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A B S T R A C T

Rooftop photovoltaic (PV) deployment at the cluster scale is critical for advancing urban decarbonization, yet 
existing methods often oversimplify available area estimation, neglect engineering constraints, and struggle to 
balance energy, economic, and environmental objectives. To address these gaps, this study proposes an inte
grated model comprising three modules: (1) high-fidelity identification of available rooftop area by explicitly 
excluding shadow area, obstacles with buffer zones, and maintenance pathways; (2) automated generation of 3D 
engineering-feasible PV layouts; and (3) a hybrid single- and multi-objective optimization with TOPSIS-based 
decision-making. Applied to a 245-building cluster in Shenzhen, the model identified 23,982 m² of available 
area (46.51 % ratio), more conservative than typical utilization-factor assumptions. It generated detailed 3D, 
module-level PV layouts for 198 buildings, enabling high-fidelity PV output simulation accounting for site- 
specific orientation, tilt, and shading. Across all budget levels, the optimized solutions outperformed 30,000 
random alternatives, with internal rates of return ranging from 16.1 % to 19.2 %. Under the high-budget sce
nario, the CEB-optimal solution, which utilizes all technically feasible rooftops, achieves a 10-year cumulative 
energy yield of 61.61 GWh and carbon emission reductions of 27,725.59 t CO₂. By decoupling layout generation 
from optimization, the framework reduces computational complexity and enables efficient generation of opti
mized deployment solutions. The proposed framework facilitates large-scale rooftop PV deployment and con
tributes to the decarbonization of urban energy systems.

1. Introduction

In the context of global climate change, achieving carbon neutrality 
has become a central objective for many nations (UNFCCC, 2015). 
Among various renewable energy technologies, solar photovoltaic (PV) 
systems have become one of the most widely adopted solutions because 
of their zero operational emissions, scalability, and abundant resource 
availability (Zhang et al., 2023). By the end of 2024, worldwide 
renewable energy capacity reached approximately 4,448 GW (Nassar 
et al., 2025), with over 600 GW of new solar PV capacity added, of which 
rooftop and distributed systems grew by 200 GW (REN21, 2025). In 
China, centralized large-scale photovoltaic (LSPV) systems are pre
dominantly deployed in sparsely populated western regions (Sun et al., 
2017), which offer vast suitable areas and an estimated potential of 
approximately 42.8 TW (Yu et al., 2023). However, delivering electricity 

from remote generation sites to eastern demand centers requires 
long-distance transmission, which incurs transmission losses of 
approximately 7 %, far exceeding the 2.5 % loss rate typical of distrib
uted solar photovoltaic (DSPV) (Sun et al., 2017). To address these 
challenges, China has set an ambitious target of deploying 800 GW of 
rooftop PV capacity by 2035 (LBNL, 2025), reflecting a strategic shift 
toward DSPV and contributing to its carbon neutrality goals.

Research on rooftop PV deployment spans multiple scales. At the 
urban scale, studies primarily focus on assessing the rooftop PV potential 
across entire cities and translating these assessments into practical 
planning guidance. Wei et al. (2024) developed a city-scale PV 
deployment decision-making model for Shenzhen, clarifying deploy
ment priorities and quantifying the electricity demand coverage ratio of 
different PV installation targets. Chen et al. (2022) proposed a 
cost-effective assessment method for Shanghai’s downtown area, 
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achieving highly accurate solar radiation estimation and rooftop clas
sification while quantifying PV systems’ economic and ecological ben
efits. Cuesta-Fernández et al. (2023) proposed an urban-metropolitan 
energy exchange model, showing that expanding rooftop PV in Valen
cia’s metropolitan area could significantly increase its PV coverage rate 
and support carbon neutrality goals. Building-scale studies focus on 
detailed optimization, including PV module layout efficiency and 
additional functionalities such as shading effects and thermal insulation 
(Nassar et al., 2019). For instance, to enhance indoor comfort when 
bifacial PV serves as building envelope, Zhao et al. (2022) improved 
annual thermal comfort period by 8 % via optimizing PV coverage and 
adding heat insulation layers. Focusing on the dual functionality of 
building-integrated PV (BIPV) in shading and power generation, Paydar 
(2020) developed a movable BIPV shading system, which achieved 
lower building annual thermal load and significantly higher excess 
electricity generation compared to multiple fixed modes.

To bridge the gap between city-wide potential estimates and single- 
building design, recent research has increasingly turned to the building 
cluster scale. Zhang et al. (2023) developed a multi-scale energy storage 
allocation model and demonstrated that cluster-level coordination of PV 
and storage can reduce annual energy costs by more than 55 %. Yu et al. 
(2023) proposed a classification-based framework for building clusters, 
enabling efficient estimation of PV potential across thousands of urban 
buildings. Ma et al. (2016) introduced the concept of smart building 
clusters and showed that coordinated PV and demand response strate
gies can reduce total operational costs by 4.6 % and improve load fac
tors. Together, these works highlight the building cluster as a 
strategically valuable scale: it balances computational feasibility with 
engineering realism, offering a practical pathway for scaling up 
distributed PV deployment.

Research on PV deployment at the building cluster scale has largely 
focused on two key objectives: the estimation of available rooftop area 
and the generation of PV deployment plans. Yang et al. (2024) used a 
semi-supervised segmentation approach, Tian and Ooka (2025) applied 
parametric modeling with machine learning techniques, and Yan et al. 
(2023) adopted a detail-oriented deep learning method to estimate 
available rooftop area. However, all these approaches effectively rely on 
utilization factors, which are empirical coefficients that convert total 
roof area into assumed available area. They treat rooftops as uniformly 
installable and neglect fine-grained physical constraints such as shadow 
area, obstructions, and maintenance pathways, which are essential for 
accurately determining the actual available area for module-level PV 
installation (Nassar et al., 2022a, 2022b). Regarding the generation of 
PV deployment plans, Kucuksari et al. (2014) used LiDAR data and 
applied criteria related to irradiance, height, orientation, and slope to 
select installation sites. Santos et al. (2014) used only solar irradiance 
and rooftop area thresholds to filter candidates. Lee et al. (2018)
introduced a bi-criteria rating system that classifies buildings along a 
suitability spectrum based on technical and economic factors. Ren et al. 
(2023) formulated the layout problem as a nonlinear integer program to 
maximize system capacity at the cluster scale. However, their planning 
frameworks treat rooftops as abstract two-dimensional surfaces defined 
by aggregated metrics, without representing physical constraints or 
generating module-level layouts. As a result, while effective for strategic 
prioritization, their outputs are not directly translatable into 
constructible PV designs. In contrast, recent studies have shifted toward 
generating physically realizable PV layouts by explicitly incorporating 
engineering and geometric constraints into the design process. Barbón 
et al. (2022) considered irregular rooftop geometries and module di
mensions in an automated layout-generation algorithm, while Kontar 
and Jin (2020) integrated energy simulation, environmental analysis, 
and parametric modeling within a Grasshopper-based workflow to 
generate PV layouts. Despite their high fidelity, these approaches are 
typically implemented within 3D modeling environments, which are 
well suited for individual buildings or small clusters but encounter 
computational bottlenecks when applied to large-scale building clusters 

