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Rooftop photovoltaic (PV) deployment at the cluster scale is critical for advancing urban decarbonization, yet
existing methods often oversimplify available area estimation, neglect engineering constraints, and struggle to
balance energy, economic, and environmental objectives. To address these gaps, this study proposes an inte-
grated model comprising three modules: (1) high-fidelity identification of available rooftop area by explicitly
excluding shadow area, obstacles with buffer zones, and maintenance pathways; (2) automated generation of 3D
engineering-feasible PV layouts; and (3) a hybrid single- and multi-objective optimization with TOPSIS-based
decision-making. Applied to a 245-building cluster in Shenzhen, the model identified 23,982 m? of available
area (46.51 % ratio), more conservative than typical utilization-factor assumptions. It generated detailed 3D,
module-level PV layouts for 198 buildings, enabling high-fidelity PV output simulation accounting for site-
specific orientation, tilt, and shading. Across all budget levels, the optimized solutions outperformed 30,000
random alternatives, with internal rates of return ranging from 16.1 % to 19.2 %. Under the high-budget sce-
nario, the CEB-optimal solution, which utilizes all technically feasible rooftops, achieves a 10-year cumulative
energy yield of 61.61 GWh and carbon emission reductions of 27,725.59 t CO2. By decoupling layout generation
from optimization, the framework reduces computational complexity and enables efficient generation of opti-
mized deployment solutions. The proposed framework facilitates large-scale rooftop PV deployment and con-
tributes to the decarbonization of urban energy systems.

1. Introduction from remote generation sites to eastern demand centers requires
long-distance transmission, which incurs transmission losses of
approximately 7 %, far exceeding the 2.5 % loss rate typical of distrib-

uted solar photovoltaic (DSPV) (Sun et al., 2017). To address these

In the context of global climate change, achieving carbon neutrality
has become a central objective for many nations (UNFCCC, 2015).

Among various renewable energy technologies, solar photovoltaic (PV)
systems have become one of the most widely adopted solutions because
of their zero operational emissions, scalability, and abundant resource
availability (Zhang et al., 2023). By the end of 2024, worldwide
renewable energy capacity reached approximately 4,448 GW (Nassar
etal., 2025), with over 600 GW of new solar PV capacity added, of which
rooftop and distributed systems grew by 200 GW (REN21, 2025). In
China, centralized large-scale photovoltaic (LSPV) systems are pre-
dominantly deployed in sparsely populated western regions (Sun et al.,
2017), which offer vast suitable areas and an estimated potential of
approximately 42.8 TW (Yu et al., 2023). However, delivering electricity
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challenges, China has set an ambitious target of deploying 800 GW of
rooftop PV capacity by 2035 (LBNL, 2025), reflecting a strategic shift
toward DSPV and contributing to its carbon neutrality goals.

Research on rooftop PV deployment spans multiple scales. At the
urban scale, studies primarily focus on assessing the rooftop PV potential
across entire cities and translating these assessments into practical
planning guidance. Wei et al. (2024) developed a city-scale PV
deployment decision-making model for Shenzhen, clarifying deploy-
ment priorities and quantifying the electricity demand coverage ratio of
different PV installation targets. Chen et al. (2022) proposed a
cost-effective assessment method for Shanghai’s downtown area,
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achieving highly accurate solar radiation estimation and rooftop clas-
sification while quantifying PV systems’ economic and ecological ben-
efits. Cuesta-Fernandez et al. (2023) proposed an urban-metropolitan
energy exchange model, showing that expanding rooftop PV in Valen-
cia’s metropolitan area could significantly increase its PV coverage rate
and support carbon neutrality goals. Building-scale studies focus on
detailed optimization, including PV module layout efficiency and
additional functionalities such as shading effects and thermal insulation
(Nassar et al., 2019). For instance, to enhance indoor comfort when
bifacial PV serves as building envelope, Zhao et al. (2022) improved
annual thermal comfort period by 8 % via optimizing PV coverage and
adding heat insulation layers. Focusing on the dual functionality of
building-integrated PV (BIPV) in shading and power generation, Paydar
(2020) developed a movable BIPV shading system, which achieved
lower building annual thermal load and significantly higher excess
electricity generation compared to multiple fixed modes.

