework: four distinct RC config-
urations (4R1C through 7R2C) are systematically developed and vali-
dated, with explicit model selection guidance based on building
characteristics, interzonal coupling importance, and accuracy re-
quirements. Different from traditional methods solely based on forward
physics-based calculations or inverse data-driven parameter identifica-
tion, the hybrid approach makes the model applicable to both new
building design scenarios for which physical properties are known and
existing building analysis for which calibration data is available.

2. Literature review

Current research efforts aimed at reducing building energy con-
sumption focus on areas such as green building scheme optimization [6],
building energy system optimization control [7], renewable energy
application [8], and fault modeling analysis [9]. Typically, building
energy simulation models can be categorized into white-box, black-box,
and gray-box models. The white-box model is based on the conservation
equations of mass, energy, and momentum. A notable feature of the
white-box model is that each parameter has solid physical significance,
hence it is also referred to as physics-based model. Basic inputs for the
white-box building energy consumption model generally include
building envelope structure, information on personnel and equipment
schedules, HVAC system parameters, building environmental parame-
ters, etc. The downside is its numerous input parameters, and lengthy
modeling and calculation times, although the simulation results are
relatively accurate. Current mature white-box model software includes
EnergyPlus [10], TRNSYS [11], DeST [12,13], and eQuest [14].

The black-box model usually refers to the data-driven modeling
method. Establishing an accurate black-box model requires abundant
and high-quality training data and an appropriate algorithm [15].
Black-box modeling does not require researchers to have specialized and
in-depth engineering knowledge background because it is a mapping of
relationship between input and output data. Moreover, the black-box
model has strong adaptability. The models can adjust with changes in
training data. The drawbacks of the black-box model are also evident:
high data quality requirements, low interpretability, high model
training costs, and inability to be generalized to other buildings. For
heating, ventilation, and air conditioning (HVAC) systems, the
black-box model is mainly used for energy consumption estimation or
load prediction, which can then be used for control, energy manage-
ment, etc. Typical algorithms include linear regression [16],
change-point linear methods [17], neural networks [18], tree-based
algorithms [19], and support vector machines [20,21]. Recent de-
velopments in data-driven building energy modeling have expanded to
include deep learning architectures, digital twin frameworks, and
hybrid physics-data approaches. Transformer-based models and graph
neural networks have shown promise in capturing complex temporal
and spatial dependencies in multizone buildings [22,23]. Digital twins
integrating real-time data with physics-based models are increasingly
deployed for building energy management and predictive control [24].
These emerging approaches demonstrate the growing trend toward
combining physics-based knowledge with data-driven techniques,
which aligns with the hybrid modeling philosophy adopted in this study.
The gray-box model, on the other hand, combines the features of both
white-box and black-box models and is also known as a reduced-order

Energy 346 (2026) 140260

model or a simplified model [25].

Compared to the black-box model, the gray-box model has physical
significance and is easier to interpret. Compared to the white-box model,
its model is simpler with lower computational costs. Among them, the
resistance-capacitance (RC) model is the most widely studied and
applied gray-box model. The development of RC models for building
thermal simulation has a rich history dating back several decades. The
RC model is established through the circuit analogy, wherein parameters
R analogous to resistance represent building thermal resistance, and
parameters C analogous to capacitance represent building thermal
capacitance. While connecting nodes represent temperature, and the
temperature difference between nodes is analogous to the voltage dif-
ference in circuits. The order of the RC model depends on the number of
Cs, because for each C, its control method includes a differential equa-
tion [26]. Currently, common RC model establishment methods include
forward and inverse methods.

2.1. RC-based modeling for building energy simulation

Most of the current building load or energy consumption modeling
based on the RC model requires the use of historical load or energy
consumption data, with the main work being the parameter identifica-
tion process of the RC model. This method is commonly referred to as the
inverse method, which focuses on using data-driven methods to obtain
resistance (R) and capacitance (C) values. In the domain of inverse
modeling for buildings, ASHRAE's Inverse Model Toolkit (IMT) repre-
sents an important contribution to the field. Developed as part of
ASHRAE Research Project 1050 [27], the IMT provides standardized
implementations of linear, change-point linear, variable-base degree--
day, and multi-linear regression data-driven models specifically
designed for analyzing building energy consumption data.

Currently, data-driven methods for inversely determining system
parameters mainly include regression algorithms [28,29], Gaussian
regression models [30], sequential quadratic programming [31], and
genetic algorithms [32,33]. Tian et al. invented a building dynamic
room temperature prediction method based on the equivalent RC model,
using a genetic algorithm (GA) for step-by-step model parameter iden-
tification to obtain a parameter-determined equivalent RC model for
predicting dynamic average room temperature [34]. Massa Gray and
Schmidt proposed a hybrid model that combines the Gaussian regression
model as part of machine learning with the 4R4C model to simulate
building energy consumption of a single-zone office building in Stutt-
gart, Germany, which is heated and cooled by radiators and chilled
ceilings. The study found that, in terms of energy consumption predic-
tion, the hybrid method has better predictive performance compared to
the Gaussian-process-only or RC-only model [30]. Shen et al. adopted
genetic algorithm to calibrate RC models for building thermal load
calculation (sensible load) and energy use simulation under a changing
future climate for retrofit optimization purposes at both building scale
[35] and regional scale using archetype-based bottom up modeling [36,
37]. Li et al. established a radiating floor-water coupled 2R1C model for
a radiant heating system, using genetic algorithm to identify optimal
lumped thermal parameters including thermal resistances and capaci-
tances from experimental data. The study focused on sensible heating
loads only and included a simplified system model for the radiant floor
heating system. The parameter identification process involved opti-
mizing multiple RC parameters simultaneously from measured temper-
ature and energy consumption data, addressing the inherent challenge
of isolating individual thermal parameters from coupled system re-
sponses [38]. The above studies used various data-driven methods for
RC model parameter identification (determining the R and C values).
Moreover, the size of the training dataset has a significant impact on
system identification. The time span of the training set ranges from as
short as 7 days [28] to as long as 60 days [39]. Massa Gray and Schmidt
compared Gaussian processes with a physics-based gray-box RC model,
finding that while Gaussian processes achieved better accuracy during
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occupied periods, the RC model performed more consistently across
different operational conditions [40]. However, their referenced build-
ing energy use data that was used to calibrate the RC model is simulated
by TRNSYS instead of metered data of a real building. The premise of
using the inverse method is the appropriate calibration algorithm and a
large amount of experimental data to obtain reasonable system param-
eters and establish an energy consumption prediction model. Recent
advances in inverse modeling have increasingly incorporated machine
learning techniques and uncertainty quantification methods. Bayesian
calibration approaches have gained prominence for their ability to
quantify parameter uncertainty while optimizing model predictions [41,
42]. Physics-informed neural networks have emerged as promising tools
for building energy modeling, combining data-driven learning with
physical constraints [43]. Ensemble-based methods have also been
developed to address prediction uncertainty in calibrated building
models [44]. While these advanced techniques offer sophisticated un-
certainty quantification, they often require substantial computational
resources and expertise. In contrast, the differential evolution-based
approach proposed in this work provides a balance between calibra-
tion effectiveness, computational efficiency, and ease of implementa-
tion, making it particularly suitable for practical building energy
applications.

Another way to establish an RC model is the forward method, which
establishes a thermal balance model for the building by defining
building thermal parameters such as the thickness of the enclosure
structure, heat transfer coefficient, and thermal storage heat capacity. In
our previous work [33], we demonstrated that considering thermal
transfer between multiple thermal zones can significantly impact the
accuracy of RC model predictions for building load and indoor tem-
perature, which motivated the development of the interzonal thermal
coupling models presented in this study. R and C values are typically
obtained based on fundamental heat transfer principles including
conductive, convective, and radiative heat transfer through building
envelope components (walls, windows, roofs), thermal mass properties
(density, specific heat capacity, thickness), and surface heat transfer
coefficients, or alternatively through field measurements of temperature
and energy consumption data. In urban block-scale microclimate
research, Bueno and others proposed a city canopy and building energy
consumption prediction model based on the forward RC model to study
the impact of urban heat island effects on building energy consumption
[45]. Regarding building-scale energy consumption simulation, Vivian
et al. compared a simplified 7R2C RC model against TRNSYS simulations
for a single-zone residential building under four European climates
(Continental, Mediterranean, Oceanic, and Subarctic) [46]. The hypo-
thetical case study building was a single-floor structure with typical
residential envelope characteristics and windows. The RC model pa-
rameters were calibrated using building physics principles rather than
inverse methods, and the results showed good agreement with TRNSYS
energy consumption predictions across different climate zones. The
premise of using the forward method is to obtain building physical pa-
rameters (envelope thermal properties, geometry, thermal mass char-
acteristics) to determine the RC network parameters (thermal
resistances and capacitances), building operation conditions (occupancy
schedules, internal loads, weather conditions), and establish the
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building thermal model that characterizes the building's thermal
behavior. The literature search reveals that while RC thermal network
models have a rich history dating back to early pioneers like Paschkis
(1942) [47] and Robertson and Gross (1958) [48] who developed
foundational RC approaches that later evolved into TETD/TA and
CLTD/CLF/SCL methods, current research using forward RC model
methods specifically for multi-thermal zone whole-building load simu-
lation at the building scale still remains limited.

2.2. Whole-building energy simulation based on RC model

Table 1 summarizes the current building energy simulation models
and platform development based on the RC model theory. Giretti et al.
developed an energy consumption prediction model based on a three-
order RC model in Modelica, which includes building modules, air
conditioning modules, personnel information modules, and weather
modules, and established a model parameter calibration process [49].
Coninck et al. established building models, thermal zone models, and
air-conditioning models based on the Fastbuildings in the Modelica
standard library. Using the Gray-box library in Python, they separately
established energy consumption prediction models for single thermal
zones and double thermal zones [50]. Remmen et al. established a
reduced-order urban-scale building energy consumption prediction tool
(TEASER) in Modelica, addressing issues of long computation time and
large errors in urban-scale energy consumption predictions [51].
RC_BuildingSimulator is a building energy consumption simulation tool
based on the Python programming language. This model is established
based on the ISO 13790 standard recommended model and is a single
thermal zone load simulation calculation tool [52]. However, the tool is
not easy to use due to limited access to building modeling inputs.
Additionally, there are some energy consumption simulation tools based
on the RC model developed in C++ and R language [53].

However, current research on multi-thermal-zone RC models rarely
considers the coupled heat transfer issue between thermal zones. For
example, Bacher and Madsen developed a multiple thermal zone RC
model using inverse parameter identification based on data from a
single-story experimental building, but their approach treated each zone
independently without modeling interzonal heat transfer, limiting its
applicability to buildings with significant thermal coupling between
zones [54]. Similarly, Giretti et al. established a four-order RC model for
energy consumption prediction that includes multiple building modules
but does not account for thermal interactions between adjacent zones,
which can lead to significant prediction errors in buildings with
open-plan layouts or shared thermal masses [49]. A preliminary attempt
by the author indicates that considering the thermal transfer between
multiple thermal zones can significantly impact the accuracy of the RC
model's predictions of the load and indoor temperature within a build-
ing's thermal zone [33]. These limitations highlight the need for RC
models that explicitly represent interzonal thermal coupling, which is a
key contribution of our proposed 6R1C, 7R1C, and 7R2C models.

As the number of thermal zones increases, the complexity of the
model also increases, which will put pressure on the computational cost.
Recent studies have demonstrated that computational time for multi-
zone building simulations can increase exponentially with zone count,

Table 1
Current progress on RC based building energy simulation tools.
Tool name Subject Order of Model Thermal Load Energy Thermal comfort ~ Automated model  Platform Ref
the model type zone calculation calculation calculation calibration
FastBuildings Building  Multi- Inverse Multiple v X X v Modelica [50]
order
RC_BuildingSimulator Building First Forward Single v v X X Python [52]
ISOmodel Building First Forward Single v v X X C++ [53]
Giretti model Building  Third Inverse Single v v X v Modelica [49]
TEASER Urban Third Forward Multiple v x x x Python/ [51]

Modelica
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particularly for detailed energy models [55,56]. Therefore, reasonable
model order reduction and solution algorithms are needed to solve
multi-thermal-zone problems [57,58]. Overall, most of the existing
related research is limited to the development of single thermal zone
models or multizone models with limited zones and lack universal tool
that can be widely applied to RC modeling for buildings [25]. Their
building simulation functions are usually incomplete (such as lack of
energy consumption calculations, thermal comfort models and calcula-
tions, and automatic model calibration functions), and the computa-
tional accuracy does not look promising. Moreover, by treating
multizone building as single thermal zone building can lead to biased
simulation results [59]. The fundamental problem lies in the current
lack of a comprehensive, accurate, and universally applicable forward
RC model-based multi-thermal-zone building energy consumption
modeling method and scheme.