(Ren et al., 2023).
Existing studies on rooftop PV assessment have evolved from energy- 

focused evaluations toward more comprehensive approaches incorpo
rating economic and environmental dimensions. Tao et al. (2025)
evaluated rooftop PV performance using energy-based indicators such as 
the self-consumption rate (SCR) and self-sufficiency rate (SSR). Pan et al. 
(2022) analyzed the economic feasibility of urban rooftop PV deploy
ment under multiple installation scenarios, highlighting the influence of 
system configuration on payback period and financial returns at the city 
scale. Šimić et al. (2021) proposed a PV sizing and decision-making 
model driven by economic performance, identifying optimal system 
sizes under regulatory and market constraints. Furthermore, Zhu et al. 
(2022), Li et al. (2023), and Allouhi (2020) adopted multi-dimensional 
evaluation frameworks that integrate economic and environmental 
considerations, introducing comprehensive indicators such as the lev
elized cost of energy (LCOE) and carbon emission metrics to capture the 
broader sustainability implications of rooftop PV deployment. This shift 
reflects growing awareness that rooftop PV deployment involves mul
tiple, sometimes competing objectives, necessitating multidimensional 
evaluation for decision-making. Multi-objective optimization (MOO) 
has been increasingly adopted in urban photovoltaic research. Wang 
et al. (2025) developed a MOO framework for high-density urban blocks 
to optimize trade-offs among energy demand, solar access, and available 
surface area. Gao et al. (2025) proposed a 
techno-economic-environmental MOO framework for industrial rooftop 
PV energy-storage systems. Liu et al. (2023) applied a MOO approach to 
optimize PV–energy storage configurations in urban industrial build
ings, identifying trade-offs among technical, economic, and environ
mental objectives. These studies illustrate the effectiveness of MOO in 
generating Pareto-optimal solutions to guide large-scale rooftop PV 
deployment. Among various algorithms, NSGA-II (Deb et al., 2002) has 
been widely adopted in studies on solar energy potential and building 
performance optimization, demonstrating its effectiveness in balancing 
multiple competing objectives.

Although previous studies have laid a solid foundation for the gen
eration and optimization of rooftop PV deployment and for evaluating 
its multidimensional performance, few have developed an integrated 
framework that simultaneously ensures physical feasibility, computa
tional scalability, and balanced multi-objective optimization for large- 
scale building clusters. Existing large-scale planning approaches often 
incorporate multiple performance criteria but typically represent roof
tops as homogeneous planar surfaces, ignoring module-level installation 
constraints such as shadow area, obstructions, and maintenance path
ways. As a result, they yield only aggregated capacity estimates rather 
than constructible layouts. In contrast, high-fidelity methods that embed 
detailed 3D geometry and engineering rules can generate physically 
realizable PV configurations, yet their high computational cost limits 
applicability to large-scale building clusters. To bridge this gap, this 
study proposes a novel model that unifies fine-grained physical realism 
with efficient multi-objective optimization, enabling the scalable gen
eration of feasible, high-resolution PV layouts for building clusters. The 
main contributions of this research include: 

1. A three-module framework for systematic PV layout generation and 
optimization, comprising: (i) an available rooftop area identification 
module that classifies shadow areas, roof obstacles with buffer zones, 
and maintenance access pathways; (ii) an initial layout generation 
module that maximizes PV deployment under engineering con
straints; and (iii) an optimization and decision-making module 
employing a hybrid single- and multi-objective framework to bal
ance energy, environmental, and economic performance under 
varying budget constraints.

2. Decoupled integration of high-fidelity layout generation and scalable 
optimization. The framework explicitly separates the physically 
constrained 3D layout generation from system-level performance 
optimization. The model first embeds installation-related parameters 
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directly into the layout generation phase within a 3D modeling 
environment, ensuring that the initial PV layouts are physically 
feasible. The subsequent optimization process then operates on this 
set of constructible initial solutions rather than searching the full 

high-dimensional layout space, significantly reducing computational 
complexity while preserving engineering realism.

3. A case study was conducted in a diverse building cluster in Shenzhen, 
spanning nearly 150,000 square meters and comprising over 245 

Fig. 1. Framework of the study.
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buildings of various types. The results demonstrated the model's 
applicability and superior performance in complex building cluster 
environments.

The structure of this paper is as follows: Section 2 introduces the 
proposed PV layout generation and optimization model, detailing the 
methodology for identifying available rooftop areas, generating initial 
PV layouts, and conducting optimization. Section 3 presents the results 
of a case study conducted in a large-scale building cluster in Shenzhen, 
analyzing the performance of each module. Section 4 provides a 
comprehensive discussion of the implications, limitations, and scal
ability of the proposed approach. Finally, conclusions are presented in 
Section 5.

2. Methodology

Fig. 1 illustrates the overall framework of this study. First, the 
available rooftop area identification module prepares the building 
cluster dataset through data collection and preprocessing, then iden
tifies unavailable areas to determine the available rooftop area for PV 
installation. After that, the initial layout generation module uses a ge
netic algorithm to produce a layout that maximizes PV deployment 
within the available areas while considering engineering constraints. 
Finally, the optimization and decision-making module integrates single- 
objective and multi-objective optimization frameworks under varying 
budget constraints to balance energy, environmental, and economic 
performance. The technical details and implementation of each module 
are described in the following sections.