To bridge the gap between city-wide potential estimates and single-
building design, recent research has increasingly turned to the building
cluster scale. Zhang et al. (2023) developed a multi-scale energy storage
allocation model and demonstrated that cluster-level coordination of PV
and storage can reduce annual energy costs by more than 55 %. Yu et al.
(2023) proposed a classification-based framework for building clusters,
enabling efficient estimation of PV potential across thousands of urban
buildings. Ma et al. (2016) introduced the concept of smart building
clusters and showed that coordinated PV and demand response strate-
gies can reduce total operational costs by 4.6 % and improve load fac-
tors. Together, these works highlight the building cluster as a
strategically valuable scale: it balances computational feasibility with
engineering realism, offering a practical pathway for scaling up
distributed PV deployment.

Research on PV deployment at the building cluster scale has largely
focused on two key objectives: the estimation of available rooftop area
and the generation of PV deployment plans. Yang et al. (2024) used a
semi-supervised segmentation approach, Tian and Ooka (2025) applied
parametric modeling with machine learning techniques, and Yan et al.
(2023) adopted a detail-oriented deep learning method to estimate
available rooftop area. However, all these approaches effectively rely on
utilization factors, which are empirical coefficients that convert total
roof area into assumed available area. They treat rooftops as uniformly
installable and neglect fine-grained physical constraints such as shadow
area, obstructions, and maintenance pathways, which are essential for
accurately determining the actual available area for module-level PV
installation (Nassar et al., 2022a, 2022b). Regarding the generation of
PV deployment plans, Kucuksari et al. (2014) used LiDAR data and
applied criteria related to irradiance, height, orientation, and slope to
select installation sites. Santos et al. (2014) used only solar irradiance
and rooftop area thresholds to filter candidates. Lee et al. (2018)
introduced a bi-criteria rating system that classifies buildings along a
suitability spectrum based on technical and economic factors. Ren et al.
(2023) formulated the layout problem as a nonlinear integer program to
maximize system capacity at the cluster scale. However, their planning
frameworks treat rooftops as abstract two-dimensional surfaces defined
by aggregated metrics, without representing physical constraints or
generating module-level layouts. As a result, while effective for strategic
prioritization, their outputs are not directly translatable into
constructible PV designs. In contrast, recent studies have shifted toward
generating physically realizable PV layouts by explicitly incorporating
engineering and geometric constraints into the design process. Barbon
et al. (2022) considered irregular rooftop geometries and module di-
mensions in an automated layout-generation algorithm, while Kontar
and Jin (2020) integrated energy simulation, environmental analysis,
and parametric modeling within a Grasshopper-based workflow to
generate PV layouts. Despite their high fidelity, these approaches are
typically implemented within 3D modeling environments, which are
well suited for individual buildings or small clusters but encounter
computational bottlenecks when applied to large-scale building clusters
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(Ren et al., 2023).

Existing studies on rooftop PV assessment have evolved from energy-
focused evaluations toward more comprehensive approaches incorpo-
rating economic and environmental dimensions. Tao et al. (2025)
evaluated rooftop PV performance using energy-based indicators such as
the self-consumption rate (SCR) and self-sufficiency rate (SSR). Pan et al.
(2022) analyzed the economic feasibility of urban rooftop PV deploy-
ment under multiple installation scenarios, highlighting the influence of
system configuration on payback period and financial returns at the city
scale. Simi¢ et al. (2021) proposed a PV sizing and decision-making
model driven by economic performance, identifying optimal system
sizes under regulatory and market constraints. Furthermore, Zhu et al.
(2022), Li et al. (2023), and Allouhi (2020) adopted multi-dimensional
evaluation frameworks that integrate economic and environmental
considerations, introducing comprehensive indicators such as the lev-
elized cost of energy (LCOE) and carbon emission metrics to capture the
broader sustainability implications of rooftop PV deployment. This shift
reflects growing awareness that rooftop PV deployment involves mul-
tiple, sometimes competing objectives, necessitating multidimensional
evaluation for decision-making. Multi-objective optimization (MOO)
has been increasingly adopted in urban photovoltaic research. Wang
et al. (2025) developed a MOO framework for high-density urban blocks
to optimize trade-offs among energy demand, solar access, and available
surface area. Gao et al. (2025) proposed a
techno-economic-environmental MOO framework for industrial rooftop
PV energy-storage systems. Liu et al. (2023) applied a MOO approach to
optimize PV-energy storage configurations in urban industrial build-
ings, identifying trade-offs among technical, economic, and environ-
mental objectives. These studies illustrate the effectiveness of MOO in
generating Pareto-optimal solutions to guide large-scale rooftop PV
deployment. Among various algorithms, NSGA-II (Deb et al., 2002) has
been widely adopted in studies on solar energy potential and building
performance optimization, demonstrating its effectiveness in balancing
multiple competing objectives.