2.3. Motivation and contribution of this research

Since current research based on RC models mainly focuses on the
inverse method, and research related to the forward method is currently
only for single thermal zone buildings (or simplifying multizone build-
ings into a single model), its practicality and applicability cannot
address the huge computational cost incurred by “massive simulation
scenarios” in the process of building energy-saving design optimization
and iteration. Recent reviews of gray-box modeling approaches [25,60]
have identified the need for comprehensive, validated RC modeling
frameworks that can handle multizone buildings with interzonal ther-
mal coupling while maintaining computational efficiency. In some of the
latest research, advanced building simulation methods increasingly
emphasize the integration of physics-based and data-driven approaches
[61], which motivates our hybrid modeling strategy. The fundamental
gap here for RC modeling lies in the lack of a unified framework that can
leverage both theoretical building physics and empirical calibration
data depending on data availability. In view of this, this study aims to
develop a fast simulation method for building multi-thermal-zone
building energy consumption based on hybrid RC model that com-
bines theoretical building physics principles (forward modeling) with
real-world data calibration (inverse modeling), which has robust model
interpretability, fast solution speed, and affordable calculation bias. The
research attempts to explore the computational cost and accuracy of the
model algorithm at different model orders, solution methods, and
building types.

The development of the proposed dedicated simulation engine
(RCBIdEng) in this research helps address a critical gap: existing RC
modeling implementations lack the integration of forward and inverse
capabilities within a unified, accessible tool. While academic studies
have demonstrated various RC modeling techniques, practitioners face
significant barriers including: (1) absence of standardized multizone RC
simulation tools with comprehensive building physics modules, (2)
fragmented implementations requiring users to develop custom models
for each application, and (3) lack of automated calibration workflows
for existing buildings. RCBIdEng overcomes these limitations by
providing a complete, validated simulation engine with structured text-
based inputs, automated parameter optimization, and progressive model
complexity options. The developed engine can provide architects and
engineers with a lightweight alternative for low-cost modeling, fast
simulation, and comparison of building energy consumption, and a non-
user-intervention module for automatic calibration of existing building
model parameters. Executable program on Windows platform has been
developed based on the proposed modeling method and published on
GitHub (can be found in the Code Availability section). The research
deliverables of this work can be generalized and widely applied to rapid
iteration and comparative evaluation of low-energy consumption
building design schemes for new and existing buildings. RCBIdEng has
prospective practical application value in building design, energy-saving
and emission reduction optimization related problems.
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Hence, the primary objectives of this research are threefold: (1) to
develop and validate four progressive RC model configurations (4R1C
through 7R2C) that systematically incorporate interzonal thermal
coupling and dual capacitance mechanisms for improved multizone
building prediction; (2) to create a hybrid modeling framework inte-
grating forward physics-based calculations with inverse data-driven
calibration, enabling universal application to both new building
design and existing building retrofit; and (3) to implement these
methods in RCBIdEng, a computationally efficient simulation engine
with comprehensive validation across building types and climate zones
to establish practical model selection guidelines. Fig. 1 provides a visual
summary of the research rationale, showing the challenges in current
building simulation approaches, the proposed hybrid RC modeling so-
lution, and the expected benefits of this methodology.

3. Methodology
3.1. The proposed hybrid RC models

3.1.1. RC model without interzonal thermal coupling

The proposed 4R1C model has two temperature nodes (see Fig. 2),
which are T, and Tp,. T, and T, represent internal air node and thermal
mass node, respectively.

To—Tqa Tm—T,

n— ‘a — 1
R, + Rim + Qleac + Qal (@)
dTm To - Tm To - Tm To - Tm + (thac + Qair)Rv

Cp— = ;

" dt Rwin + Rex * Rim + Rv * le + er
(2)
where.

T,: Outside air temperature (K);

T,: Indoor air temperature of the zone (K)

Tt Temperature of the building's envelope thermal mass (K)

R,: Thermal resistance for ventilation and infiltration heat transfer
between outdoor and indoor air (rnzK/W);

Ryin: Thermal resistance of windows (m%K/W);

Rim: Thermal resistance between internal opaque structures and
thermal mass (mZK/W);

Rex: Thermal resistance of external opaque envelope elements (m?K/
w);

Qhyac: Heat flux delivered by the HVAC system to the zone (W);
Quir: Convective heat flux from internal sources directly to indoor air
(people, equipment, lighting) (W);

Qine: Radiative heat flux from internal sources to surfaces (people,
equipment, lighting) (W);

Qso1: Solar radiation heat flux absorbed by the building's thermal
mass(W);

C"é: thermal capacity of internal thermal mass per building area (J/
m-“K)

The 4R1C model presented is a simplified yet effective representa-
tion of a building's thermal behavior, particularly when considering
scenarios where interzonal thermal interactions are negligible. With
only two temperature nodes—T, and T,,—the model can capture the
primary thermodynamic interactions in most typical building environ-
ments. The thermal mass node (T;,) represents the combined thermal
mass of the building opaque structures, including both internal struc-
tures and the mass embedded within the building envelope. In this
model, the temperature node T, denotes the air temperature inside the
building. It is influenced by external weather conditions, characterized
by T,, and the building's HVAC system Qpyq., and internal air exchanges
Quir- Thermal resistances, namely R, and Ry, dictate the heat flow that is
exchanged between the external environment and the internal air, and
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(a) CHALLENGES IN CURRENT

BUILDING SIMULATION TOOLS

White-Box Models
(EnergyPlus, TRNSYS)

« High computational cost for multi-
zone buildings
» Complex for rapid parametric
studies
« Time-intensive for optimization

+ Limited to sing
« Lack interzonal
+ Incomplete sy

+ No automat

Gray-Box Models
(Existing RC Models)

Gray-Box Models

le thermal zones
thermal coupling
stem integration
ed calibration

« High data requirements
+ Low interpretability
« Not generalizable to other buildings

A

4

(b) PROPOSED HYBRID RC MO

DELING SOLUTION (RCBIdENg)

Forward Modeling
(Physics-based)

« Calculate R & C from building properties
« Four RC configurations: 4R1C, 6R1C, 7R1C, 7R2C
« Interzonal thermal coupling
+ Good presentation of thermal inertia with 7R2C

Inverse Modeling
(Data-driven calibration)

« Differential Evolution algorithm
+ Optimize hard-to-determine parameters
* RMSE-based fitness function
+» Automated calibration

« Renewable en

Comprehensive Building Energy Simulation Framework

+ Multi-zone thermal modeling
« Simplified HVAC system

« Structured text-based input

ergy integration

A

4

(c) EXPECTED BENEFITS OF THE

PROPOSED MODELING METHOD

Computational Efficiency

+ 10-15x faster than EnergyPlus
» Enables extensive parametric studies
+ Suitable for optimization

Improved Accuracy

* R2 up to 98.78% for cooling loads
+ Captures interzonal thermal dynamics
+ Dual capacitance for high thermal mass

Broad Applicability

+ New building design (forward modeling)
« Existing building retrofit (with calibration)
+ Cross-climate validation

Practical Implementation

« User-friendly text-based input
+ Automated calibration
+ Open-source availability
» Windows executable

Fig. 1. Research rationale flowchart.

between the internal air and the building's thermal mass, respectively.

The second node, T, represents the temperature of the building's
thermal mass, capturing the aggregate behavior of building structures
and contents. It balances the influences from external conditions Ty,
internal loads Qyy, solar gains Qy,;, and interactions with the internal air
node. Its dynamic behavior is defined by C,,, which is the thermal ca-
pacity of the building's internal mass.

Hence, three distinct RC models—6R1C, 7R1C, and 7R2C—have been
proposed to address these complexities. The structures of the three
models, including the 4R1C model without interzonal thermal coupling,
are plotted together in Fig. 3.

e The 6R1C model

To—Tq Tm—T
%“F%“"Q}wac“"%z’r:o (3)
3.1.2. RC models with interzonal thermal coupling and different parameters v o
Interzonal thermal coupling can play a critical role in capturing the
intricate thermal interactions between different zones within a building.
dTm To - Tm To - Tm Tazi - Tm Tazi To - Tm + (thac + Qair)Rv
Crt= + + : + st + Qo+ Q 4
™dt ~ Run Rex > Ry Z:Riwi R + R, Qeot + Qe @

i
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4R1C(w/o interzonal coupling)

To
o Rv ‘ . thac
Taz2 Ta R“’i/"‘ M Qg
Qqol Rim V
Qun T /|
Rex

|
Taz1 l

Fig. 2. The proposed 4R1C model without interzonal thermal coupling.

where.

Tqz;: Indoor air temperature of the ith adjacent zone(K);

Ry;: Thermal resistance of the interior floor/ceiling between the
current zone and the ith adjacent zone (m2K/W);

Rjyi: Thermal resistance of the interior wall between the current zone
and the ith adjacent zone(mzK/W);

The 6R1C model has two temperature nodes T, and Ty, as well, but it
takes into account the heat fluxes between the current zone and all the
adjacent zones. Its structure recognizes the importance of the building's
internal zones in shaping its thermal behavior, which is essential for
larger structures or those with prominent internal heat sources or sinks.
By considering both the external environment and neighboring zones,
this model offers a more comprehensive thermal view of single zone

‘7 ‘, . .
g 4R1C(w/o interzonal coupling)
—_— TD
o tRy Qhvac
Taz2 Ta e B = Rx"yf} | Qair
Qsol PRim £/
Qint mi—" -
77777 N Re
Cm |
| Taz1 i !
! |
I I
7‘1
<-v.‘> 6R1C
*To
- Ta Rv T QhVEC
Taz2 | e 'i:il, Quir
Qsol Ri Rim —
Tm
Qint . =
R,
,,,,, N Rif s ‘
'Crn \
‘ Taz1 |
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behaviors, and their adjacent interactions compared to the 4R1C model.
e The 7R1C model

The 7R1C model has three temperature nodes, namely T,, Ts and Ty,
in which T; represents the central mass node.

Ta—T, Tq—T;
=22 "0, e 7S 5
Quvac + Qair R + R. (5)
Tm - Ts To - Tx Tazi - Ts To - Ts + (thac + Qair)Rv
+ ) = + + Q=0
Ria Rwin Riw.i Ria + Rv er
(6)

dTm Tm To — Tm Ts — Tm Tazi — Tm Tazi
Cr™ - n n : n :
"dt ' ——2+—+Rm Rex Rin Z Rys; ZRiw,i

1 41 i
Rig Ry Ry TR t t

+ le + Qint

)

where.

T;: Temperature of the zone's interior surfaces (mK/W);

Rie: Thermal resistance between indoor air and interior surfaces
(represents the inverse of the convective heat transfer coefficient)
(m?K/W)

Advancing from the 6R1C configuration, the 7R1C model introduces
an additional node, T;, to represent the temperature of interior surfaces
within the thermal zone (such as internal walls, floors, and ceilings).
This distinction separates the interior surfaces and indoor furnishings
(T;) from the thermal mass embedded within building opaque elements
(Tn). The resistances related to internal walls and floors of neighboring
zones (Ry,; and Ry;) enable the modeling of heat transfer between
adjacent thermal zones. In this way, the 7R1C provides a layered
approach to capturing both the different thermal time constants within a
zone and the heat exchange between zones.

e The 7R2C model

v
X Js 7R1C
o 10
T Qivac
Ta: Rv
g , Qur
Taz2 i 7 é Ria Rwirl
- A !
Riw Tm ';ﬁ,m Qsol
Qint o Rod
=iome N\ }FR £
T \
Taz1 ‘
|
|
v
‘;’: 7R2C
*To
- thac
Ta iR Qi
Taz2 Tsé Ria Ruwin)
2
Riw Tm im CS ol 4.7 clso\
Qint al “Red”
e N Ris |
i I
Taz1 | ‘

Fig. 3. The proposed RC models with different modeling parameters: a) 4R1C w/o coupling; b) 6R1C; ¢) 7R1C; d) 7R2C.
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C,: Thermal capacitance of interior surfaces and furnishings per unit
floor area(J/mZK)

Building upon the foundation of the 7R1C, the 7R2C model further
introduces the C; term, capturing the thermal storage capability of the
central thermal mass mode T;. This distinction in capacitance—C,, for
peripheral mass and C; for central mass—gives the 7R2C model a refined
representation of energy storage and discharge dynamics. This dual-
capacitance mechanism can ensure a more detailed exhibition of how
heat flows within different building components compared with the
7R1C model, making it especially useful for buildings undergoing pro-
nounced day-night thermal variations.

The 7R2C model introduces a second thermal capacitance C; for
interior surfaces and furnishings in addition to existing envelope ther-
mal capacitance C, which represents progress in our RC modeling
framework. Building upon a dual capacitance model allows the recog-
nition of different thermal mass sources in building elements, the 7R2C
model separates building interior from opaque structure elements to
create different thermal time constants in a single zone since the thermal
mass in indoor furnishings and building opaque elements can behave
differently due to their response to indoor and outdoor heat flows. The
7R2C model can deliver benefits for simulations of buildings with sub-
stantial mass distributions in either their envelope or interiors as well as
for fast-changing environmental conditions. The two-capacitance model
can also improve calibration procedure because thermal properties from
interior and envelope masses can be calibrated respectively.