2.1. Available rooftop area identification module

2.1.1. Data collection and preprocessing
Building outlines, heights, and floor counts were obtained from 

OpenStreetMap (OpenStreetMap, 2024) to generate 3D building models 
with Grasshopper (McNeel, 2024). High-resolution satellite imagery 
from Google Maps (Google, 2024) was combined with Rhinoceros 
(Rhinoceros, 2025) to model rooftop features, distinguishing sloped and 
flat roofs, which provide essential input for PV deployment planning. 
Building simulation settings, including material specifications, indoor 
activity schedules, and internal loads, were determined based on 
building function and Shenzhen’s climate zone (ASHRAE 90.1-2013) 
(Deng et al., 2022). PV generation and energy consumption were 
simulated using ClimateStudio (Solemma, 2025), a Rhinoceros plugin 
powered by EnergyPlus (EnergyPlus, 2024). Local climate conditions 
were captured using a satellite-derived Typical Meteorological Year 
(TMYx) dataset (Ladybug Tools, 2025), ensuring realistic modeling of 
energy performance.

2.1.2. Identification and quantification of unavailable rooftop areas
In rooftop PV potential assessments, utilization-factor-based esti

mation remains widely used, but its accuracy is often limited in complex 
building environments. To improve upon this approach, Odeh and 
Nguyen (2021) introduced a roof suitability factor that integrates 
obstacle exclusion and roof tilt/orientation considerations, while Wang 
et al. (2022) proposed a method tailored to older residential buildings by 
removing areas occupied by rooftop structures and non-sunlit sloped 
surfaces. Building on these insights and incorporating practical instal
lation guidelines from engineering standards, this study further refines 
rooftop availability estimation by classifying unavailable areas into 
three categories to support more accurate and safe PV deployment. 

1) Shadow area:

Shadow significantly reduces the performance of PV modules and 
can even cause long-term damage (Ma et al., 2023). According to the 
Chinese National Standard GB50797-2012 (Ministry of Housing and 

Urban-Rural Development of the People’s Republic of China, 2024), 
rooftop areas receiving less than 3 hours of sunlight during the winter 
solstice are classified as unavailable. Solar radiation simulations were 
conducted using the Ladybug plugin (Ladybug Tools, 2024) on the 
Grasshopper platform to accurately identify these shadowed areas. 

2) Roof obstacles with buffer zones:

Certain rooftop structures and equipment are unsuitable for PV 
installation. For example, structures such as staircases and elevator 
shafts are typically excluded due to insufficient load-bearing capacity or 
installation difficulties. Additionally, rooftop equipment, such as water 
tanks and cooling towers, is also classified as unavailable (Cao et al., 
2024). To ensure safe installation and maintenance, a 1.5-meter buffer 
zone was designated around these roof obstacles (Ma et al., 2023). 

3) Maintenance Access Pathways:

Rooftop PV systems require designated pathways with a minimum 
width of 1.5 meters for maintenance personnel access (Ministry of 
Housing and Urban-Rural Development of the People’s Republic of 
China, 2024). Therefore, a 1.5-meter-wide margin is reserved between 
the PV deployment area and the roof boundaries in this study.

By categorizing unavailable rooftop areas and integrating this in
formation with the 3D building models from Section 2.1.1, this module 
identifies available rooftop areas. The identification results provide 
essential constraints for module placement, ensuring compliance with 
physical and regulatory requirements, which form a critical input for the 
initial layout generation in Section 2.2.

2.2. Initial layout generation module

2.2.1. Parameters for PV layout generation

1) Installation methods

In practical engineering applications, PV modules must be installed 
using methods selected according to the structural characteristics of the 
roof (Bahaj, 2003). This study selected commonly used and efficient 
installation methods for flat and sloped roofs, as illustrated in Fig. 2. For 
flat roofs, a concrete foundation installation method was adopted, which 
permits adjustments to the azimuth angle and row spacing by reposi
tioning the concrete bases, while the tilt angle is controlled by varying 
the lengths of the metal supports (Bayod-Rújula et al., 2011). For sloped 
roofs, a clamp-based installation method was adopted, with PV modules 
mounted parallel to the roof slope and arranged edge-to-edge 
(Stenabaugh et al., 2015). 

2) PV module dimensions

Among various PV module types such as 166, 180, and 210 (EE 
Power, 2024), the 210-type has become the dominant choice in China, 
accounting for over 60 % of production due to its high efficiency and 
mature supply chain (BJX, 2025). Given its widespread adoption, stan
dardized dimensions (2382 mm × 1134 mm; see Fig. 3), and suitability 

Fig. 2. PV installation methods. a) flat roofs. b) sloped roofs.
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for large-scale applications, this study adopts the 210-type module as the 
reference specification. 

3) Azimuth angle

Azimuth angle refers to the angle between the true south direction 
and the direction in which the PV module's vertical plane faces, 
measured in the horizontal plane. In the Northern Hemisphere, when the 
module's vertical plane faces true south, the azimuth angle is 0◦, 
resulting in the maximum annual energy output from the module (Hafez 
et al., 2017). The azimuth angle can be adjusted by repositioning the 
concrete bases. In this study, the azimuth angle was allowed to vary 
within a ±15◦ range, where such variation has an acceptable impact on 
the efficiency of individual modules (Hafez et al., 2017; Meng et al., 
2020; Chen et al., 2020). 

4) Tilt angle

The tilt angle is the angle between the plane of the PV module and 
the horizontal ground. In rooftop PV projects, the optimal tilt angle is 
typically related to the local geographic latitude, with higher latitudes 
requiring a larger optimal tilt angle (Nassar et al., 2025). In regions with 
snowfall during winter, the tilt angle should also account for the snow 
shedding angle, but this factor is not considered in low-latitude regions 
(Jelle, 2013). Given Shenzhen's latitude (22.55◦), the tilt angle was set 
within the range of 22.55◦±10◦ to balance annual energy output and 
module spacing constraints. 

5) Row spacing

Row spacing refers to the distance between PV modules in the north- 
south direction. This parameter plays a vital role in both energy effi
ciency and the safe operation of the rooftop PV system. As shown in 
Equation (1), row spacing can be calculated using the length of the PV 
module’s long side, the tilt angle, and the latitude of the project location. 

RowSpacing = Lsinβ⋅
0.707tanϕ + 0.4338
0.707 − 0.4338tanϕ

(1) 

where L is the length of the long side of PV module; β is the tilt angle of 
PV module (see Fig. 3);ϕ is the latitude of the PV project location. 
Therefore, adjusting the tilt angle can optimize the number of modules 
in the PV system by changing the row spacing of PV, thereby increasing 
the overall energy output of the system.