Although previous studies have laid a solid foundation for the gen-
eration and optimization of rooftop PV deployment and for evaluating
its multidimensional performance, few have developed an integrated
framework that simultaneously ensures physical feasibility, computa-
tional scalability, and balanced multi-objective optimization for large-
scale building clusters. Existing large-scale planning approaches often
incorporate multiple performance criteria but typically represent roof-
tops as homogeneous planar surfaces, ignoring module-level installation
constraints such as shadow area, obstructions, and maintenance path-
ways. As a result, they yield only aggregated capacity estimates rather
than constructible layouts. In contrast, high-fidelity methods that embed
detailed 3D geometry and engineering rules can generate physically
realizable PV configurations, yet their high computational cost limits
applicability to large-scale building clusters. To bridge this gap, this
study proposes a novel model that unifies fine-grained physical realism
with efficient multi-objective optimization, enabling the scalable gen-
eration of feasible, high-resolution PV layouts for building clusters. The
main contributions of this research include:

1. A three-module framework for systematic PV layout generation and
optimization, comprising: (i) an available rooftop area identification
module that classifies shadow areas, roof obstacles with buffer zones,
and maintenance access pathways; (ii) an initial layout generation
module that maximizes PV deployment under engineering con-
straints; and (iii) an optimization and decision-making module
employing a hybrid single- and multi-objective framework to bal-
ance energy, environmental, and economic performance under
varying budget constraints.

2. Decoupled integration of high-fidelity layout generation and scalable
optimization. The framework explicitly separates the physically
constrained 3D layout generation from system-level performance
optimization. The model first embeds installation-related parameters
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directly into the layout generation phase within a 3D modeling
environment, ensuring that the initial PV layouts are physically
feasible. The subsequent optimization process then operates on this
set of constructible initial solutions rather than searching the full
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high-dimensional layout space, significantly reducing computational
complexity while preserving engineering realism.

3. A case study was conducted in a diverse building cluster in Shenzhen,
spanning nearly 150,000 square meters and comprising over 245
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buildings of various types. The results demonstrated the model's
applicability and superior performance in complex building cluster
environments.

The structure of this paper is as follows: Section 2 introduces the
proposed PV layout generation and optimization model, detailing the
methodology for identifying available rooftop areas, generating initial
PV layouts, and conducting optimization. Section 3 presents the results
of a case study conducted in a large-scale building cluster in Shenzhen,
analyzing the performance of each module. Section 4 provides a
comprehensive discussion of the implications, limitations, and scal-
ability of the proposed approach. Finally, conclusions are presented in
Section 5.

2. Methodology

Fig. 1 illustrates the overall framework of this study. First, the
available rooftop area identification module prepares the building
cluster dataset through data collection and preprocessing, then iden-
tifies unavailable areas to determine the available rooftop area for PV
installation. After that, the initial layout generation module uses a ge-
netic algorithm to produce a layout that maximizes PV deployment
within the available areas while considering engineering constraints.
Finally, the optimization and decision-making module integrates single-
objective and multi-objective optimization frameworks under varying
budget constraints to balance energy, environmental, and economic
performance. The technical details and implementation of each module
are described in the following sections.

2.1. Available rooftop area identification module

2.1.1. Data collection and preprocessing

Building outlines, heights, and floor counts were obtained from
OpenStreetMap (OpenStreetMap, 2024) to generate 3D building models
with Grasshopper (McNeel, 2024). High-resolution satellite imagery
from Google Maps (Google, 2024) was combined with Rhinoceros
(Rhinoceros, 2025) to model rooftop features, distinguishing sloped and
flat roofs, which provide essential input for PV deployment planning.
Building simulation settings, including material specifications, indoor
activity schedules, and internal loads, were determined based on
building function and Shenzhen’s climate zone (ASHRAE 90.1-2013)
(Deng et al.,, 2022). PV generation and energy consumption were
simulated using ClimateStudio (Solemma, 2025), a Rhinoceros plugin
powered by EnergyPlus (EnergyPlus, 2024). Local climate conditions
were captured using a satellite-derived Typical Meteorological Year
(TMYx) dataset (Ladybug Tools, 2025), ensuring realistic modeling of
energy performance.