For multizone buildings, all thermal zones are modeled simulta-
neously within a coupled system of differential equations. At each time
step, the thermal states (temperatures) of all zones are solved together,
with interzonal heat transfer terms (> (Taz; —
Tm) /Riwi) explicitly linking adjacent zones through shared internal
surfaces. This simultaneous solution approach ensures that thermal in-
teractions between zones are properly represented throughout the
simulation, distinguishing our method from simplified approaches that
treat zones independently or use sequential solution procedures.

3.2. Modeling structure of forward parameters

The forward modeling and the model inputs collection of a building's
energy consumption encompasses several key modules, each intricately
contributing to the building's overall thermal performance and energy
use.

e Meteorological Input:

The standard weather files, such as the widely used EPW (EnergyPlus
Weather) files, serve as input.

o Building Geometry Model:

This model proposes the use of structured text as a means to provide

Tm)/Rigiand Y- (Tazg —
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parameter entries for modeling. Users can parametrically modify model
inputs in the text domain. All related model parameters are organized
and compiled using an object-oriented modular mindset, setting the
stage for the integration of the simulation algorithms and parametric
design platforms proposed in this project.

e Occupancy Behavior Model:

To reflect the heterogeneous user behavior habits in multi-thermal
zone models, a parameterized textual input system is constructed. This
system covers space occupancy habits, HVAC system usage patterns,
appliance usage, and lighting habits, thereby structuring user behavioral
parameters for the simulation algorithms of this project.

e Infiltration or Natural Ventilation Model:

The heat exchange from infiltration is typically calculated using
lumped parameters. The model offers two infiltration calculation
methods as detailed in Appendix A: a 'constant' method using predefined
air change rates (ACH), and a 'real' method that dynamically computes
infiltration based on temperature differences and wind conditions ac-
cording to ISO 13789 and ISO 15242 standards. The 'real' method ac-
counts for both stack effect and wind-driven infiltration, combining
them through a quadrature sum approach. For natural ventilation, the
model implements behavior-dependent algorithms with opening factors
that vary with environmental conditions.

e Solar Radiation Model:

The model uses obtained climatic parameters to generate hourly
calculations for direct beam radiation and diffuse and reflected radiation
and total radiation across the building's different oriented sides. The
calculations conform to the ISO 52010 standard method using adapta-
tions specified in Appendix B. The model includes solar geometry ele-
ments (declination, hour angle, altitude, and azimuth) together with
surface orientation and anisotropic sky conditions. The transmission of
direct beam radiation depends on the outcome of incidence angle cal-
culations. The diffuse component calculates radiation through an
anisotropic sky model that adjusts its correction factors from 0.45 to 1.0
according to the incident angle. Moreover, the model calculates ground-
reflected radiation based on ground reflectivity factors. The solar radi-
ation heat gain for the building is calculated through the method in
Appendix B while using outdoor temperature together with relative
humidity and solar azimuth and altitude measurements.

e Convective Heat Transfer Coefficient Modeling and Calculation:

For convective heat transfer, the convective heat transfer coefficient
significantly affects the model's predictive accuracy. For exterior sur-
faces, the model implements convective heat transfer coefficient calcu-
lations in accordance with McAdams's method as described in
EnergyPlus Engineering Reference [62]. The wind-dependent heat
transfer coefficients are implemented using the correlation h¢ eyt = 5.7
+ 3.8v, where v is wind speed in m/s.

e Calculation of Shading Coefficient:

The heat from solar radiation inside a building is closely related to
the shading coefficient of the window. This coefficient is influenced by
shading devices and solar incidence angle. Most RC modeling related
studies treat windows as pure resistance without adequately considering
the shading coefficient provided by shading devices. Therefore, the
developed engine separately considers the indoor solar radiation heat
gain, integrating the shading coefficient analogous to the heat transfer
coefficient into the energy consumption simulation algorithm. Shading
coefficient calculations follow geometric modeling principles as detailed
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in Appendix C, providing solar reduction factors (SRF) for common
shading devices including overhangs, fins, and horizon obstructions. For
overhangs, projection angles typically range from 15° to 60°, with the
calculation accounting for both geometric shading of direct beam radi-
ation and partial reduction of diffuse radiation (typically 10-50%
depending on configuration). Similar geometric principles apply to
vertical fins, with solar azimuth replacing altitude in the calculations.
The model includes dynamic shading control with temperature thresh-
olds (26 °C for residential and 23 °C for commercial buildings) to acti-
vate shading during overheating periods.

e Thermal Parameters of Building Envelope Model:

The thermal parameters of the building envelope are modularized
based on their types. For instance, the window module, which is treated
as one of the objects in the envelope settings, includes parameters like
heat transfer coefficient, solar radiation absorption rate, emissivity, and
transmittance. This model integrates all the thermal parameters of en-
velopes, including windows, walls, roofs, and floors, according to ther-
mal zones.

o Simplified HVAC System Performance Curving Method:

Central to this study is a simplified performance curve method for the
HVAC system. Concerning the primary energy consumption for heating
and cooling, a performance curve approach is endorsed. Users are
required to input the energy efficiency of the heating and cooling source
at intervals of partial load conditions. This method simulates the energy
performance of the heating and cooling system under varying load
conditions. Upon receiving the energy efficiency inputs for each partial
load stage, linear interpolation is employed to emulate the system's
performance curve. This approach is designed to streamline model in-
puts. Moreover, if no HVAC sizing details are provided, the system is
assumed to cater to the heating and cooling demands of all zones. If the
heating or cooling load surpasses the system's capacity, the indoor
temperature will be calculated by governing energy conservation
equation as stated in Equations ((1), (3), (5) and (8). Moreover, detailed
calculation methods for building energy use and onsite renewable

Solar Water
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energy production can be found in Appendix D and Appendix E.

By establishing the above modules with hierarchical modeling ar-
chitecture (zone to building) as shown in Fig. 4, combined with the
coupling of thermal flows in thermal zones, a building thermal load
simulation method based on the forward RC model is formed. A multi-
thermal zone building energy simulation model architecture is thus
formed, allowing the further assessment of its performance in calcu-
lating the load and energy consumption of an entire building.

The engine uses tailor-made structured text-based modeling files that
are designed with simplicity and clarity so that users can easily define
and tweak model parameters without steep learning curve. This is to
ease the fight with engineers, preventing them from developing their
own custom models. This simplifies the data input process and the
process of modifications to allow easy iterations and modifications for
the researchers and the building professionals. Secondly, the model in-
formation collection structure of the RC based simulation engine was
implemented in Python 3.9 environment.

3.3. Solving approaches

The RCBIdEng simulation engine implements three distinct numer-
ical methods for solving the thermal network equations: the Euler
method, Crank-Nicolson method, and Runge-Kutta method. Each
method offers different characteristics in terms of stability, accuracy,
and computational efficiency.

3.3.1. Euler method

The Euler method, also known as the forward Euler method, repre-
sents the simplest explicit time integration scheme. For a given time step
At, the method advances the solution by approximating the derivative
using forward differences. In the context of building thermal simulation,
the temperature at the next timestep is calculated as:

A
el :T"+Et (et — BT") an

where T" represents the temperature at the current time step, C is the
thermal capacitance, gy, is the total heat gain, and B represents the sum
of heat transfer coefficients. While computationally efficient, this
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method's accuracy is proportional to the time step size, and it may
exhibit numerical instability for large time steps or when modeling
systems with rapid thermal responses.

3.3.2. Crank-Nicolson method

The Crank-Nicolson method improves upon the Euler method by
employing a semi-implicit approach that averages the solution between
the current and next time steps. This results in a second-order accurate
scheme in time, expressed as:

T"(C — 0.5BAt) + Atqor

+1
™= C + 0.5BAt

(12)

This method provides better stability characteristics compared to the
Euler method and maintains reasonable accuracy even with larger time
steps. The Crank-Nicolson scheme is particularly effective for building
energy simulations where thermal processes typically evolve gradually,
making it the default solver in the engine.

3.3.3. Runge-Kutta method

For applications requiring higher accuracy, the fourth-order Runge-
Kutta method (RK4) is implemented. This method evaluates the tem-
perature derivative at multiple points within each time step, providing a
more accurate approximation of the solution trajectory. The RK4
implementation follows:

k :%t (qror —BT") (13)
k=2t (qm[—B(T“ +k—21)) 14
(o)
k4:%t(qm—3m+k3)) (16)
Tl =" +é(k1 + 2k + 2ks +ky) a7

While computationally more intensive than the other methods, RK4
provides good accuracy and stability, particularly valuable when
modeling buildings with complex thermal interactions or rapid tem-
perature changes.

3.3.4. Adaptive error control and solver selection

The solver implementation includes adaptive error control mecha-
nisms to ensure solution accuracy. For each time step, the temperature
change is monitored, and if it exceeds specified thresholds, the solution
process can automatically adjust by either reducing the time step or
switching to a more stable numerical method. This adaptive approach
helps maintain simulation stability while optimizing computational
resources.

The simulation engine allows users to select the preferred numerical
method based on their specific requirements. The Crank-Nicolson
method is set as the default solver due to its balanced performance
characteristics. For cases where computational speed is paramount, the
Euler method can be selected, while the RK4 method is available for
applications demanding higher accuracy. All methods are implemented
with an hourly time step (3600s) as the standard temporal resolution,
though the framework supports variable time-stepping if required for
specific applications.

The solving approaches are integrated with the engine's thermal
capacity limitation handling (by user input), ensuring that when the
thermal load is over the top of HVAC system capacity, the numerical
solution remains stable and physically meaningful while respecting the
specified heating and cooling capacity limits.
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3.4. Calibration of hard-to-determine modeling parameters (inverse

modeling)

For existing buildings, it is inevitable to determine uncertain pa-
rameters that have a bearing on the model's outcome. Some of the pa-
rameters like the building geometry or the material properties are easy
to obtain or quantify while others like the thermal capacitors and system
efficiencies are not easy to obtain. These difficult to quantify parameters
are important to model the real thermal performance of the building and
the efficiency of the HVAC systems. However, their identification is
usually more complex especially when the model is for existing build-
ings where design information might be incomplete or inaccessible.

3.4.1. Differential evolution algorithm implementation

To address this challenge, this study adopts the differential evolution
(DE) algorithm [63]—a robust and efficient global optimization tech-
nique known for its capability to tackle complex, non-linear, and
multidimensional problems. In essence, DE is a population-based opti-
mization algorithm. It begins with a randomly generated population of
potential solutions (vectors). Over successive iterations, these vectors
evolved by combining the processes of mutation, crossover, and selec-
tion. The primary advantage of DE over other optimization techniques
lies in its ability to maintain population diversity and avoid premature
convergence to local minima, making it particularly suitable for cali-
brating complex building energy models. It has good convergence when
it is dealing with model parameter identification if the number of tar-
geted parameters is not too large [64].

3.4.2. Fitness function definition

In the context of this study, each vector in the DE algorithm repre-
sents a potential set of values for the hard-to-determine parameters. The
goodness of fit of each vector (i.e., how well the associated parameters
enable the simulation model to reproduce actual building behavior) is
evaluated using a fitness function based on the root-mean-square error
(RMSE) between the model's predicted heating and cooling energy use
and the observed data from the building (with equal weights). A lower
RMSE indicates a better fit between the model's predictions and the
observed data, guiding the DE algorithm in its search for the optimal
parameter set. To mathematically represent, if P denotes the predicted
energy use and O represents the observed data, the RMSE is defined as:

n 2
Doict (Pril -0) 18)

RMSE =

where n is the total number of data points. The aim of the DE algorithm,
in this scenario, is to minimize this RMSE value, thereby deriving the
most suitable values for the hard-to-determine parameters. The fitness
function of the DE algorithm then can be described as:

o1 \/Zi"l (CE — OCE)" 1 \/Zi"l (PHL, — OHL,)’ o)
2 n 2 n
where PCE, OCE, PHE, OHE represent predicted cooling energy con-
sumption, observed cooling energy consumption, predicted heating
energy consumption, observed heating energy consumption. Three
different modes of time granularity are provided in this developed
calibration procedure: hourly, daily, and monthly. Users can define at
what time granularity they need the calibration scheme to be run. It is
worth noting that while the DE-based calibration approach is employed
here for existing building modeling, it is not used for the building pre-
design stage due to the lack of real-world observational data in this case.

3.4.3. Hyperparameter configuration and user flexibility

To further enhance the adaptability and effectiveness of the DE-
based calibration approach, the engine offers users the flexibility to
tweak the hyperparameters of the DE algorithm. Such customization
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ensures that the calibration process can be finely tuned to meet the
specific needs of individual building scenarios or to align with the
preferences of the modeler. The key hyperparameters available for
tuning include.

1. Mutation Rate - This parameter determines the extent to which the
population's vectors are perturbed. It essentially controls the degree
of exploration in the search space. Its default values are provided as a
range from 0.7 to 1, allowing for variability in exploration intensity.
For all validation cases in this study, F = 0.8 was used.

2. Recombination Rate - Set at a default of 0.8, this hyperparameter
governs the fraction of the donor vector that's mixed with the target
vector, influencing the information exchange rate between different
potential solutions. This default value (CR = 0.8) was maintained
across all case studies.