2.2.2. Initial layout generation
This study utilized the genetic algorithm plugin Galapagos (Rutten, 

2024) on the parametric 3D modeling platform Grasshopper to generate 
an initial layout. The optimization objective was to maximize the 
number of deployable PV modules. The key parameters used in the 
optimization are summarized in Table 1, and the overall optimization 
workflow is illustrated in Fig. 4.

For flat roofs, a north-south oriented bounding rectangle was 

constructed based on the roof geometry and expanded by 10 % to ensure 
full coverage during the optimization process. This expansion ratio was 
confirmed through sensitivity testing (Section 3.5). Within the bounding 
rectangle, square PV units of 2382 mm × 2382 mm were generated, each 
integrating two 210-type modules placed side by side along their longer 
edges, with the extra width accounting for installation clearance. The 
initial configuration for each PV unit was set with an azimuth angle of 
0◦, a tilt angle of 22.55◦, and the corresponding row spacing. To 
determine the optimal PV module configuration within available 
rooftop areas, a genetic algorithm was employed to search over three 
decision variables: rotation angle, tilt angle, and X/Y offset, within 
predefined ranges. These ranges and corresponding mutation steps were 
determined based on practical engineering constraints, energy perfor
mance considerations, and sensitivity analyses (Section 3.5), as sum
marized in Table 1. To improve computational efficiency, the 
optimization problem was transformed into a 2D planar problem, with 
PV unit projections screened to ensure they were fully contained within 
available areas defined in Section 2.1. For sloped roofs, the tilt angle is 
fixed due to the installation method; all other layout steps, including 
bounding rectangle construction and positional sampling, follow the 
same procedure as for flat roofs.

2.3. Optimization and decision-making module

Building upon the initial layout in Section 2.2, a hybrid optimization 
framework combining single- and multi-objective approaches is imple
mented to balance environmental, energy, and economic performance 
under varying budget constraints. For each building, a binary decision 
variable (0 or 1) indicates whether its initial PV layout is retained. The 
optimization is performed across three budget scenarios representing 
high, medium, and low resource availability levels. During evaluation, 
only buildings with PV deployment (binary = 1) are included in cluster- 
level performance calculations, while non-PV buildings are excluded.

For single-objective optimization, the Genetic Algorithm (Holland, 
1992) is employed to maximize individual performance metrics under 
each budget interval, generating targeted solutions to meet the demand 
for prioritizing a single performance dimension. For multi-objective 
optimization, the NSGA-II genetic algorithm is utilized to generate a 
Pareto front of non-dominated solutions (Verma et al., 2021), with 
parallel computing accelerating its computation (Chapman et al., 2007). 
However, for practical implementation, a single actionable layout is 
often required. To provide a transparent and interpretable selection 
from the Pareto front generated by NSGA-II, the TOPSIS (Hwang and 
Yoon, 1981) method is employed. TOPSIS has been extensively used in 
multi-objective optimization problems due to its conceptual simplicity 
and effectiveness in identifying balanced compromise solutions (Wang 
et al., 2025). To ensure objective and unbiased weight assignment, the 
Entropy method is adopted to determine the weights of the energy, 

Fig. 3. Parameters for rooftop PV installation.

Table 1 
Algorithm parameters and constraints of the optimization framework.

Category Parameter Value

Algorithm 
framework

Crossover probability 0.6

​ Mutation probability 0.3
​ Population size 150
​ Number of generations 50
Decision variable 

ranges
Rotation angle range [-15, 15] ◦ (mutation step: 1◦)

​ Tilt angle range [12.55, 32.55] ◦ (mutation 
step: 1◦)

​ Offset range (X/Y 
direction)

[-5,5] (mutation step: 0.2 m)

Selection & operator Selection strategy Tournament selection 
(tournsize=2)

​ Crossover operator Blend crossover (α=0.5)
Fitness evaluation Fitness function Number of valid PV panels
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environmental, and economic indicators based on their information 
entropy: indicators with lower entropy (i.e., higher data dispersion and 
stronger discriminatory power) are assigned higher weights (Arce et al., 
2015). TOPSIS then ranks solutions according to their relative closeness 
to the ideal and anti-ideal points, with the top-ranked solution selected 
as the optimal actionable layout (Arce et al., 2015).

2.3.1. Performance indicators

1) Environmental performance:

Carbon emissions provide critical insight into the decarbonization 
potential of distributed renewable energy systems (Nassar et al., 2025). 
Carbon Emission Benefits (CEB), measured in kg CO2, are used to eval
uate the environmental performance of the project by quantifying the 
total carbon emissions reduced through PV deployment (Breyer et al., 
2015). In this work, CEB is calculated over a 10-year operational period 
and accounts for PV module degradation to reflect realistic long-term 
environmental impacts. The calculation equations are as follows: 

CEB = Gtotal⋅fcarbon (2) 

Gtotal =
∑N

i=1

∑T

t=1
Gi,t (3) 

Gi,t = Gi,t,0⋅(1 − rPV)
y (4) 

where Gtotal is the total PV generation of the building cluster, in kWh; 
fcarbon is the emission factor of the China Southern Power Grid, which is 
0.45 kg CO2/kWh (Ministry of Ecology and Environment of China MEE, 
2025); Gi,t is the PV generation of building i at time t, in kWh; Gi,t,0 is the 
first-year hourly PV generation for each building which can be obtained 
through simulation; rPV is the annual degradation rate of PV panels, 
which is 0.004 (Longi, 2025). 

2) Energy performance:

Self-sufficiency rate (SSR) is a key metric for evaluating the energy 
performance of PV systems (Tao et al., 2025). In this study, electricity 
generated by the rooftop PV system is primarily consumed within the 
same building, with any excess generation fed back into the grid (Zhang 
et al., 2023), as shown in Equation (5). SSR represents the proportion of 
a building’s total energy demand that is supplied by its PV system, 
highlighting the extent to which the building reduces its reliance on the 
grid. 

SSR =

∑N

i=1

∑T

t=1
Eself

i,t

∑N

i=1

∑T

t=1
Ei,t

(5) 

where Eself
i,t is the PV generation consumed by building i at time t, 

calculated as shown in Equation (6); Ei,t is the energy consumption of 

building i at time t, calculated as shown in Equation (7). 

Eself
i,t = min

(
Ei,t ,Gi,t

)
(6) 

Ei,t = Ei,t,0⋅
(
1 + rEnergy

)y (7) 

Ei,t,0 is the first-year hourly energy consumption for each building, 
which can be obtained through simulation; rEnergy is the annual growth 
rate of building energy consumption, which is 0.05. 