2.1.2. Identification and quantification of unavailable rooftop areas

In rooftop PV potential assessments, utilization-factor-based esti-
mation remains widely used, but its accuracy is often limited in complex
building environments. To improve upon this approach, Odeh and
Nguyen (2021) introduced a roof suitability factor that integrates
obstacle exclusion and roof tilt/orientation considerations, while Wang
et al. (2022) proposed a method tailored to older residential buildings by
removing areas occupied by rooftop structures and non-sunlit sloped
surfaces. Building on these insights and incorporating practical instal-
lation guidelines from engineering standards, this study further refines
rooftop availability estimation by classifying unavailable areas into
three categories to support more accurate and safe PV deployment.

1) Shadow area:
Shadow significantly reduces the performance of PV modules and

can even cause long-term damage (Ma et al., 2023). According to the
Chinese National Standard GB50797-2012 (Ministry of Housing and
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Urban-Rural Development of the People’s Republic of China, 2024),
rooftop areas receiving less than 3 hours of sunlight during the winter
solstice are classified as unavailable. Solar radiation simulations were
conducted using the Ladybug plugin (Ladybug Tools, 2024) on the
Grasshopper platform to accurately identify these shadowed areas.

2) Roof obstacles with buffer zones:

Certain rooftop structures and equipment are unsuitable for PV
installation. For example, structures such as staircases and elevator
shafts are typically excluded due to insufficient load-bearing capacity or
installation difficulties. Additionally, rooftop equipment, such as water
tanks and cooling towers, is also classified as unavailable (Cao et al.,
2024). To ensure safe installation and maintenance, a 1.5-meter buffer
zone was designated around these roof obstacles (Ma et al., 2023).

3) Maintenance Access Pathways:

Rooftop PV systems require designated pathways with a minimum
width of 1.5 meters for maintenance personnel access (Ministry of
Housing and Urban-Rural Development of the People’s Republic of
China, 2024). Therefore, a 1.5-meter-wide margin is reserved between
the PV deployment area and the roof boundaries in this study.

By categorizing unavailable rooftop areas and integrating this in-
formation with the 3D building models from Section 2.1.1, this module
identifies available rooftop areas. The identification results provide
essential constraints for module placement, ensuring compliance with
physical and regulatory requirements, which form a critical input for the
initial layout generation in Section 2.2.

2.2. Initial layout generation module
2.2.1. Parameters for PV layout generation
1) Installation methods

In practical engineering applications, PV modules must be installed
using methods selected according to the structural characteristics of the
roof (Bahaj, 2003). This study selected commonly used and efficient
installation methods for flat and sloped roofs, as illustrated in Fig. 2. For
flat roofs, a concrete foundation installation method was adopted, which
permits adjustments to the azimuth angle and row spacing by reposi-
tioning the concrete bases, while the tilt angle is controlled by varying
the lengths of the metal supports (Bayod-Rdjula et al., 2011). For sloped
roofs, a clamp-based installation method was adopted, with PV modules
mounted parallel to the roof slope and arranged edge-to-edge
(Stenabaugh et al., 2015).

2) PV module dimensions

Among various PV module types such as 166, 180, and 210 (EE
Power, 2024), the 210-type has become the dominant choice in China,
accounting for over 60 % of production due to its high efficiency and
mature supply chain (BJX, 2025). Given its widespread adoption, stan-
dardized dimensions (2382 mm x 1134 mm; see Fig. 3), and suitability

Fig. 2. PV installation methods. a) flat roofs. b) sloped roofs.
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for large-scale applications, this study adopts the 210-type module as the
reference specification.

3) Azimuth angle

Azimuth angle refers to the angle between the true south direction
and the direction in which the PV module's vertical plane faces,
measured in the horizontal plane. In the Northern Hemisphere, when the
module's vertical plane faces true south, the azimuth angle is 0°,
resulting in the maximum annual energy output from the module (Hafez
et al., 2017). The azimuth angle can be adjusted by repositioning the
concrete bases. In this study, the azimuth angle was allowed to vary
within a +15° range, where such variation has an acceptable impact on
the efficiency of individual modules (Hafez et al., 2017; Meng et al.,
2020; Chen et al., 2020).