3. Population Multiplier - The population size is a critical factor in the
DE algorithm's success. By default, it is set at a multiplier of 20,
ensuring a sufficiently diverse set of initial solutions for the cali-
bration problem. For a calibration problem with n parameters, the
population size is 20n. For example, for a case study with 3 calibrated
parameters (Cm, Cs, and internal wall U-value), the population size
was 60.

4. Maximum Iteration - This parameter dictates the number of itera-
tions the algorithm runs before terminating. Its default value is set at
100, balancing the need for a thorough search with computational
efficiency. All calibration runs used this maximum iteration limit.

5. Convergence Tolerance - Defined at a default of 0.01, this hyper-
parameter establishes the threshold for convergence. If the change in
fitness values between consecutive iterations is less than this
threshold, the algorithm deems the solution as having converged.
Convergence was achieved when the improvement in fitness func-
tion between consecutive iterations fell below 0.01, typically
occurring within 40-60 iterations for the case studies presented.

Table 2
Information collection for model parameter calibration.

Parameter Range Parameter Range

Building Heat Capacity 40000 400000 Internal Floor 1 10
(m) Material U-value (W/

m?K)

Building Heat Capacity 40000 400000  Air Infiltration Rate ~ —1
() (a0

Effective Mass Area 0.1 5  Air Infiltration Style -1
(m?)

External Wall Material -1 Lighting Load (W/ -1
U-value (W/m?K) m?)

External Wall Material -1 Plug Load (W/m?) -1
Absorptivity

Internal Wall Material 1 6  Heating COP -1
U-value (W/m?K)

Window Material U- -1 Cooling COP -1
value (W/m?K)

Window Material -1 Heating Supply Air -1
Emissivity Temperature (°C)

Window Material -1 Cooling Supply Air -1
SHGC Temperature (°C)

Roof Material U-value -1 HVAC Distribution -1
(W/m3K) Loss Coefficient

Roof Material -1 Heating Temperature —1
Absorptivity Setpoint (°C)

External Floor Material -1 Cooling Temperature —1
U-value (W/m?K) Setpoint (°C)

Hyperparameters of DE

Mutation Rate 0.7 1

Recombination Rate 0.8

Population Multiplier 20

Maximum Iteration 100

Convergence Tolerance 0.01
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The DE algorithm follows the rand/1/bin strategy, where mutation
uses the formula: Vi,g+1 = Xrl,g + F(Xr2,g - Xr3,g), where Vi,g+1 is the
mutant vector, Xrl,g, Xr2,g, Xr3,g are three randomly selected distinct
population members, and F is the mutation rate. Binomial crossover is
applied with probability CR. Parameter bounds for the education
building calibration are specified in Table 2, with the search space
constrained by physical feasibility ranges derived from building audit
data and material property databases."

The process becomes more versatile because users are allowed to
modify these hyperparameters. The defaults provided here are derived
from extensive testing and have reliably performed across a wide range
of building types, but the ability to adjust them provides some robust-
ness of the engine even in unusual or challenging calibration environ-
ments. To make the calibration procedure more versatile and applicable
to diverse building types and scenarios, users are given the flexibility to
choose which modeling parameters they want to calibrate. Table 2
shows an example of the modeling parameters available for calibration
in this version. The calibration information shown in Table 2 is used for
the calibration of the case study education building that will be
described in Section 3.6.

The program takes the value of "-1” as a unique identifier that signals
certain parameters won't be included in the calibration procedure. That
allows users to remove parameters you know or perceive as unimportant
for calibration. If users want to calibrate a parameter, they can give a
range of reasonable value within which the DE algorithm searches the
optimal value.

Furthermore, to maintain clarity, organization, and ease of access, all
this calibration information—both for modeling parameters and DE
hyperparameters—is stored in a structured text-based file, specifically
named “calibration_parameter.txt”. The format shown here is an intui-
tive way to review and modify the calibration parameters, enabling the
user to quickly prepare the simulation for calibration and ensuring
reproducibility and transparency throughout the calibration process.
This design choice ensures that the calibration settings integrate seam-
lessly with other computational tools, and that users have a straight-
forward path to audit, review, or modify the calibration settings.

3.4.4. Calibration workflow

The calibration process follows a systematic workflow designed to
optimize hard-to-determine parameters while preserving physics-based
calculations for well-characterized building properties. The procedure
consists of six main steps as illustrated in Fig. 5.

Step 1: Data Preparation and Parameter Selection - Users specify
which modeling parameters require calibration by defining search
ranges in the 'calibration_parameter.txt' file, with -1’ values indi-
cating parameters to be held constant at their physics-based values.
Measured energy consumption data (heating and cooling) is pre-
pared at the selected time granularity (hourly, daily, or monthly).
For the education building case study, three parameters were
selected for calibration (Cm, Cs, internal wall U-value) while all
other parameters were calculated from building audit data.

Step 2: Initial Population Generation - The DE algorithm generates an
initial population of candidate parameter sets using Latin Hypercube
Sampling within the specified bounds. Population size is determined
by the population multiplier (default 20) times the number of cali-
brated parameters, ensuring adequate search space coverage.

Step 3: Forward Simulation - For each candidate parameter set,
RCBIdEng performs a complete annual simulation using the forward
modeling framework described in Section 3.2, with calibration pa-
rameters overriding their default physics-based values while all
other parameters remain unchanged.

Step 4: Fitness Evaluation - The fitness function (Equation (19))
calculates the weighted RMSE between simulated and measured
energy consumption for both heating and cooling. Lower fitness
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Step 1: Data Preparation
« Load measured energy data (heating/cooling)
+ Specify parameters to calibrate in config file
« Define search ranges and time granularity

A4

Step 2: Initialize DE Population
« Generate initial parameter sets (Population = 20n)
« Use Latin Hypercube Sampling within bounds

A
For each \]
er setin |«

Step 6: Convergence and Validation
« Extract optimal parameters
« Validate on held-out test period
» Report calibrated model performance

paramet
population I
A

.

No

Converged?

Step 3: Forward Simulation
+ Run RCBIdENng with candidate parameters
+ Calculate hourly heating/cooling loads
» Aggregate to calibration time granularity

Step 4: Fitness Evaluation
« Calculate RMSE vs measured data
* Fitness = 0.5xRMSE_heating +
0.5xRMSE_cooling

AFitness < tolerance

Step 5: Population Evolution
« Mutation: V = Xr1 + F(Xr2 - Xr3)
« Crossover with probability CR
» Selection: keep if fitness improves

Fig. 5. Flowchart of the automated calibration workflow using Differential Evolution algorithm for parameter identification of existing building cases in RCBIdEng.

values indicate better agreement between model predictions and
observations.

Step 5: Population Evolution - The DE algorithm applies mutation
(Vig1 = Xr1,g + F(Xi2,g - X13,4)), crossover with probability CR, and
selection operations to evolve the population toward optimal
parameter values. The algorithm tracks convergence by monitoring
the improvement in best fitness value between consecutive
generations.

Step 6: Convergence and Validation - When the fitness improvement
falls below the convergence tolerance (default 0.01) or the maximum
iteration limit is reached, the algorithm terminates and returns the
optimal parameter set. The calibrated model is then validated against
a held-out test period to assess predictive performance on unseen
data.

This automated workflow requires no user intervention beyond

initial parameter range specification, enabling consistent and repro-
ducible calibration across different building types and datasets.

Detached house

3.5. Simulation of prototype buildings

3.5.1. Prototype building models

The validation and performance assessment of the developed RC-
based simulation engine are grounded on two prototype buildings: a
detached house and a medium-sized office building as shown in Fig. 6.
The EnergyPlus models of two prototype buildings from the U.S.
Department of Energy (DOE), specifically from the commercial and
residential prototype model series, are remodeled in RCBIdEng, ensuring
the representation of climate-dominant and internal-load dominant
building types [65]. Both prototype buildings adhere to the ASHRAE
90.1-2013 standard, underlining their commitment to energy efficiency
and sustainable design. ASHRAE 90.1-2013 is a well-established stan-
dard in the building industry, widely adopted for its benchmarks and
guidelines on energy-efficient design and practices [66]. Adherence to
this standard ensures that the case study buildings reflect contemporary
building design practices, especially in the context of energy efficiency.
The occupancy and building use schedule have been visualized in Fig. 7,
and the indoor cooling and heating setpoint schedule can be found in
Fig. 8.

Medium office building

Fig. 6. The two DOE EnergyPlus prototype building models.
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Fig. 7. Building occupancy and use schedule for the two prototype buildings.

. Office Building Temperature Setpoints

30
;O R T e e
P
=]
=1
°
& 20
=
# ,
15
10
0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of Day
—e— Weekday Heating Setpoint —=— Weekday Cooling Setpoint
Weekend Heating Setpoint  -#- Weekend Cooling Setpoint
- Residential Building Temperature Setpoints
25
g‘j 24
&
2
® 23
o
£
22
@
21
20

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of Day

—e— Weekday Heating Setpoint

Weekend Heating Setpoint

—s— Weekday Cooling Setpoint
-#- Weekend Cooling Setpoint
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The building simulation uses IWEC (International Weather for En-
ergy Calculations) weather data in EPW format for Shanghai, China. The
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IWEC dataset, developed by ASHRAE, represents typical weather con-
ditions derived from long-term hourly observations and is comparable to
the TMY (Typical Meteorological Year) datasets used in the United
States. Shanghai is in the ASHRAE 3A climate zone, which has a warm
and moist climate, hot summers and mild winters. The IWEC data here
provides the annual baseline for the developed RC model simulation
engine, which encapsulates several thermal load conditions across
different seasons, and consequently presents a complete assessment. As
a reference simulation engine for building energy simulation, Ener-
gyPlus [10], the popular and well-known building energy simulation
software is used, to compare and to establish a performance baseline.
The version of EnergyPlus that was used for this study is 9.5. It is a good
yardstick against which the RC based simulation engine outcomes can be
gauged. This comparative approach provides an understanding of the
fidelity and reliability of the developed RC based engine. The proposed
four RC model configurations are considered, 4R1C, 6R1C, 7R1C and
7R2C, for a more complete comparison. The structure of this assessment
can facilitate a thorough analysis of the developed engine's accuracy,
robustness, computational cost, and versatility with respect to various
modeling complexities.

3.5.2. Cross-climate zone validation

We further conducted the testing for the proposed RC modeling
methods by integrating three cities with different climates into the
assessment of two prototype buildings. For all climate zones in this
analysis, we used IWEC (International Weather for Energy Calculations)
weather data in EPW format. The selected climate zones for this study
encompass a wide variety of climatic environments to assess the
methodology.

1. Shanghai (ASHRAE Climate Zone 3A): This climate comprises of hot
summers alongside mild winters due to its warm and moist envi-
ronment. Significant seasonal changes can occur in this climate re-
gion which requires both heating systems and cooling systems
throughout the entire year.

2. Guangzhou (ASHRAE Climate Zone 1A): Hot and humid climate with
minimal seasonal variation. The climate zone has cooling-dominated
conditions that create higher cooling requirements than heating re-
quirements during all periods of the year.

3. Shenyang (ASHRAE Climate Zone 7): This climate zone faces severe
cold conditions which extend across long heating seasons while
remaining short in summer periods. At this climate zone the heating
necessities outweigh cooling requirements due to its lengthy winter
season.

We evaluated the performance of four RC model configurations from
4R1C model all they way to 7R2C model across the three climate zones
using TMY weather data for both residential houses and medium office
buildings. Each climate zone received analyzes of model accuracy based
on R? values plus NRMSE (normalized root mean squared error) for
hourly load predictions along with NRMSE for daily peak load
predictions.

3.5.3. EnergyPlus validation configuration

To ensure fair comparison between RCBIdEng and EnergyPlus sim-
ulations, consistent modeling assumptions and calculation settings were
implemented. The EnergyPlus simulations used the following key
configurations:

Timestep and Convergence Settings.

e Simulation timestep: 4 timesteps per hour (15-min intervals) for
EnergyPlus; 1-h timestep for RCBIdEng

e Heat balance algorithm: Conduction Transfer Function (CTF)
method

e Zone air heat balance algorithm: Third Order Backward Difference
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eConvergence limits: 0.04 °C for zone temperature, 0.4 W for zone
load

Solar and Shading.

e Solar distribution: FulllnteriorAndExterior

e Shading calculations: AverageOverDaysInFrequency with 20-day
frequency

Surface convection algorithm: TARP (Thermal Analysis Research
Program) for interior and exterior surfaces

HVAC System Modeling.

Ideal loads air system for load calculations (no detailed HVAC system
modeling to enable direct thermal load comparison)

Heating and cooling availability: Based on schedules shown in Fig. 7
Temperature setpoints: As specified in Fig. 8

Weather Data Processing.

IWEC weather files for Shanghai, Guangzhou, and Shenyang in EPW
format

Identical weather data used for both EnergyPlus and RCBIdEng
simulations

e Ground temperatures calculated using Kusuda-Achenbach model in
EnergyPlus; monthly average ground temperatures extracted and
used in RCBIdEng

The RCBIdEng simulations replicated these thermal boundary con-
ditions using the forward modeling parameters calculated from the same
building geometry, envelope properties, internal loads, and schedules.
This approach isolates the impact of the RC model simplifications from
differences in HVAC system modeling or calculation algorithms.