3) Economic performance:

The Internal Rate of Return (IRR) (Talavera et al., 2010) is used to 
evaluate the economic performance of the PV project for the building 
cluster. This study incorporates detailed costs of the PV project and 
distinguishes between commercial, industrial, and residential electricity 
tariffs, as shown in Equations (8), (9) and (10): 

0 =
∑T

t=1

Fcash,y

(1 + IRR)y − TotalInitialInvestment (8) 

TotalInitialInvestment =
∑N

i=1
InitialInvestmenti (9) 

InitialInvestmenti = Pi⋅CPV (10) 

where Fcash,y is the cash flow of the project in year y, as calculated in 
Equations (11) and (12); Pi is the PV installed capacity of building i, in 
watts; CPV is the PV cost, in CNY/W. 

Fcash,y = Rself− use + Rexport − AnnualMaintenanceCost (11) 

AnnualMaintenanceCost =
∑N

i=1
Pi⋅Cmaintenance (12) 

where Rself− use is the revenue obtained by the building from the self- 
consumed PV generation, as calculated with Equation (13). Rexport is 
the revenue earned from the PV generation exported to the grid, as 
calculated with Equation (14); Cmaintenance is the unit cost of mainte
nance, which is 0.06 CNY/W. 

Rself− use =
∑N

i=1

∑T

t=1

(
Eself

i,t ⋅Tself− use⋅rdiscount

)
(13) 

Rexport =
∑N

i=1

∑T

t=1

(
Eexport

i,t ⋅Texport

)
(14) 

where Tself− use is the electricity tariff. For residential buildings, this 
study adopts Shenzhen's peak-valley time-of-use tariff, as shown in Eq. 
(15) and Table 2. For industrial or commercial buildings, the tariff is 
fixed at 0.85 CNY/kWh. rdiscount is the electricity discount rate, set to 0.8. 
In distributed rooftop PV projects, generating revenue by supplying PV- 
generated electricity to buildings is a common practice, and an 

Fig. 4. Layout generation steps illustration.
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electricity discount is often applied to offset rooftop rental costs. 

Tselfuse =

⎧
⎨

⎩

Tvalley, ift ∈ ValleyHours,
Tpeak, ift ∈ PeakHours,
Tnormal, otherwise.

(15) 

2.3.2. Algorithm parameters and decision-making strategy
The single- and multi-objective optimization algorithms are config

ured with consistent core parameters to ensure the stability and 
comparability of optimization results across different budget intervals. 
The base budget is defined as the total investment for full PV deploy
ment across all buildings, with three budget intervals corresponding to 
different resource availability scenarios. Min-max normalization is 
applied in multi-objective optimization to eliminate dimension differ
ences between indicators, ensuring fair non-dominated sorting by 
NSGA-II. Key algorithm parameters are standardized in Table 3.

3. Results

3.1. Case study setup

This study selected a building cluster in Shenzhen, China, as the case 
study. The building cluster consists of 245 buildings with a total rooftop 
area of 51,562 m². Fig. 5 illustrates the location of the case study area 
and the distribution of building types and heights. The cluster comprises 
a diverse mix of building functions: 202 low and mid-rise residential 
buildings (82.4 %), 10 high-rise residential buildings (4.1 %), 26 com
mercial buildings (10.6 %), and 7 industrial buildings (2.9 %). Building 
heights range from 13 to 178 meters, and individual rooftop areas vary 
from 7.5 to 2,053.7 m², reflecting significant heterogeneity in both form 
and scale.

3.2. Available areas identification results

Fig. 6a shows the simulation results of sunlight hours on the winter 
solstice. Fig. 6b illustrates the identification results of rooftop obstacles 
with buffer zones and maintenance pathways, which are combined into 
a single visualization due to their similar classification methods. Fig. 6c 
displays the integrated results of available rooftop area identification for 
the building cluster. The total available rooftop area is 23,982 m², while 

the unavailable rooftop area amounts to 27,580 m². The unavailable 
area arises from three overlapping sources: shadowed areas (20,767 m²), 
rooftop obstacles (4,539 m²), and maintenance pathways (16,999 m²). 
Due to spatial overlaps among these categories, their summed area ex
ceeds the actual total unavailable rooftop area. Together, these results 
establish a detailed rooftop availability map that serves as the geometric 
and operational input for subsequent PV layout generation.

3.3. Initial layout results

The initial layout generation module produced PV layouts for 198 
out of 245 buildings, resulting in a total PV area of 20,403 m², while 47 
buildings were excluded due to insufficient available rooftop space. 
Fig. 7a illustrates the initial layout results. As shown in Fig. 7b, the 
excluded buildings are generally associated with smaller rooftop areas, 
mostly below 150 m². Fig. 7c further indicates that these buildings have 
a substantially smaller mean rooftop area (33.13 m²) compared to those 
with generated layouts (138.2 m²). In addition, Fig. 7d shows that the 
excluded buildings exhibit higher proportions of all three categories of 
unavailable rooftop areas.

3.3.1. Environmental performance
Hourly electricity consumption and PV generation profiles were 

obtained through energy simulation based on the initial layout. Fig. 8a 
shows the hourly variations during the first year, illustrating the tem
poral profiles used for environmental performance assessment. Over a 
10-year evaluation period, the total PV generation amounts to 61.61 
GWh, which is translated into a cumulative CEB of 27,725.59 t CO₂.

3.3.2. Energy performance
All buildings are assumed to operate under a self-consumption plus 

grid-feed-in scheme. Based on the simulated PV generation and elec
tricity consumption profiles, the self-sufficiency rate (SSR) was calcu
lated to quantify energy performance. Fig. 8b presents the SSR variation 
on representative dates (March 1, June 1, September 1, and December 
1). At the cluster scale, an annual SSR of 16.44 % is obtained for the first 
year.

3.3.3. Economic performance
Based on the initial layout and simulation results, the corresponding 

economic indicators were calculated. The initial layout requires a total 
investment of 15.63 million CNY, with an annual operation and main
tenance cost of 0.31 million CNY. Over a 10-year assessment period, the 
resulting IRR is 14.61 %, and the net revenue amounts to 5.01 million 
CNY.

Overall, the initial layout generation module constructs module-level 
PV deployment configurations in a three-dimensional environment 
under geometric, shading, and operational constraints. These layouts 
translate available rooftop area into explicit deployment options and 
provide the spatial and data foundation required for subsequent 
optimization.