4) Tilt angle

The tilt angle is the angle between the plane of the PV module and
the horizontal ground. In rooftop PV projects, the optimal tilt angle is
typically related to the local geographic latitude, with higher latitudes
requiring a larger optimal tilt angle (Nassar et al., 2025). In regions with
snowfall during winter, the tilt angle should also account for the snow
shedding angle, but this factor is not considered in low-latitude regions
(Jelle, 2013). Given Shenzhen's latitude (22.55°), the tilt angle was set
within the range of 22.55°+10° to balance annual energy output and
module spacing constraints.

5) Row spacing

Row spacing refers to the distance between PV modules in the north-
south direction. This parameter plays a vital role in both energy effi-
ciency and the safe operation of the rooftop PV system. As shown in
Equation (1), row spacing can be calculated using the length of the PV
module’s long side, the tilt angle, and the latitude of the project location.

0.707tan¢ + 0.4338
0.707 — 0.4338tang

RowSpacing = Lsinf (€D)]

where L is the length of the long side of PV module; j is the tilt angle of
PV module (see Fig. 3);¢ is the latitude of the PV project location.
Therefore, adjusting the tilt angle can optimize the number of modules
in the PV system by changing the row spacing of PV, thereby increasing
the overall energy output of the system.

2.2.2. Initial layout generation

This study utilized the genetic algorithm plugin Galapagos (Rutten,
2024) on the parametric 3D modeling platform Grasshopper to generate
an initial layout. The optimization objective was to maximize the
number of deployable PV modules. The key parameters used in the
optimization are summarized in Table 1, and the overall optimization
workflow is illustrated in Fig. 4.

For flat roofs, a north-south oriented bounding rectangle was
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Table 1
Algorithm parameters and constraints of the optimization framework.
Category Parameter Value
Algorithm Crossover probability 0.6
framework
Mutation probability 0.3
Population size 150
Number of generations 50

Decision variable
ranges

Rotation angle range [-15, 15] ° (mutation step: 1°)

Tilt angle range [12.55, 32.55] ° (mutation
step: 1°)

Offset range (X/Y [-5,5] (mutation step: 0.2 m)
direction)
Selection strategy Tournament selection
(tournsize=2)

Blend crossover (a=0.5)

Number of valid PV panels

Selection & operator

Crossover operator

Fitness evaluation Fitness function

constructed based on the roof geometry and expanded by 10 % to ensure
full coverage during the optimization process. This expansion ratio was
confirmed through sensitivity testing (Section 3.5). Within the bounding
rectangle, square PV units of 2382 mm x 2382 mm were generated, each
integrating two 210-type modules placed side by side along their longer
edges, with the extra width accounting for installation clearance. The
initial configuration for each PV unit was set with an azimuth angle of
0°, a tilt angle of 22.55°, and the corresponding row spacing. To
determine the optimal PV module configuration within available
rooftop areas, a genetic algorithm was employed to search over three
decision variables: rotation angle, tilt angle, and X/Y offset, within
predefined ranges. These ranges and corresponding mutation steps were
determined based on practical engineering constraints, energy perfor-
mance considerations, and sensitivity analyses (Section 3.5), as sum-
marized in Table 1. To improve computational efficiency, the
optimization problem was transformed into a 2D planar problem, with
PV unit projections screened to ensure they were fully contained within
available areas defined in Section 2.1. For sloped roofs, the tilt angle is
fixed due to the installation method; all other layout steps, including
bounding rectangle construction and positional sampling, follow the
same procedure as for flat roofs.

2.3. Optimization and decision-making module

Building upon the initial layout in Section 2.2, a hybrid optimization
framework combining single- and multi-objective approaches is imple-
mented to balance environmental, energy, and economic performance
under varying budget constraints. For each building, a binary decision
variable (0 or 1) indicates whether its initial PV layout is retained. The
optimization is performed across three budget scenarios representing
high, medium, and low resource availability levels. During evaluation,
only buildings with PV deployment (binary = 1) are included in cluster-
level performance calculations, while non-PV buildings are excluded.