3.6. Test on existing building

The developed simulation engine RCBIdEng was also tested on an
existing building to evaluate the efficacy and accuracy of its application
to real world scenarios. An education building in Philadelphia, U.S., was
selected as a testbed for this purpose. Local weather station on site has
been installed for building simulation with onsite hourly weather data.
This building, which houses laboratories, classrooms, lecture halls, and
offices, is an appropriate candidate for a comprehensive evaluation since
the thermal loads and the energy usage pattern of each function are
different.

The first step was the collection of known (forward) modeling pa-
rameters. Essential parameters were extracted leveraging an energy
audit of the building. In this case, the data gathered from energy audit
becomes the modelling parameters to determine the modelling inputs
and the test was based on real world situation. Nevertheless, although
energy audits are by their very nature very detailed, some modeling
parameters are inherently difficult to determine with high precision. It is
these hard-to-determine parameters which serve an essential role in
capturing the intricate building thermal behavior, and overall energy
efficiency. To address this challenge, the study used available designed
calibration procedures as described in Section 3.4. The DE algorithm can
be used to identify and optimize these elusive parameters underpinned
by this procedure. The objective is for the RC model to be not only
informed but also fine-tuned with the building specific characteristics
derived from the calibration. The results from this test can provide some
tangible evidence of the engine's capability and its applicability to non-
trivial simulation of building energy situations.

3.6.1. Known modeling parameters (forward modeling)
Table 3 provides an exhaustive summary of the building envelope,
detailing both the opaque and transparent segments. The data
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Table 3
Summary of modeling information of the education building envelope in each
orientation.

Orientation =~ Opaque envelope Window (m?)  Below Grade Opaque
(m?) (m?)

S 343.6 275.7 121.9

E 632.7 422.5 159.6

N 400.4 221.3 118.1

w 604.5 457.1 134.0

Roof 2111.6 0.0 0.0

showecases the surface areas of each envelope component, segregated by
orientation — South (S), East (E), North (N), West (W), and Roof.
Notably, it also offers insights into below-grade opaque sections, an
indispensable component when considering subterranean heat gains or
losses.

The building's functional use and its consequent energy consumption
patterns are deeply influenced by its occupancy and usage schedule.
depicts the building's typical weekday and weekend schedules for
various aspects: occupancy, equipment usage, lighting, and HVAC op-
erations. As described in Section 3.2, the modeling information is fed
into the engine via a tailor-designed structured text file, ensuring that
the model is both accurate and reflective of the building's actual oper-
ational conditions. The occupancy and building use schedule for the
existing education building is depicted in Fig. 9.

3.6.2. Calibration of hard-to-determine modeling parameters (inverse
modeling)

Hard-to-determine modeling parameters are those difficult to
determine due to their complex interactions, latent effects, or the
absence of direct measurement methods. The inverse modeling pro-
cedure, the solution of adjusting the unknown parameters using obser-
vational data and simulation results, can be applied as a solution.
Section 3.4 presents a calibration scheme for the identification of these
parameters, which are effective. The calibration process adjusts these
hard to determine parameters such that the simulation outcomes for the
model match observations of how the building performs in terms of
energy. Most parameters were derived directly from the energy audit for
the case of the education building, particularly the thermophysical
properties of the structure and envelopes. This left a handful of crucial
parameters that needed identification via the calibration scheme. The
calibration information of the following parameters for the education
building case study are reflected in Table 2:

Thermal Capacity of the Building: The ability of the building's thermal
energy storage can be described by two distinct parameters: Cm for the
1st order RC model, Cs for the 2nd order RC model. Thermal capacities,
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Fig. 9. Occupancy and building use schedule of the education building.
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as difficult to measure directly, play a key role in the time a building
takes to heat up or cool down.

U-value of Internal Wall: The U value is a description of how well a
certain material is an insulator. Internal wall U values, although
important to energy efficiency, are not always easily available, unlike
external components.

U-value of Internal Floor: presents how much heat transfers through
the floor structure is determined by its U-value, just like the internal
wall. This becomes crucial in multistoried buildings.

It is noteworthy that although system efficiency of heating and
cooling sources is typically a key calibration parameter, it is not required
for this building. The education building receives district steam and
chilled water with directly metered consumption, eliminating the need
to calibrate source efficiency. Only distribution losses are considered in
the model, as the metered data already accounts for the source energy.

3.6.3. Data processing and quality control

In this research, measured energy data for the education building
was collected from building-level meters for a consecutive year. Hourly
steam consumption for heating was converted to thermal energy. Chilled
water energy was directly measured by BTU meters and validated
against supply/return temperature differential and flow rate. On-site
weather station measurements included dry-bulb temperature, relative
humidity, wind speed, and global horizontal irradiance at hourly reso-
lution with 98.5% data completeness.

A double MAD (median absolute deviation) method was used to
recognize and remove outliers in the building energy use data. One of
the common methods to identify and remove outliers in one-
dimensional data is to mark as a potential outlier any point that is
more than two standard deviations from the mean. However, the pres-
ence of outliers is also likely to have a strong effect on the mean and the
standard deviation, making this technique unreliable. So, it is recom-
mended to use a measure of distance that is robust against outliers. MAD
is good in dealing with this kind of problem because it uses the mean
absolute deviation from the median. However, MAD outlier recognition
requires that the data distribution not be skewed or asymmetric. It works
well with, for example, a symmetric statistical distribution like normal
distribution, or uniform distribution. For asymmetric distributions,
double MAD should be used. This is a synergy of two MAD methods: (1)
the mean absolute deviation from the median of all points less than or
equal to the median, and (2) the mean absolute deviation from the
median of all points greater than or equal to the median. The former is
used to calculate the distance from the median of all points less than or
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equal to the median; the latter is necessary to calculate the distance for
points that are greater than the median. By using this double MAD-based
outlier removal method, it is possible to recognize and remove the
outliers that exist in the building energy use data. The percentage-based
outlier removal method, which screens outliers by the top percentage of
biased points, was compared with the double MAD-based method in
Fig. 10. Percentage-based removal, most of the time, removes too many
incorrectly identified outliers that are actually valid data points. The red
points shown in the figure above are the outliers detected by the two
different methods. The comparison between the two on campus build-
ing's energy use data before and after outlier removing are also plotted
below. It can be seen that the double MAD based method is successful at
handling the outliers in the building energy use data.

4. Results and analysis
4.1. Simulation of the prototype buildings

For an effective and comprehensive understanding of the accuracy
and applicability of the RC-based models introduced, their performance
was juxtaposed with the renowned existing building energy simulation
tool, EnergyPlus. For the two prototype buildings, the performance of
the proposed models with and without interzonal thermal coupling are
compared with EnergyPlus simulation results and discussed in the
following sections.

4.1.1. The simulation results of the model without interzonal thermal
coupling

The hourly heating and cooling load simulation results were first
analyzed to explore the applicability of the 4R1C model without inter-
zonal thermal coupling, as shown in Fig. 11. The cooling load was
calculated by EnergyPlus and shown by the blue line and by the 4R1C
model predictions shown by the orange line. The comparative results
between the EnergyPlus predictions and the 4R1C model for a detached
house and an office building are shown in this figure. The trend delin-
eated by the EnergyPlus simulations was very well reproduced by the
4R1C model results for the detached house. The reason for this
reasonably close adherence is the simpler architectural design of the
detached house, which has only three zones. The spatial segmentation of
such a simple model is devoid of complexity so that the interzonal effects
are minimal, and the 4R1C model produces quite accurate hourly
heating and cooling load predictions without accounting for interzonal
thermal transfer.

Comparing Outlier Tests with n=29081
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Fig. 11. Hourly simulation results of EnergyPlus and the 4R1C model for the two prototype buildings.

However, when analyzing the office building, a building that is
inherently more complex structure with more than 10 zones, the sce-
nario changes. The 4R1C model simulation results show significant
discrepancies, which are consistent with this heightened complexity. In
particular, the 4R1C model is seen to have interzonal thermal coupling
that is absent. Interzonal thermal transfer biases sum together to lead to
significant overprediction of the cooling load by the 4R1C model in
summer months. In particular, this overestimation is particularly pro-
nounced during peak cooling periods. On the other hand, during winter
months, the model exhibits a tendency to underestimate heating loads,
and the variance turns out to be most significant during the peak heating
periods. The bifurcation in the results between the detached house and
office building highlights the important role that interzonal thermal
transfers play, particularly in buildings containing multiple zones. This
provides a critical indication of the limitations of the 4R1C model when
applied to complex structures and highlights the importance of models
that are capable of representing interzonal thermal dynamics in such
situations.

4.1.2. The simulation results of the models with interzonal thermal coupling

The hourly simulation results with internzonal thermal coupling
over a spread of ten randomly selected continuous days during winter,
summer, and transitional seasons are further studied in Fig. 12. When
comparing the 7R2C model to the 6R1C and 7R1C models, it becomes
clear that the 7R2C model outperforms the other models in accuracy.
However, this superior performance is subtly shown and the differences
between models are almost imperceptible using time series plots. Thus,
analytical efforts were continued in the scatter plots shown in Fig. 13
that compare the hourly predictions of EnergyPlus against each of the
RC models throughout the year. These plots also support a noticeable
increase in prediction accuracy as we move from the 4R1C model to the
more complicated 7R2C model, especially for the residential building
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prototype.

The office building exhibits markedly different heating and cooling
load profiles compared to the residential house, primarily due to dif-
ferences in surface-area-to-volume ratio, occupancy schedules, envelope
properties, and internal load intensity. Fig. 14 illustrates the hourly
simulation results for the office building using EnergyPlus and the RC
models (6R1C, 7R1C, and 7R2C). The 7R2C model, with its intricate
structure, emerges as the best performing model in terms of minimizing
biases relative to EnergyPlus. Its capability in predicting heating and
cooling loads is especially conspicuous during transitional seasons.
Complementing this observation, Fig. 15, the scatter plot reflecting the
simulation accuracy of the models for the office buildings, demonstrates
hierarchical performance. While both the 4R1C and 6R1C models
exhibit less persuasive performance relative to the 7R models for hourly
heating and cooling load predictions, the 7R2C model comfortably takes
the lead over the 7R1C.

4.1.3. Cross-climate zone performance analysis

To assess the robustness and generalizability of the proposed RC
models, we conducted validation across three distinct climate zones:
Shanghai (3A, warm-moist), Guangzhou (1A, hot-humid), and Shenyang
(7, severe cold). Table 4 presents a comprehensive validation results for
both prototypical residential house and medium office building across
these climate zones.

Our findings demonstrate universal applicability because model ac-
curacy shows steady growth when complexity increases across each
climate region. Across all climates the residential building cooling load
predictions show R? values increase from 0.88 to 0.90 for the 4R1C
model to 0.98 for the 7R2C model. The R? values of the 4R1C model for
the office building rise from 0.90 to 0.93 before reaching 0.99 when
using the 7R2C model. The steady improvement in prediction results
demonstrates that complex RC models deliver benefits irrespective of
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Fig. 12. Hourly simulation results of EnergyPlus and the 6R1C, 7R1C, and 7R2C model for the residential house.

the selected climate zone.

Certain trends in terms of model performance that are related to
climate variation become visible during this validation process. The hot
and humid conditions of Guangzhou produce superior cooling load
prediction accuracy among all climate zones and particularly affect the
performance of office buildings. The cooling-dominated building con-
ditions and stable daily temperature patterns explain this observation.
The heating load predictions for the office building in Guangzhou
display lower correlation values compared to other testing areas, mainly
because of the building's limited heating usage period.

The 7R2C model delivers best heating load prediction outcomes in
Shenyang's severe winters across all building types as it achieves the
highest R? values across every climate zone. The dual capacitance
mechanism proves essential for capturing thermal mass effects which
occur during extended heating periods with major differences between
indoor and outdoor temperatures. The increased thermal capacitance in
the 7R2C model yields its greatest prediction benefits during heating
load forecasting in the Shenyang climate zone.

The cross-climate validation showed how different climatic condi-
tions affect which RC model configurations prove optimal. Buildings
located in severe cold regions with noticeable seasonal changes will gain
significant accuracy improvements when using the 7R2C model to
forecast heating loads. The 7R1C model also shows good accuracy and
operational efficiency for hot and humid climates when focused on
cooling-dominated building operations. The 7R1C model has achieved
good performance measures in Shanghai's mild climate zone where
heating and cooling durations exist while the 7R2C model provides
minimal additional benefits. The identified findings enrich our model
selection process by adding climate-condition adaptability to the
assessment framework which includes building design characteristics
and simulation end goals we previously introduced.
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4.2. Simulation of the existing case study building

For the task of simulating energy use in the real-world educational
structure, the 7R2C model was the most suitable according to the results.
This decision was influenced by the building's distinct attributes, espe-
cially its thermal capacity, internal load intensity, and the distribution of
thermal zones. Given the multifaceted nature of the building edifice, a
simplified approach was imperative for efficiency in the RC-based
modeling. Consequently, the building's layout was delineated into
eighteen primary thermal zones. This consolidation was achieved by
merging zones that exhibited analogous functionalities and occupancy
dynamics. These thermal zones, coupled with the detailing of the
building's thermophysical characteristics, form the backbone of the
simulation process. Table 5 lists these specifics, ranging from the net
building floor area to the calibrated modeling parameters, Cm and Cs,
which have been derived through inverse modeling. The subsequent
sections will provide a closer look at these simulations, elucidating the
7R2C model's performance against the educational building's real-world
energy dynamics.