3.4. Optimization and decision-making results

3.4.1. Pareto frontier analysis and TOPSIS results
Fig. 9 presents the three- and two-dimensional distributions of 

feasible solutions, Pareto frontiers, and TOPSIS-optimal solutions under 
different budget intervals. The number of Pareto frontiers decreases 
with tighter budget constraints, from 209 in the high-budget interval to 
36 and 25 in the medium and low intervals, respectively. Across all 
budget scenarios, feasible solutions exhibit structured distributions in 
the three-dimensional objective space, indicating clear trade-offs among 
SSR, IRR, and CEB. Taking the medium-budget scenario as an example, 
the Pareto-optimal solutions exhibit a trade-off among objectives: SSR 
ranges from 0.140 to 0.252, IRR from 12.5 % to 17.6 %, and CEB from 
13770.58 to 21025.96 t CO₂, highlighting the competing nature of 

Table 2 
Time-of-use electricity tariff in Shenzhen.

Period Time Range Tariff (CNY/kWh)

Peak Hours 10:00-12:00, 14:00-19:00 1.10
Valley Hours 0:00-8:00 0.25
Off-peak hours Remaining hours 0.65

Table 3 
Parameter settings for the optimization and decision-making framework.

Parameter 
Category

Parameter Value

Algorithm 
framework

Crossover 
probability

0.9

​ Mutation 
probability

0.05

​ Population size 200
​ Number of 

generations
100

Parameter 
constraints

Budget interval High (75 %–100 %), Medium (50 %–75 
%), Low (25 %–50 %) of the base budget

​ Decision variable 
type

Binary building-selection variable (0 =
excluded, 1 = selected)

Fitness 
evaluation

Fitness function 
(single-objective)

Maximization of IRR / SSR / CEB

​ Fitness function 
(multi-objective)

Maximization of normalized IRR, SSR, 
CEB (dimensionless)
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energy self-consumption, economic return, and environmental benefit. 
Regression analysis further quantifies these relationships. SSR and IRR 
show a positive correlation (R² = 0.57), while both indicators are 
negatively correlated with CEB, with R² values of 0.756 and 0.743, 
respectively. All correlations are statistically significant (p < 0.001).

Based on entropy-derived objective weights, TOPSIS is applied to 
identify a representative compromise solution within each budget in
terval. Table 4 reports the corresponding objective weights and close
ness coefficients. Across budget intervals, the dominant objective weight 
varies: SSR receives the highest weight in the high and low budget in
tervals, whereas CEB becomes the highest-weighted objective in the 
medium budget interval. IRR remains the lowest-weighted objective in 
all intervals.

3.4.2. Performance of optimal solutions
Fig. 10a compares the core performance indicators of four repre

sentative solutions across low, medium, and high budget intervals. The 
IRR-optimal solution consistently achieves the highest internal rate of 
return, with values of 19.2 %, 17.6 %, and 16.1 % under low, medium, 

and high budgets, showing a decreasing trend as the budget level in
creases. The SSR-optimal solution yields the highest self-sufficiency rate 
in all scenarios, with SSR also decreasing as budget expands, indicating 
slightly reduced supply-demand matching at higher budget levels. For 
the CEB-optimal solution, total carbon emission reduction increases 
monotonically with budget expansion, reflecting the effect of larger 
deployment scales. In contrast, the TOPSIS-optimal solution exhibits 
intermediate but well-distributed performance across all three in
dicators, with each metric following the same trend as observed in the 
corresponding single-objective solutions. As shown in Fig. 10b, the radar 
plots indicate that TOPSIS solutions maintain a relatively balanced 
profile under different budget constraints, while achieving SSR levels 
close to those of the SSR-optimal solutions.

3.4.3. Comparison with randomly sampled solutions
A total of 30,000 random solutions were generated through unbiased 

random sampling, with each building having an equal probability of 
being selected. These solutions are approximately uniformly distributed 
across the predefined budget intervals. As shown in Fig. 11, the single- 

Fig. 5. Case study area: location, building type distribution, and height variation.

Fig. 6. Available areas identification results. a) simulation results of sunlight hours on the winter solstice. b) rooftop obstacles with buffer zones and maintenance 
pathways. c) integrated results of available rooftop area identification.
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objective optimization solutions for IRR and SSR exceed the maximum 
values achieved by random sampling across all budget levels. In 
contrast, the best CEB obtained from single-objective optimization is 
comparable to the upper bound of the random solutions.

For the multi-objective optimization results, the TOPSIS-optimal 

solutions exhibit strict Pareto non-dominance with respect to all 
random solutions across the three budget intervals (Table 5). No random 
solution achieves an improvement in any objective without a simulta
neous degradation in at least one other objective. Across all budget 
levels, the TOPSIS solutions achieve SSR values higher than the 

Fig. 7. Results of initial PV layout. a) initial layout. b) distribution of available rooftop area across buildings. c) comparison of rooftop areas between buildings with 
and without PV layouts. d) proportions of different categories of unavailable rooftop areas.

Fig. 8. Simulated energy performance of the initial PV layout. a) first-year hourly variations in electricity consumption and PV generation. b) diurnal variations in 
SSR on typical dates.
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maximum obtained from random sampling, while their IRR values 
remain higher than most random solutions.

3.4.4. Preference of optimization strategies
Fig. 12a illustrates the number of selected buildings and the corre

sponding budget utilization for the four optimal solutions under 
different budget constraints. The CEB-optimal solution consistently 
operates close to the upper budget limit and selects the largest number of 
buildings, including all available buildings under the high-budget 
constraint. In contrast, the IRR-optimal and SSR-optimal solutions 
tend to select fewer buildings, resulting in lower budget utilization. The 
TOPSIS-selected solution also involves a relatively small number of 
buildings but exhibits higher budget utilization than the single-objective 
IRR and SSR solutions.

Fig. 12b compares two key building characteristics, namely roof area 
and energy intensity, for each solution across budget intervals. Energy 
intensity is defined as the ratio of first-year PV generation to rooftop 
area. Under the low-budget constraint, pronounced differences are 

observed among optimization strategies. The CEB-optimal solution 
consistently selects buildings with relatively small roof areas and low 
energy intensity, exhibiting the smallest average roof area of no more 
than 125 m² and the lowest energy intensity of no more than 92.05 
kWh/m². In contrast, the IRR-optimal solution shows substantially 
higher values for both indicators, with an average roof area of at least 
426.66 m² and an energy intensity of at least 138.99 kWh/m². In the 
medium and high budget scenarios, the TOPSIS-optimal solution pre
sents relatively higher roof area and energy intensity compared to other 
solutions, although these differences are not statistically significant.