For single-objective optimization, the Genetic Algorithm (Holland,
1992) is employed to maximize individual performance metrics under
each budget interval, generating targeted solutions to meet the demand
for prioritizing a single performance dimension. For multi-objective
optimization, the NSGA-II genetic algorithm is utilized to generate a
Pareto front of non-dominated solutions (Verma et al., 2021), with
parallel computing accelerating its computation (Chapman et al., 2007).
However, for practical implementation, a single actionable layout is
often required. To provide a transparent and interpretable selection
from the Pareto front generated by NSGA-II, the TOPSIS (Hwang and
Yoon, 1981) method is employed. TOPSIS has been extensively used in
multi-objective optimization problems due to its conceptual simplicity
and effectiveness in identifying balanced compromise solutions (Wang
et al., 2025). To ensure objective and unbiased weight assignment, the
Entropy method is adopted to determine the weights of the energy,
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Fig. 4. Layout generation steps illustration.

environmental, and economic indicators based on their information
entropy: indicators with lower entropy (i.e., higher data dispersion and
stronger discriminatory power) are assigned higher weights (Arce et al.,
2015). TOPSIS then ranks solutions according to their relative closeness
to the ideal and anti-ideal points, with the top-ranked solution selected
as the optimal actionable layout (Arce et al., 2015).

2.3.1. Performance indicators
1) Environmental performance:

Carbon emissions provide critical insight into the decarbonization
potential of distributed renewable energy systems (Nassar et al., 2025).
Carbon Emission Benefits (CEB), measured in kg CO,, are used to eval-
uate the environmental performance of the project by quantifying the
total carbon emissions reduced through PV deployment (Breyer et al.,
2015). In this work, CEB is calculated over a 10-year operational period
and accounts for PV module degradation to reflect realistic long-term
environmental impacts. The calculation equations are as follows:

CEB = Gtotal 'fcarbon (2)
N T

G = Y Y Gie ()
-1 =1

G = Gi,t,O'(]- - T”Pv)y “4)

where Gy is the total PV generation of the building cluster, in kWh;
fearbon is the emission factor of the China Southern Power Grid, which is
0.45 kg CO2/kWh (Ministry of Ecology and Environment of China MEE,
2025); Gi, is the PV generation of building i at time t, in kWh; G;; is the
first-year hourly PV generation for each building which can be obtained
through simulation; rpy is the annual degradation rate of PV panels,
which is 0.004 (Longi, 2025).

2) Energy performance:

Self-sufficiency rate (SSR) is a key metric for evaluating the energy
performance of PV systems (Tao et al., 2025). In this study, electricity
generated by the rooftop PV system is primarily consumed within the
same building, with any excess generation fed back into the grid (Zhang
et al., 2023), as shown in Equation (5). SSR represents the proportion of
a building’s total energy demand that is supplied by its PV system,
highlighting the extent to which the building reduces its reliance on the
grid.

T
X

= )
>

where E¥!f is the PV generation consumed by building i at time t,
calculated as shown in Equation (6); E;; is the energy consumption of

building i at time t, calculated as shown in Equation (7).

E?.,etlf = min (Eim Gil) ;

Ei,t = Ei,t,O' (1 + rEnergy)y (7)

Eio is the first-year hourly energy consumption for each building,
which can be obtained through simulation; rgergy is the annual growth
rate of building energy consumption, which is 0.05.

3) Economic performance:

The Internal Rate of Return (IRR) (Talavera et al., 2010) is used to
evaluate the economic performance of the PV project for the building
cluster. This study incorporates detailed costs of the PV project and
distinguishes between commercial, industrial, and residential electricity
tariffs, as shown in Equations (8), (9) and (10):

T
F, cash.y sps
0= ———~ _ _Totallnitiallnvestment 8
£~ (1+IRRY ®)
N
Totallnitiallnvestment = Z Initiallnvestment; 9)
i=1
Initiallnvestment; = P;-Cpy (10)

where Feyny is the cash flow of the project in year y, as calculated in
Equations (11) and (12); P; is the PV installed capacity of building i, in
watts; Cpy is the PV cost, in CNY/W.