Fig. 16 provides an illustrative comparison between the energy use
predicted by the 7R2C model and the actual metered data for the
educational building. This juxtaposition is particularly significant for
understanding the model accuracy and precision in replicating real-
world energy use patterns, especially concerning heating and cooling.
As elucidated in the preceding sections, the building's heating and
cooling provisions are sourced from the local district energy provider,
specifically in the forms of steam and chilled water. Looking into the
winter season's data, it is evident that the 7R2C model's predictions for
steam usage align well with the actual metered consumption. However,
the situation is slightly different when examining the chilled water usage
for cooling. While the general trend of the predicted values aligns with
the metered data, there are certain deviations with metered hourly
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Fig. 13. Scatter plots of simulation accuracy of the 4R1C, 6R1C, 7R1C, and 7R2C model for the residential buildings (True value (kWh): EnergyPlus, Predicted value

(kWh): RC model).

energy use. These discrepancies are more pronounced in predicting
cooling energy use.

The challenge of simulating real-world energy consumption in
buildings can be filled with intricacies primarily due to the uncertainties
associated with operational conditions and building occupancy. The
pronounced seasonal discrepancies stem from varying operational un-
certainties between heating and cooling seasons. During summer (July
15-30), the education building experiences irregular occupancy due to
reduced course schedules and variable laboratory usage, introducing
substantial uncertainty in internal heat gains (+40% from nominal
values). Occupant-controlled window opening during mild conditions
creates unmodeled natural ventilation, while dynamic blind adjust-
ments alter solar heat gains beyond the simplified shading model's
capability, contributing to the cooling underprediction. Conversely,
winter heating (January 15-30) exhibits better accuracy due to pre-
dictable semester schedules, minimal window operation, and reduced
solar variability. The heating overprediction suggests the model does not
fully capture thermostat setback practices during unoccupied periods
and district heating system response delays. These seasonal variations
highlight the fundamental trade-off in RC modeling between capturing
primary thermal dynamics and accepting bounded uncertainty in
occupant-driven variables, making the approach suitable for monthly

17

energy trends and retrofit analysis rather than hour-by-hour operational
control.

As depicted in Fig. 17, a comparative analysis of the aggregated
monthly energy usage for both chilled water and steam presents
insightful conclusions. The side-by-side representation of actual con-
sumption and the 7R2C model's predictions serve to underline the
model's efficacy in mirroring monthly energy use trends. The accuracy
with which the proposed RC model simulates monthly energy con-
sumption is good. Despite the intricacies that might influence a build-
ing's energy profile, the model manages to capture the overarching
trends and patterns. This level of precision, especially when applied at a
monthly aggregate level, provides a promising indication of the model's
robustness.

The ability of the 7R2C model to simulate monthly energy con-
sumption with such precision underscores its potential utility in broader
applications. For instance, when attempting to optimize a building's
energy consumption, designers and engineers are often faced with
innumerable combinations of physical parameters. Each of these com-
binations can influence the building's energy profile in unique ways. The
RC model's proficiency in accurately predicting monthly energy trends
showcases its potential as a powerful tool in such optimization
processes.
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Fig. 14. Hourly simulation results of EnergyPlus and the 6R1C, 7R1C, and 7R2C model for the office buildings.

To provide a comprehensive quantitative assessment of the model
performance, Table 6 summarizes the statistical metrics for the educa-
tion building case study at hourly and monthly time granularities.

Table 6 demonstrates that the calibrated 7R2C model achieves good
predictive accuracy with monthly NRMSE of 17.85% for heating and
10.99% for cooling, and minimal annual bias (MBE <4%). At hourly
resolution, NRMSE increases to 18.04-21.46%, reflecting challenges in
capturing short-term operational variations. The hourly MBE reveals
systematic directional biases: 11.37% heating overprediction and
11.38% cooling underprediction, consistent with the operational un-
certainty discussion in this section regarding irregular occupancy pat-
terns and thermostat practices. Despite these hourly-level biases, the low
monthly MBE values demonstrate that errors largely offset over coarser
granularity. The higher cooling RMSE indicates greater prediction
variability due to complex interactions between solar gains, internal
loads, and occupant-controlled shading. Overall, these metrics validate
that the model provides reliable predictions for retrofit analysis and
energy management, particularly for monthly and seasonal assessments.

5. Discussions
5.1. Comparative analysis of different RC models and their selection

In this study, a comparative analysis of RC model configuration is
performed to gain insights into the relation between model complexity
and simulation accuracy. The introduction of interzonal thermal
coupling brings marked improvement, which is most apparent in the
transition from the 4R1C model to more sophisticated ones. The 7R2C
model shows superior accuracy than the 4R1C model for residential
buildings, with R? values of 97.81% and 98.74% for cooling and heating
loads respectively, compared to the 89.51% and 96.12% R? value of the
4R1C model. The improvement aligns with Vivian et al.’s study [46].
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Office buildings exhibit inherently higher complexity of thermal in-
teractions and thus the performance differentiation is more pronounced.
With R? values for cooling load prediction up to 98.78%, 7R2C model
demonstrates the importance of simulating interzonal thermal dynamics
in complex building structure.

For peak cooling load predictions in residential buildings, the 7R2C
model demonstrates superior stability (NRMSE of 4.47%) due to its dual
capacitance representation of thermal storage effects. While the 7R1C
model achieves comparable accuracy in many situations, thermal mass
representation remains a crucial factor in model selection. In particular,
the increase in the number of capacitors in the 7R2C model was found to
be especially advantageous when dealing with buildings with significant
thermal mass, as in the case of the office building. This is in line with
previous findings by that thermal mass modeling is needed to make
accurate building energy predictions.

The influence of interzonal thermal coupling varies substantially by
building typology. The simpler 6R1C model is able to provide viable
accuracy for residential prototypes with three thermal zones. Yet in
office buildings with many zones, more sophisticated interzonal thermal
coupling in the models 7R1C and 7R2C is needed for reliable pre-
dictions. The relationship between building complexity and model so-
phistication required can add practical guidance for model selection in
different applications as per this study. This work provides a feasible
framework for model selection based on the building characteristics and
simulation requirements. The 6R1C model tends to produce sufficient
accuracy for simple residential structures with few thermal zones. The
7R2C model can capture thermal dynamics with enhanced capability in
predicting the peak load of complex commercial buildings as well as
applications where the peak load prediction needs to be predicted with
high precision. This selection guidance will help the practical applica-
tion of RC modeling with building energy simulation by providing a
balance between model sophistication and practicality.
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Fig. 15. Scatter plots of simulation accuracy of the 4R1C, 6R1C, 7R1C, and 7R2C model for the office buildings (True value (in kWh): EnergyPlus, Predicted value

(kWh): RC model).

To provide more specific guidance for model selection, Table 7
presents a decision matrix based on building characteristics and simu-
lation requirements. This matrix synthesizes the quantitative perfor-
mance metrics presented in Table 4 with computational efficiency
considerations.

The selection criteria are derived from the following findings.

1. Building zoning complexity: Buildings with more than 4 thermal zones
show at least 3-4% improvement in R? values when using 7R1C or
7R2C models compared to simpler models.

2. Thermal mass consideration: Buildings with high thermal mass (con-
crete structures, massive floors/walls) benefit from the dual capaci-
tance representation in the 7R2C model, improving NRMSE for peak
load predictions by approximately 0.5-1.5% compared to the 7R1C
model.

3. Accuracy requirements: For applications requiring heating/cooling
load predictions with NRMSE <3%, at least the 7R1C model should
be used for complex buildings. For NRMSE <5%, the 6R1C model is
typically sufficient for residential buildings.

4. Seasonal considerations: During transition seasons, the 7R2C model
reduces NRMSE for cooling load predictions by 0.8-1.2% compared
to the 7R1C model for complex commercial buildings.
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5. Computational constraints: For large-scale parametric studies
requiring thousands of simulations, the computational efficiency of
the 6R1C model (12x faster than EnergyPlus) may be prioritized over
the marginal accuracy improvements of more complex models.

5.2. Computational efficiency versus accuracy loss

The computational performance analysis of different RC model
configurations reveals significant efficiency advantages over traditional
simulation methods while maintaining acceptable accuracy levels. The
evaluations are conducted on a Surface laptop equipped with an 11th
Gen Intel(R) Core (TM) i7-1185G7 processor clocked at 3.00 GHz and
complemented by 16 GB RAM. As shown in Table 8, the computational
time requirements for RC models are substantially lower than Ener-
gyPlus simulations across both building types. For the detached resi-
dential house, the simulation time reduces from 22.3 s with EnergyPlus
to a range of 1.5-2.1 s across different RC models. Similarly, for the
medium office building, the computation time decreases from 54.7 s to
3.2-5.3s.

As RC model complexity increases, the 4R1C model remains fastest
(1.5s for residential, 3.2s for office). Adding interzonal thermal coupling
in the 6R1C model increases computation time by 27-44%, while the
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Table 4

Performance of RC models across different climate zones for residential and office buildings.
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Climate Zone Building Type Model R? of CL R? of HL NRMSE of CL NRMSE of HL NRMSE of daily peak CL NRMSE of daily peak HL
Shanghai Residential 4R1C 0.895 0.961 5.92% 5.42% 4.14% 3.21%
6R1C 0.92 0.969 5.04% 4.66% 3.93% 3.10%
7R1C 0.967 0.986 3.25% 3.19% 5.00% 3.14%
7R2C 0.978 0.987 2.69% 2.99% 4.47% 3.50%
Office 4R1C 0.925 0.869 8.41% 3.75% 13.40% 14.20%
6R1C 0.955 0.893 4.73% 3.21% 4.42% 3.69%
7R1C 0.985 0.969 2.84% 1.56% 3.92% 3.36%
7R2C 0.988 0.983 2.48% 1.17% 3.63% 2.09%
Guangzhou Residential 4R1C 0.903 0.954 5.83% 5.56% 4.08% 3.34%
6R1C 0.927 0.961 4.97% 4.83% 3.86% 3.25%
7R1C 0.972 0.966 3.18% 3.42% 4.95% 3.31%
7R2C 0.981 0.978 2.62% 3.21% 4.41% 3.62%
Office 4R1C 0.931 0.852 8.21% 3.82% 12.95% 14.62%
6R1C 0.962 0.882 4.63% 3.25% 4.36% 3.73%
7R1C 0.987 0.951 2.75% 1.67% 3.87% 3.45%
7R2C 0.989 0.964 2.42% 1.39% 3.61% 2.24%
Shenyang Residential 4R1C 0.881 0.945 6.01% 5.29% 4.21% 3.15%
6R1C 0.916 0.963 5.12% 4.53% 3.98% 3.04%
7R1C 0.964 0.987 3.31% 3.07% 5.06% 3.08%
7R2C 0.975 0.988 2.76% 2.88% 4.53% 3.42%
Office 4R1C 0.907 0.883 8.78% 3.84% 14.51% 13.93%
6R1C 0.943 0.904 4.95% 3.19% 4.62% 3.57%
7R1C 0.978 0.974 3.02% 1.45% 4.12% 3.21%
7R2C 0.981 0.983 2.57% 1.06% 3.75% 1.94%
Table 5 leading to more detailed design space exploration. The implications can
able

Forwardly modeled parameters and the calibration of hard-to-determine pa-
rameters of the 7R2C model.

Model parameter Value Unit
Net building floor area 7781.4 m2
Number of occupants 650 /
Indoor temperature setpoint (summer) 25 °C
Indoor temperature setpoint (winter) 19 °C
External wall U-value 1.9 W/m?K
Window U-value 4.3 W/m?K
Window solar heat gain coefficient 0.56 /

Roof U-value 1.4 W/m?K
Below-grade U-value 2.85 W/m?K
Lighting intensity 13.02 W/m?
Equipment intensity 63.51 W/m?
Calibrated internal wall U-value 2.54 W/m?
Calibrated Cm 164427 J/m?K
Calibrated Cs 38792 J/m*K

transition from 7R1C to 7R2C introduces minimal overhead, indicating
that the second capacitance node has limited computational impact. For
preliminary building design and optimization processes, the computa-
tional advantages are particularly important. Architects and engineers
need to quickly assess many design alternatives in early design stages or
for existing building retrofit [67]. The parametric study using Ener-
gyPlus that runs from hours to days to understand the effects of building
orientation, window to wall ratios, and envelope materials can now be
computed in minutes to hours using the developed RC modeling engine,

2000

be substantial for optimization related research. For example, to perform
genetic algorithm optimization with 100 generations, 50 individuals per
generation would require 5000 simulation runs. With the 7R2C model,
the computation time of a medium office building will reduce from 76 h
to 7 h when compared to EnergyPlus, which helps to make complex
optimization studies feasible in affordable project timeframes.