Fig. 13 shows the deployment results of the four strategies under the 
low-budget scenario, with buildings selected by multiple strategies 
specifically marked; only two buildings are chosen by all four strategies 
and nine are selected by any three, indicating low overlap and distinct 
selection preferences across objectives.

3.5. Sensitivity analysis

3.5.1. Sensitivity analysis results for initial layout generation
Sensitivity tests were performed to examine the influence of two key 

geometric parameters, namely the offset range and the expansion ratio, 
on the initial layout generation stage. The tests were conducted under 
controlled conditions: a fixed random seed, layout generation on 20 
randomly selected buildings, and all other parameters held constant. 
The results are summarized in Table 6. For the expansion ratio, the 
maximum panel count was attained at 10 %. Any further increase in the 
ratio only resulted in longer computational time without additional 
gains in panel quantity. For the offset range, computational duration 

Fig. 9. Distribution of feasible solutions and Pareto-optimal fronts in the three-objective optimization under different budget constraints.

Table 4 
Entropy weights, stability ratios and TOPSIS closeness coefficients under 
different budget intervals.

Budget 
Interval

Weight of 
IRR

Weight of 
SSR

Weight of 
CEB

TOPSIS Closeness 
Coefficient

High 0.181 0.523 0.295 0.700
Medium 0.273 0.354 0.374 0.588
Low 0.219 0.470 0.311 0.701
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remained stable, while the panel count increased and reached its 
maximum when the range expanded to ±5 m. Thus, a 10 % expansion 
ratio and a ±5 m offset range were selected as optimal parameters, 
achieving the maximum panel count without additional computational 

overhead.

3.5.2. Sensitivity analysis of entropy-weighted TOPSIS decision-making
To assess the robustness of the multi-objective decision-making 

Fig. 10. Performance comparison of representative optimal solutions under different budget intervals. a) indicator values of IRR-optimal, SSR-optimal, CEB-optimal, 
and TOPSIS-optimal solution. b) radar plots of normalized multi-indicator performance grouped by budget interval.

Fig. 11. Comparison between optimization solutions and randomly sampled solutions under different budget intervals.
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process, a sensitivity analysis was conducted on the entropy-derived 
objective weights used in the TOPSIS evaluation. The analysis focuses 
on whether small perturbations in weight allocation would lead to 
different optimal solution selections. Specifically, the baseline entropy 
weights were subjected to random perturbations within ±10 %. For 
each budget interval, the perturbation process was repeated 100 times, 

and the TOPSIS optimal solution was re-identified in each trial. The 
results, summarized in Table 7, indicate that the stability ratio remains 
high across all budget intervals (≥0.83), demonstrating that the TOPSIS- 
optimal solutions are insensitive to moderate weight variations. This 
confirms the robustness of the entropy-weighted TOPSIS decision- 
making process and supports the reliability of the reported multi- 
objective optimal solutions.

3.5.3. Sensitivity analysis results for optimization and decision-making
To examine the performance of the proposed optimization 

Table 5 
Performance comparison between the TOPSIS-selected solution and randomly 
sampled solutions under different budget intervals.

Comparison 
Aspect

Metric Low 
Budget

Medium 
Budget

High 
Budget

Random 
solution set

Number of random 
solutions within the 
budget interval

9900 9937 10163

​ Number of random 
solutions that strictly 
dominate the TOPSIS 
solution

0 0 0

Single- 
indicator 
comparison

Proportion of random 
solutions outperformed by 
the TOPSIS solution (IRR, 
%)

98.5 99.9 100

​
​ SSR (%) 100 100 100
​ CEB (%) 17.4 13.2 4.6

Fig. 12. Building selection characteristics of different optimization strategies under varying budget constraints. a) number of selected buildings and budget utili
zation. b) roof area and energy intensity of selected buildings.

Fig. 13. Rooftop PV deployment results under the low-budget constraint. a) CEB-optimal. b) IRR-optimal. c) SSR-optimal. d) TOPSIS-optimal.

Table 6 
Sensitivity analysis of geometric parameters in initial layout generation.

Parameter type Parameter value Number of panels Total duration (s)

Expansion ratio 0 % 490 150.62
​ 10 % 494 173.55
​ 25 % 492 210.18
​ 50 % 494 289.62
​ 100 % 492 477.89
Offset range (±m) 1 476 172.38
​ 2 484 172.48
​ 5 494 172.93
​ 10 494 172.97
​ 15 494 172.22
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framework under parameter variations, sensitivity analyses were con
ducted for two key parameters: feed-in tariff price and PV module effi
ciency. Based on realistic ranges observed in practice, both parameters 
were perturbed by ±10 %, and the medium-budget interval was selected 
as the representative test scenario. For single-objective optimization 
with IRR as the target metric, Fig. 14 shows that the IRR-optimized 
solutions consistently exceed the best-performing random solutions 
under all tested variations of feed-in tariff and PV module efficiency. At 
the multi-objective level, the TOPSIS-selected solutions exhibit robust 
performance under all parameter perturbations, consistently out
performing the majority of random solutions in at least two objectives 
(Table 8).

4. Discussion

4.1. Rooftop area availability assessment based on spatial constraints

Compared with conventional utilization-factor approaches, which 
typically assume that 60 % or more of rooftop areas are suitable for PV 
installation in dense urban contexts (Wang et al., 2022, Yuan et al., 
2016), the available rooftop proportion identified in this study is sub
stantially lower at 46.51 %. This highlights the importance of explicit 
rooftop-level modeling that accounts for shading, rooftop obstacles, and 
maintenance access requirements, leading to a more conservative but 
realistic estimation of deployable PV potential. Shadow areas and 
mandatory maintenance pathways constitute the largest shares of 
excluded rooftop areas, indicating that urban morphology and 

regulatory constraints play a dominant role in limiting rooftop PV 
deployment. The spatial overlap among exclusion categories further 
suggests that integrated rooftop and architectural design, such as coor
dinating equipment placement with access routes or optimizing roof 
geometry, may enhance rooftop PV potential.