Feashy = Rseif—use + Rexport — AnnualMaintenanceCost a1

N
AnnualMaintenanceCost = Z P;-Craintenance 12)

i=1

where Ry yse is the revenue obtained by the building from the self-
consumed PV generation, as calculated with Equation (13). Rexport is
the revenue earned from the PV generation exported to the grid, as
calculated with Equation (14); Cpaintenance 1S the unit cost of mainte-
nance, which is 0.06 CNY/W.

N T
Rselffuse = Z Z (El?,(:lf'Tselffuse'rdiscount) (13)
i=1 t=1
N T
Rexport = Z (Esfport'Texpon> (14)
i=1 t=1

where Ty yse iS the electricity tariff. For residential buildings, this
study adopts Shenzhen's peak-valley time-of-use tariff, as shown in Eq.
(15) and Table 2. For industrial or commercial buildings, the tariff is
fixed at 0.85 CNY/KkWh. rgiscoun: iS the electricity discount rate, set to 0.8.
In distributed rooftop PV projects, generating revenue by supplying PV-
generated electricity to buildings is a common practice, and an
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Table 2
Time-of-use electricity tariff in Shenzhen.
Period Time Range Tariff (CNY/kWh)
Peak Hours 10:00-12:00, 14:00-19:00 1.10
Valley Hours 0:00-8:00 0.25
Off-peak hours Remaining hours 0.65

electricity discount is often applied to offset rooftop rental costs.

Toaney, ift € ValleyHours,
Toause = § Tpeak;  ift € PeakHours, 15)
Thormal, otherwise.

2.3.2. Algorithm parameters and decision-making strategy

The single- and multi-objective optimization algorithms are config-
ured with consistent core parameters to ensure the stability and
comparability of optimization results across different budget intervals.
The base budget is defined as the total investment for full PV deploy-
ment across all buildings, with three budget intervals corresponding to
different resource availability scenarios. Min-max normalization is
applied in multi-objective optimization to eliminate dimension differ-
ences between indicators, ensuring fair non-dominated sorting by
NSGA-IL Key algorithm parameters are standardized in Table 3.

3. Results
3.1. Case study setup

This study selected a building cluster in Shenzhen, China, as the case
study. The building cluster consists of 245 buildings with a total rooftop
area of 51,562 m?. Fig. 5 illustrates the location of the case study area
and the distribution of building types and heights. The cluster comprises
a diverse mix of building functions: 202 low and mid-rise residential
buildings (82.4 %), 10 high-rise residential buildings (4.1 %), 26 com-
mercial buildings (10.6 %), and 7 industrial buildings (2.9 %). Building
heights range from 13 to 178 meters, and individual rooftop areas vary
from 7.5 to 2,053.7 m?, reflecting significant heterogeneity in both form
and scale.

3.2. Available areas identification results

Fig. 6a shows the simulation results of sunlight hours on the winter
solstice. Fig. 6b illustrates the identification results of rooftop obstacles
with buffer zones and maintenance pathways, which are combined into
a single visualization due to their similar classification methods. Fig. 6¢
displays the integrated results of available rooftop area identification for
the building cluster. The total available rooftop area is 23,982 m?, while

Table 3
Parameter settings for the optimization and decision-making framework.
Parameter Parameter Value
Category
Algorithm Crossover 0.9
framework probability
Mutation 0.05
probability
Population size 200
Number of 100
generations
Parameter Budget interval High (75 %-100 %), Medium (50 %-75
constraints %), Low (25 %-50 %) of the base budget
Decision variable Binary building-selection variable (0 =
type excluded, 1 = selected)
Fitness Fitness function Maximization of IRR / SSR / CEB
evaluation (single-objective)

Fitness function
(multi-objective)

Maximization of normalized IRR, SSR,
CEB (dimensionless)
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the unavailable rooftop area amounts to 27,580 m? The unavailable
area arises from three overlapping sources: shadowed areas (20,767 m?),
rooftop obstacles (4,539 m?), and maintenance pathways (16,999 m?).
Due to spatial overlaps among these categories, their summed area ex-
ceeds the actual total unavailable rooftop area. Together, these results
establish a detailed rooftop availability map that serves as the geometric
and operational input for subsequent PV layout generation.