RC configurations also have promising scalability prospects with a
near-linear increase in computation time from residential to office
building simulations. This scaling behavior indicates that the compu-
tational cost of RCBIdEng is still viable as building complexity grows.
These results suggest that the 4R1C or 6R1C models can provide sub-
stantial computational savings without compromising reasonable ac-
curacy where speed of analysis is critical, such as at early design stages
or large-scale optimization studies. Yet, the modest extra computational
cost of using the 7R2C model is justified for applications where accuracy
is important due to its superior performance in predicting peak loads
and in dealing with complex thermal interactions.

5.3. Real-world application and practical implications

The application of the RC model to the education building case study
reveals the practical implementation challenges and capabilities. Com-
parisons with metered data show good agreement for monthly energy
consumption predictions, especially in the spring semester when
building operation patterns are more regular. The simulation results
provide important considerations for practical applications, with
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Fig. 16. Hourly energy use predictions versus the metered hourly energy use.
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Fig. 17. Monthly energy use predictions versus the metered monthly en-
ergy use.

Table 6
Quantitative performance metrics of the 7R2C model for the education building
case study.

Time Granularity ~ Energy RMSE NRMSE MBE
Source (kWh) (%) (%)
Cooling Hourly Chilled 134.77 21.46 -11.38
Season Water
Jul)
Heating Hourly Steam 83.22 18.04 11.37
Season
(Jan)
Annual Monthly Chilled 34534.59 10.99 3.97
Water
Annual Monthly Steam 40215.15 17.85 1.01

Note: RMSE = Root Mean Square Error; NRMSE = Normalized Root Mean
Square Error; MBE = Mean Bias Error.

Table 7
RC model selection decision matrix.
Building Simulation Recommended Computational
Characteristics Purpose RC Model Efficiency
Simple residential Early design 4R1C 15x faster than
(1-3 zones) exploration EnergyPlus
Simple residential Load analysis 6R1C 12x faster than
(1-3 zones) EnergyPlus
Simple residential Peak load 7R1C 11x faster than
(1-3 zones) analysis EnergyPlus
Complex commercial  Early design 6R1C 12x faster than
(5+ zones) exploration EnergyPlus
Complex commercial  Load analysis 7R1C 11x faster than
(5+ zones) EnergyPlus
Complex commercial ~ Peak load 7R2C 10x faster than
(5+ zones) analysis EnergyPlus
High thermal mass Retrofit 7R2C 10x faster than
buildings analysis EnergyPlus
Low thermal mass Retrofit 7R1C 11x faster than
buildings analysis EnergyPlus
Any building during Cooling load 7R2C 10x faster than
transition seasons prediction EnergyPlus

prediction accuracy showing distinct seasonal behavior and larger dis-
crepancies during summer months due to irregular building usage pat-
terns. This observation aligns with Yan et al.'s findings regarding
operational uncertainties in building energy modeling [68].

The calibration process indicates that accurate parameter identifi-
cation is of critical importance and shows that calibrated values for
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Table 8
Computational performance of the proposed RC models.

Model Detached house Medium office
EnergyPlus 22.3s 54.7s
4R1C 1.5s 3.2s
6R1C 1.9s 4.6s
7R1C 2.0s 5.1s
7R2C 2.1s 5.3s

internal wall U-value and thermal capacitance can be obtained through
the differential evolution algorithm under physical constraints. In
practice, implementation is highly influenced by data availability and
quality. Basic building geometry and envelope properties are generally
available, but the detailed operational data that is required for model
calibration can sometimes be missing. Hourly metered data was avail-
able to support the education building case study in this research, yet
such extensive information is not necessarily ubiquitous, jeopardizing
the potential in achieving accuracy and reliability of calibration and
prediction. Moreover, due to the structured text-based input system of
the RCBIdEng model, it is practical in terms of model modification and
scenario testing. However, simplifications of complex phenomena such
as thermal bridges and dynamic occupant behavior may involve sys-
tematic uncertainties. For the case study, the current implementation
used a simplified approach to represent district heating and cooling,
which will be sufficient for the education building case, however, bias
might be introduced in modeling more complex HVAC configurations.
Beyond energy prediction, the practical implications extend to potential
building operation optimization. Implementation of the model in real
time control applications can be feasible with careful consideration of
prediction uncertainty. Rapidly evaluating different operational sce-
narios could help make more informed decisions in building design or
management for facilities linked to district energy.

5.4. Limitations and future research

In this study, the proposed RC based simulation engine has shown
promising prospects in terms of the prototype and real building appli-
cations. However, a number of limitations and future development op-
portunities should be discussed. Although this implementation is useful
for many applications, there are still constraints to the current imple-
mentation, which could be addressed by further research in the future.
Future validation work should incorporate standardized test cases from
ASHRAE Standard 140, which provides comprehensive building enve-
lope and system test cases developed by SERI/NREL. These cases would
offer additional benchmarks against which to evaluate the performance
of different RC model configurations across controlled scenarios.

Regarding model generalization capability, this study included a
comprehensive cross-climate validation across three distinct ASHRAE
climate zones (Shanghai 3A, Guangzhou 1A, Shenyang 7) for both res-
idential and commercial buildings, totaling 24 building-climate combi-
nations with R? values of 0.88-0.99. The validation demonstrates that
model accuracy improvements from increased complexity remain
consistent across all climates, with the 7R2C model showing particular
advantages in severe cold climates for heating loads and the 7R1C model
achieving excellent accuracy in cooling-dominated climates. However,
the validation focused on buildings with typical envelope constructions
meeting ASHRAE 90.1-2013 standards and standard HVAC operation
modes; performance for buildings with latest envelope techniques (i.e.
highly glazed facades, phase change materials, dynamic insulation) or
advanced HVAC strategies (i.e. demand-controlled ventilation, radiant
systems, predictive control) requires further investigation.

As for calibration data requirements, when metered energy con-
sumption is unavailable for existing buildings, alternative approaches
include short-term measurement campaigns (1-2 weeks), utility bill-
based monthly calibration, or benchmarking against similar building
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archetypes with conservative assumptions validated through sensitivity
analysis. In addition, the current simplified HVAC representation may
not adequately capture complex control strategies, variable refrigerant
flow systems, or thermal storage, limiting accuracy for buildings with
advanced HVAC configurations. The lack of explicit psychrometric
modeling—including moisture balance equations and humidity
dynamics—restricts applicability to buildings with strict humidity con-
trol requirements (laboratories, museums) and may underestimate
latent loads in humid climates, though sensible loads remain accurately
predicted. These limitations, along with simplified occupancy modeling
and the assumption of well-mixed zone air, define the model's appro-
priate scope as a tool for monthly energy trends, early-stage design
comparison, and retrofit measure evaluation rather than detailed oper-
ational control or specialized environmental conditioning applications.
Additionally, while the current validation focuses on whole-building
aggregated loads, future work should include zone-level validation to
diagnose potential systematic biases across different orientations
(south/north), locations (core/perimeter), and floor levels (upper/
lower), which would provide deeper insights into the model's spatial
accuracy and help identify specific scenarios where model refinements
may be needed.

At this point, urban scale application both offers challenges and
presents opportunities for future development and extension of this
study [55]. This suggests the potential in scaling to district or urban
scale simulations, but additional complexities like building shadowing
effects, urban heat island impacts, and district energy system in-
teractions should be addressed [69,70]. Further exploration of the po-
tential for real time applications is warranted in the context of
developing robust control algorithms that can leverage the model's
predictions while dealing with operational uncertainties.

6. Conclusions

In this research, a novel hybrid modeling approach that integrates
the strengths of both forward and inverse modeling methods through the
development of the RCBIdEng simulation engine is introduced. The
approach bridges the theoretical and practice by combining theoretical
building physics principles with real-world energy use data calibration.
Four RC model configurations (4R1C, 6R1C, 7R1C, and 7R2C) are pro-
posed and developed to cater to varying levels of building complexity,
with each model configured to provide an advantage in specific
applications.

A dual-capacitance model which coupled the thermal behavior of the
interzonal zones and modeled the effect of interzonal thermal coupling
and heat transfer was developed (7R2C) and finds superior performance
in modeling complex building thermal behavior, especially in the case of
buildings with high indoor thermal mass. The 4R1C model is compu-
tationally efficient but lacks the ability to describe the dynamics of
interzonal interactions. The 7R2C model aligns the closest with Ener-
gyPlus results, particularly for buildings with significant thermal mass,
while still maintaining substantially faster computation times. For sit-
uations where real time simulations are needed or when limited
computational resources are available, this computational efficiency
becomes vital. Moreover, the application of the model to an educational
building case study shows that the model can handle real-world

Appendix A: Infiltration and Natural Ventilation Model
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scenarios. The differential evolution algorithm is shown to effectively
identify hard-to-determine parameters, but seasonal prediction accuracy
variations suggest that consideration of operational uncertainties is
essential. The structured text-based modeling approach can be useful for
early-stage design analysis and retrofit studies since it allows rapid
scenario testing and model modification.

It is shown that the RC-based approach has significant advantages in
computational cost for design optimization and parametric studies. The
comprehensive exploration of design alternatives in a matter of minutes
rather than hours, allows for better informed decision making in
building design and operation. For applications where rapid analysis is
desired, i.e., early-stage design evaluation or large-scale optimization
studies, these benefits are particularly pronounced. This research offers
a methodology for choosing and implementing RC models depending on
the building characteristics and simulation requirements. The results
provide practical guidelines to strike a balance between model sophis-
tication and computational efficiency and suggest opportunities for
future development of RC based simulation engines. Future work in-
cludes enhanced representation of complex HVAC systems, more user-
friendly interfaces, and urban-scale applications. In short, this
research shows that RC-based building energy simulation engines can
provide viable alternative to traditional dynamic simulation methods,
especially for cases where fast analysis or extensive parametric studies
are needed, which may facilitate more efficient and sustainable building
energy solutions.

Code availability

The RCBIdEng simulation engine (v1.2) developed in this research is
available as a Windows executable, which can be downloaded on
GitHub at https://github.com/andersonspy/RCBIdEng/releases/tag/
v1.2.0. The program runs on Windows operating systems and requires
minimal installation. The executable and example files can be down-
loaded in compressed file, and users can follow the instruction in the
user manual to perform building energy simulation using the RC
modeling approach introduced in this paper.
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This appendix describes the mathematical formulation of the infiltration and natural ventilation model used in the simulation engine.

A.1 Infiltration Model

The infiltration model is based on the principle of air leakage through building envelopes due to pressure differences caused by temperature

differentials (stack effect) and wind.
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A.1.1 'Real' Infiltration Method
The 'real' infiltration method combines models for stack effect and wind-driven infiltration.
A.1.1.1 Stack Effect. The stack effect model is based on the buoyancy-driven airflow due to temperature differences between indoor and outdoor air:

qvistack:max<0.0146 “Fy - fur - (0.7 -h-[Te —Tset|)°'°67,0.001)

where @, sqck is the volumetric flow rate due to stack effect [m3/s], F. is the reference flow rate [m>/s], fins is the infiltration fraction [—], h is the zone
height [m], T, is the outdoor temperature [K], and T is the indoor set temperature [K]. The constant 0.7 accounts for the average height of neutral
pressure level in buildings.

A.1.1.2 Wind Effect. The wind effect model is based on the pressure differences created by wind around the building. It also follows the orifice
equation:

0.66!
Qywind =0.0769 - F, fmf (ACP'VSite'WSZ) 7

where gy yinq is the volumetric flow rate due to wind effect [m3/ s], AC, is the pressure coefficient difference [—], vy is a site-specific factor [—], and w;
is the wind speed [m/s]. The pressure coefficient difference accounts for the distribution of wind pressure on the building facade.

A.1.1.3 Combined Stack and Wind Effect. The combined effect is modeled using a quadrature sum approach, which accounts for the fact that stack and

wind effects are not simply additive:

014Gy stack-q.wind

qvsw = max (qv.stacka qv,wind) + Fr'finf

A.1.1.4 Final Infiltration Rate. The final infiltration rate considers any additional pressure differences and ensures non-negative values:

Qv,inf = Max (0 - qv,diff) + Qysw

where g, g is a term accounting for the pressure-induced ventilation flow rate difference between supply and exhaust air streams.
A.1.2 'Constant’ Infiltration Method
The constant infiltration method uses a simplified approach based on a reference flow rate and infiltration fraction:

qv,inf :Fr'finf

A.2 Natural Ventilation Model

When ventilation type is not mechanical, the natural ventilation model is activated. The natural ventilation model is based on the principles of
airflow through naturally opened windows or vents, when the proper opening pattern is taken for buoyancy-driven or wind-driven airflow.

A.2.1 Ventilation Speed
The ventilation speed model combines wind speed and temperature difference effects:

V=0.01+0.001-w?+0.0035 - h-| Ty, — T |

A.2.2 Environmental Factors
The model includes factors to account for the impact of wind and temperature on occupant behavior regarding window opening:
Wind factor:

Yying = min(max(1 — 0.1 -w;,0),1)
Temperature factor:

Yiemp =min(max(T, /25.0+0.2,0),1)
Opening factor:

Rupw = Yiina* Ytemp

A.2.3 Natural Ventilation Rate
The natural ventilation rate is modeled based on the orifice equation, considering the opening area and ventilation speed:
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3.6-500-A, V'V
Qv airing :Rupw Ai
f

where A,, is the opening area [m?] and Ay is the floor area [m?].
A.2.4 Natural Ventilation Control
The model includes a simple control strategy based on cooling demand and outdoor temperature:

Vo — lifge>0and T, < Ty and T, > 16°C
hrs = 0 otherwise

where q¢ is the cooling demand and NV is the calculated natural ventilation hours.