4.2. Implications of optimization strategy comparison

The comparison among single-objective optimization, multi- 
objective optimization, and random sampling underscores the impor
tance of optimization strategy selection in rooftop PV deployment. 
Single-objective approaches consistently outperform random sampling 
in their targeted metric, confirming their effectiveness when a specific 
performance priority is predefined. However, they inevitably sacrifice 
non-optimized objectives, limiting their suitability in contexts requiring 
balanced outcomes. For instance, Ren et al. (2023) used an ILP-based 
strategy to compare heuristics prioritizing either total solar potential 
or rooftop energy intensity, showing that single-criterion optimization 
often compromises overall generation efficiency or cost-effectiveness. In 
contrast, strategies that explicitly balance competing objectives yield 
more robust system-level performance. Notably, the TOPSIS-optimal 
solutions maintain stable, non-inferior performance across all budget 
scenarios and outperform most random solutions in at least two objec
tives, demonstrating the advantage of the proposed hybrid framework in 
delivering balanced, decision-relevant outcomes under realistic budget 
constraints.

4.3. Framework design and practical applicability

The proposed hybrid optimization framework integrates 3D layout 
generation with subsequent single- and multi-objective optimization, 
effectively decoupling physical feasibility assessment from performance 
driven decision-making. By first translating available rooftop areas into 
explicit, constructible PV configurations, the framework ensures engi
neering realism and provides a spatially accurate basis for energy, 
environmental, and economic evaluations. The use of binary building- 
level selection variables separates layout generation from system-scale 
optimization, avoiding direct operations on complex 3D platforms and 
significantly reducing computational complexity. This modular design 
enables single-objective runs to explore performance extremes under 
strict budget constraints, while multi-objective TOPSIS-based selection 
identifies balanced trade-offs across all objectives. As demonstrated in 
the Shenzhen case study, the approach supports flexible adaptation to 
varying budget scenarios, heterogeneous building characteristics, and 
evolving policy priorities, offering a scalable and practical pathway for 
cluster-scale rooftop PV deployment planning.

4.4. Limitations and potential future work

Despite the advantages of the proposed framework, several limita
tions remain. First, the rooftop area identification module has limited 
adaptability to complex or highly irregular roof geometries and 
currently relies on manual input, which constrains automation and 

Table 7 
Stability of the TOPSIS decision under different budget levels.

Budget level Number of Pareto solutions Stability ratio*

Low 25 100 %
Medium 36 83 %
High 209 100 %

* Stability ratio is defined as the proportion of weight-perturbation trials in 
which the TOPSIS-selected optimal solution remains unchanged.

Fig. 14. Sensitivity analysis of optimized solutions compared with random 
sampling benchmarks.

Table 8 
Single-indicator superiority of the TOPSIS solution under parameter 
perturbations.

Parameter category Scenario IRR (%) SSR (%) CEB (%)

Electricity price − 10 % 100* 99.9 19.8
​ Base 99.9 100 13.2
​ 10 % 91.1 100 42.7
PV efficiency − 10 % 74.9 97.5 88.5
​ Base 99.9 100 13.2
​ 10 % 62.5 95.1 98.3

* Values indicate the proportion of randomly sampled solutions that are out
performed by the TOPSIS-soptimal solution for each individual indicator.
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scalability. Second, each objective dimension in this study is represented 
by a single indicator (IRR, SSR, CEB), potentially overlooking other 
relevant performance aspects. Third, the current framework does not 
consider energy storage integration, which could affect self- 
consumption and system flexibility.

Future research could address these limitations by integrating sat
ellite imagery and shadow simulation to automate and accelerate 
rooftop availability assessment, reducing reliance on manual modeling. 
Additionally, incorporating energy storage and expanding the set of 
performance indicators would enable more comprehensive multi- 
objective optimization, supporting enhanced planning and decision- 
making for large-scale rooftop PV deployment.

5. Conclusion

In this study, a three-module rooftop PV layout generation and 
optimization model is proposed to enhance the efficiency of PV layout 
planning for large-scale building cluster. The first module identifies 
unsuitable zones in three categories to precisely delineate available 
rooftop areas. The second module employs a genetic algorithm within a 
parametric 3D modeling environment, incorporating practical PV 
deployment constraints to generate an initial layout with a maximum 
number of PV panels. Based on this, the third module implements a 
hybrid single- and multi-objective optimization framework via binary 
programming. By conducting a case study containing 245 real rooftops 
in a high-density urban district of Shenzhen, the following major con
clusions were made. 

1) The available area identification module determines viable PV 
installation areas by explicitly excluding three types of unavailable 
zones: shadowed regions, roof obstacles with surrounding buffer 
zones, and maintenance access pathways. Applied to the 245-build
ing cluster with a total rooftop area of 51,562 m², the module 
identified 23,982 m² of technically usable area, yielding an available 
area ratio of 46.51 %. This is lower than typical utilization-factor 
assumptions, demonstrating that the proposed method provides a 
more accurate and conservative basis for practical PV deployment 
planning.

2) The initial layout generation module produces three-dimensional, 
engineering-feasible PV layouts by translating available rooftop 
areas into explicit deployment configurations. Feasible layouts were 
generated for 198 buildings, yielding a total installed PV area of 
20,403 m². These layouts provide the spatial and data foundation 
required for subsequent energy, economic, and environmental per
formance evaluation, enabling optimization analyses.

3) Comparison with 30,000 randomly sampled solutions demonstrates 
the superiority of the proposed optimization framework. Single- 
objective optimization solutions for IRR and SSR consistently 
outperform the best random solutions, while CEB-optimal solutions 
reach comparable maxima. Multi-objective TOPSIS-optimal solution 
maintains a well-balanced performance across all three indicators, 
showing Pareto non-inferiority relative to the random solutions.

4) The optimal solutions exhibit clear trends with increasing budget: 
IRR and SSR decrease while CEB increases. Specifically, the IRR- 
optimal solution declines from 19.2 % to 16.1 %, and the SSR- 
optimal solution drops from 33.3 % to 23.3 % as the budget rises. 
The CEB-optimal solution prioritizes selecting many small, low-cost 
rooftops, whereas the IRR- and SSR-optimal solutions focus on 
larger, higher energy-intensity rooftops. The TOPSIS-optimal solu
tions balance these tendencies, with multi-objective weighting 
reflecting a higher priority on SSR in the high- and low-budget sce
narios, and assigning the highest weight to CEB in the medium- 
budget scenario.

In conclusion, the proposed PV layout generation and optimization 
model can be used in practice to improve rooftop PV deployment for 

large-scale building cluster, promoting urban decarbonization and sus
tainable development.
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