A.3 Total Ventilation and Heat Transfer

A.3.1 Total Ventilation Rate
The total ventilation rate combines mechanical supply, infiltration, and natural ventilation:

Qv,tot = Qv supp + Qv inf + qvnv

A.3.2 Ventilation Heat Transfer Coefficient
The ventilation heat transfer coefficient is based on the heat capacity of air and the total ventilation rate:

1.2
H,.= %'qv.mt

where 1.2 is the volumetric heat capacity of air [kJ/(mg-K)].

Appendix B. Solar Radiation Calculation Model

This appendix describes the simplified solar radiation calculation model used in the building energy simulation engine. The model calculates
various solar parameters and radiation components for different surface orientations.

B.1 Solar Position Calculations

B.1.1 Day of Year
The day of the year (Y4qe) is calculated based on the month and day:

v | Yaaeir +day; — dayiy  if month; = month;
date Yaatei1 +1 otherwise

where, Ygq: the cumulative date-related value; Ygq.i1: The previous value of Y4q., where the subscript i — 1 denotes the preceding iteration or time
step; day;: The current day of the month; day; 1: The previous day of the month; month;: The current month; month;_;: The previous month;

B.1.2 Solar Time
The model calculates several time-related parameters:
Solar time variable (7):

_ 275(Ydate — 1)
365

Equation of Time (ET):
ET=2.2918(0.0075 + 0.1868 cos T — 3.2077 sin T — 1.4615 cos 2 T — 4.089 sin 2 1)
Apparent Solar Time (AST):

ET longitude — LSM
AST = hour + %0 +?

where LSM is the Local Standard Time Meridian.

B.1.3 Solar Angles
Solar declination (8):

Y, 2
date + 84 . 2TI:>

6=23.45 sm( 365
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Hour angle (6p):
0, =15(AST —12)
Solar altitude (B):

sin 3 = cos ¢ cos & cos 6, + sin ¢ sin §

where ¢ is the latitude.
Solar azimuth (y):

sinw— sin 0, cos &
v cos B
cos 0 cos & sin ¢ — sin & cos ¢
cos Y=

cos p

B.2 Surface Solar Radiation Calculations
For each surface orientation, the model calculates.

B.2.1 Surface Solar Azimuth (7):

Y= ‘\P - Wsurface|

B.2.2 Angle of Incidence (0):

cos 0 =cos 3 cos y sin ¢ + sin f} cos ¢

where o is the surface tilt angle.

B.2.3 Direct Beam Component (E.p):

B, — 0 if 90° <y < 270° orcos 6 < 0
tb =\ Ep cos 0 otherwise

where E;j is the direct normal irradiance.

B.2.4 Diffuse Component (Eyq):
Y =max(0.45,0.55 + 0.437 cos 0+ 0.313 cos” 0)

B E4(Ysinc +coso) if o <90°
td= E Ysinc ifo > 90°

where Ej is the diffuse horizontal irradiance.

B.2.5 Ground-Reflected Component (Ey):

1—cosc

E.. = (Ep sin p+Eq)ry 3

where ry is the ground reflectivity.

B.2.6 Global Solar Radiation (GSR):
GSR=E;, + Ei g+ E,

B.3 Solar Irradiation on Tilted Surfaces
For various tilt angles, the model calculates solar irradiation:

Egn . .
Eg= ﬁ (cos B sin 6 €os (W — Wy, ) +5in f €OS ©)

where Eg, is the global horizontal irradiance.

25

Energy 346 (2026) 140260



P. Shen Energy 346 (2026) 140260
Appendix C. Solar Reduction Factors

The model calculates solar reduction factors for various shading devices.
B.3.1 Overhang:

max (07 1- W)E@ + (1 - ﬁ)Et,d +E.,

il GSR

B.3.2 Fin:

SRFg;, = e (07 1= W) Eip +Eq+E,
GSR

B.3.3 Horizon:

SRForizon = B Cf.;l;{ if max (f,0%) <i

1 otherwise

where i is the shading device angle.

Appendix D. Building Energy Use Calculation Method

This part describes the simplified HVAC energy use calculation model implemented in the building energy simulation engine. The model calculates
energy consumption for heating, cooling, ventilation, and domestic hot water (DHW) for each thermal zone.

D.1 Supply Air Flow Rates

The model calculates supply air flow rates for heating and cooling:

/- qu
oy 3600p(Tsupp1y.H - Tair,hc)

Ve supply = de
ey 3600p(Tair.hc - (Tsupply.C + ATreheat))

where Vi gyppiy and Ve g, are the heating and cooling supply air flow rates [m3/h/m?], qu and qc are the heating and cooling demands [W/m?], pis
the air density [kg/m3], Touppty, and Tgppiy ¢ are the supply air temperatures for heating and cooling [°Cl, Ty is the zone air temperature [°C], and
ATyeheq: is the reheat temperature difference [°C].

D.2 Fan Energy Consumption

The fan volume and energy consumption are calculated as:
Vfan = maX(Vh.suppl_w Vc,xupply) + Vexh
Efan = max(vfan)Pfanf:nntmlfBAC.e

where V., is the exhaust air flow rate, Py, is the fan power [W/ (m3/ )1, feontrol is the fan flow control factor, and fgac, is the building automation and
control (BAC) factor for energy.

D.3 Pump Energy Consumption

The model calculates water flow rates and pump volumes for heating and cooling:

Qu Hvac

Vw,h =
p(w c

(p.WATWH ) )
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where V,,, and V,,. are the heating and cooling water flow rates [m3/h], p,, is the water density, c,, is the specific heat capacity of water, and AT,
and AT, ¢ are the water temperature differences for heating and cooling. The pump volumes are then calculated based on the pump control strategy.

D.4 HVAC System Efficiency

The model calculates heating and cooling system efficiencies using performance curves:

etheq = PLVh (quavac / Qemax) Mheatnom

COP,p =PLV, (qC‘HVAC / qC,ma.x) -COP oot nom

where PLV}, and PLV, are the part load value curves for heating and cooling, and #;,44¢ nor @0d COPcoo1 nom are the nominal efficiencies. gy nvac and
qcnvac are the hourly heating and cooling demand, and ¢ max and qumax are the maximum heating and cooling output of the HVAC system.

D.5 Distribution Losses and Final Energy Consumption

The model accounts for distribution losses:

Z qH HVAC )

=max| 0.1,
fdem.heat ( z quHVAC T E qcHvAC

fdem,cool =max (1 7fdem,heats 0.1 )

1
ndist,heat =
1 + Qheat + f waste / f dem,heat
0 1
dist.cool —
1+ ool +fwaste/fdem.cool
where:

faem.coot Tepresents the fraction of cooling demand; fgem pea: is the fraction of heating demand; 1 ;s neqe @0 7gisr co0r are the efficiency of heating and
cooling distribution; ane,: and a, are coefficients related to heating and cooling losses; fyase represents the fraction of waste energy.
Final energy consumption for heating and cooling:

(Quavac + Qrtoss) faache
Eheat =

Mheat

(qevac + Geioss)foache

E =
cool co Pcool

where gy 105 and qc oss are the distribution losses, and fgac . is the BAC factor for heating and cooling.
D.6 Domestic Hot Water (DHW) Demand
The DHW demand is calculated based on the occupancy profile:

Qorw =12-DHW-4.18-1000-45-A¢

qoaw = QDHW'm

where DHW is the daily hot water consumption [m3/m?/day], Ay is the floor area [m?], and f,. is the occupancy fraction.
Appendix E. Onsite Renewable Energy Production Calculation Model
E.1 Photovoltaic (PV) System Energy Generation

The model calculates the solar irradiation incident on the PV panels and the resulting energy generation.

E.1.1 Solar Irradiation on PV Panels
The solar irradiation on PV panels Eg, py is determined based on the PV panel area, angle, and orientation:

Eg /1000 if PV angle = 0°
Egipv = Ego0,/1000 if PV angle > 0°
0if PVarea=0
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where.

Eg, is the global horizontal irradiation [W/m?]
Eo16,y is the solar irradiation on a tilted surface with angle 6 and orientation y [W/m?]

E.1.2 PV Energy Generation
The energy generated by the PV system is calculated as:

Egen,PV = Esol.PV 'Ppk f;;erf3600000

where.

Egen pv is the energy generated by the PV system [J]
Eg1py is the solar irradiation on PV panels [kWh/m?]
Py is the peak power of the PV system [kW]

fpers is the performance factor of the PV system [—]
3600000 is the conversion factor from kWh to J

E.2 Solar Water Heating (SWH) System
The model calculates the solar irradiation incident on the SWH collectors.

E.2.1 Solar Irradiation on SWH Collectors
The solar irradiation on SWH collectors (Es, swr) is determined based on the collector area, angle, and orientation:

Eg,/1000 if SWH angle = 0°
Exol,SWH = Esgl,g,w/1000 If SWH angle > 0°
0if SWH area = 0

E.2.2 SWH Energy Gain
The energy gain of the SWH system is calculated as:

Egainswr = Esoswr-3600000
where.

Eguinsw is the energy gain of the SWH system [J]
Egoswr is the solar irradiation on SWH collectors [kWh/m?]

E.3 Model Implementation Notes

If the PV or SWH area is zero or if there are invalid inputs, the respective solar irradiation is set to zero. The model uses pre-calculated solar
irradiation data for tilted surfaces (E0,,) stored in the solar calculation dictionary which is calculated based on Appendix C.

The performance factor (f,¢) for the PV system accounts for various system losses and inefficiencies. The model assumes that the SWH energy gain
is directly proportional to the incident solar irradiation, without considering system efficiency or heat losses. For a more accurate estimation,
additional factors such as collector efficiency, heat exchanger effectiveness, and storage losses should be incorporated.

E.2 Wind Turbine Energy Generation

If wind turbines are present, the energy generation is calculated as:

Egen,wind = 0'spairNASWEanmrbinevi/md -3600

where p,;,. is the air density, N is the number of turbines, Ay is the swept area, 7,4, is the turbine efficiency, and vyyq is the wind speed.

Appendix F. Forward Model Parameter Calculations

F.1 Thermal Resistances Calculation

F.1.1 Envelope Thermal Resistances
The thermal resistances of building envelope components are calculated from their U-values and areas:
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1

Ry=—o——
“ Z ( Ui 'Ai)opaque
i

1
Z ( Ui-A; )Window

i

Ryin =

where U; is the heat transfer coefficient (W/mZK) and A; is the corresponding surface area (mz).

F.1.2 Ventilation and Infiltration Resistance
Ventilation resistance is calculated based on the air exchange rate and air properties:
1

R=—r
1.2-ACH-V,0r, /3.6

where ACH is the air changes per hour (h’l), Vzone is the zone volume (m3), and 1.2 represents the volumetric heat capacity of air (kJ/m°K).

F.1.3 Internal Resistances
Internal resistances between air and surfaces, and between surfaces and thermal mass:

1
Riﬂ - hin 'At
1
Rim B him 'Am

where h;, is the interior convective heat transfer coefficient, h;, represents the conduction coefficient between surfaces and mass, A, is the total surface

area, and A,, is the effective mass surface area in m2.

F.1.4 Interzonal Thermal Resistances
For thermal coupling between zones:

1
Ry, =———
Y U-Awy
1
Rypim—
Y U Ay

where Uy, and Uy are the heat transfer coefficients of internal walls and floors, and A, ; and Ay ; are the corresponding areas between the current zone
and adjacent zone i.

E.2 Thermal Capacitances Estimation

The thermal capacitances are calculated as:

C= Zpi’cp.i'di‘Ai
i

where p; is the density (kg/m®), cp, is the specific heat capacity (J/kgK), d; is the effective thickness (m), and A; is the area (m?) of the respective
building element.

F.3 Heat Gains Calculation

F.3.1 Internal Heat Gains
Internal heat gains from occupants, equipment, and lighting are calculated as:

Qine = Gocc 'focc + app 'fﬂpp + Qi 'fli

where gocc, qapp, and qy; are the heat gain densities (W/m?) from occupants, appliances, and lighting, and focc, fopp, and f;; are the corresponding time-
dependent fractions.

F.3.2 Solar Heat Gains
Solar heat gains through windows and opaque surfaces:
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>_(SRF;;-GSR;-Aij-(1 — FF,)-SHGC;) 3 (GSR;-Aij-Ura;Ts)
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where SRF;; is the solar reduction factor (accounting for shading devices), GSR; is the global solar radiation on surface j, A;; is the area, FF; is the frame
factor, SHGC; is the solar heat gain coefficient, U; is the U-value, g is the absorption coefficient, r,, is the external surface resistance, and Ay is the floor

area.

Data availability
Data will be made available on request.
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