3.3. Initial layout results

The initial layout generation module produced PV layouts for 198
out of 245 buildings, resulting in a total PV area of 20,403 m?, while 47
buildings were excluded due to insufficient available rooftop space.
Fig. 7a illustrates the initial layout results. As shown in Fig. 7b, the
excluded buildings are generally associated with smaller rooftop areas,
mostly below 150 m? Fig. 7c further indicates that these buildings have
a substantially smaller mean rooftop area (33.13 m?) compared to those
with generated layouts (138.2 m?). In addition, Fig. 7d shows that the
excluded buildings exhibit higher proportions of all three categories of
unavailable rooftop areas.

3.3.1. Environmental performance

Hourly electricity consumption and PV generation profiles were
obtained through energy simulation based on the initial layout. Fig. 8a
shows the hourly variations during the first year, illustrating the tem-
poral profiles used for environmental performance assessment. Over a
10-year evaluation period, the total PV generation amounts to 61.61
GWh, which is translated into a cumulative CEB of 27,725.59 t CO-.

3.3.2. Energy performance

All buildings are assumed to operate under a self-consumption plus
grid-feed-in scheme. Based on the simulated PV generation and elec-
tricity consumption profiles, the self-sufficiency rate (SSR) was calcu-
lated to quantify energy performance. Fig. 8b presents the SSR variation
on representative dates (March 1, June 1, September 1, and December
1). At the cluster scale, an annual SSR of 16.44 % is obtained for the first
year.

3.3.3. Economic performance

Based on the initial layout and simulation results, the corresponding
economic indicators were calculated. The initial layout requires a total
investment of 15.63 million CNY, with an annual operation and main-
tenance cost of 0.31 million CNY. Over a 10-year assessment period, the
resulting IRR is 14.61 %, and the net revenue amounts to 5.01 million
CNY.

Overall, the initial layout generation module constructs module-level
PV deployment configurations in a three-dimensional environment
under geometric, shading, and operational constraints. These layouts
translate available rooftop area into explicit deployment options and
provide the spatial and data foundation required for subsequent
optimization.

3.4. Optimization and decision-making results

3.4.1. Pareto frontier analysis and TOPSIS results

Fig. 9 presents the three- and two-dimensional distributions of
feasible solutions, Pareto frontiers, and TOPSIS-optimal solutions under
different budget intervals. The number of Pareto frontiers decreases
with tighter budget constraints, from 209 in the high-budget interval to
36 and 25 in the medium and low intervals, respectively. Across all
budget scenarios, feasible solutions exhibit structured distributions in
the three-dimensional objective space, indicating clear trade-offs among
SSR, IRR, and CEB. Taking the medium-budget scenario as an example,
the Pareto-optimal solutions exhibit a trade-off among objectives: SSR
ranges from 0.140 to 0.252, IRR from 12.5 % to 17.6 %, and CEB from
13770.58 to 21025.96 t CO:, highlighting the competing nature of
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Fig. 6. Available areas identification results. a) simulation results of sunlight hours on the winter solstice. b) rooftop obstacles with buffer zones and maintenance

pathways. c) integrated results of available rooftop area identification.

energy self-consumption, economic return, and environmental benefit.
Regression analysis further quantifies these relationships. SSR and IRR
show a positive correlation (R*> = 0.57), while both indicators are
negatively correlated with CEB, with R* values of 0.756 and 0.743,
respectively. All correlations are statistically significant (p < 0.001).

Based on entropy-derived objective weights, TOPSIS is applied to
identify a representative compromise solution within each budget in-
terval. Table 4 reports the corresponding objective weights and close-
ness coefficients. Across budget intervals, the dominant objective weight
varies: SSR receives the highest weight in the high and low budget in-
tervals, whereas CEB becomes the highest-weighted objective in the
medium budget interval. IRR remains the lowest-weighted objective in
all intervals.

3.4.2. Performance of optimal solutions

Fig. 10a compares the core performance indicators of four repre-
sentative solutions across low, medium, and high budget intervals. The
IRR-optimal solution consistently achieves the highest internal rate of
return, with values of 19.2 %, 17.6 %, and 16.1 % under low, medium,

and high budgets, showing a decreasing trend as the budget level in-
creases. The SSR-optimal solution yields the highest self-sufficiency rate
in all scenarios, with SSR also decreasing as budget expands, indicating
slightly reduced supply-demand matching at higher budget levels. For
the CEB-optimal solution, total carbon emission reduction increases
monotonically with budget expansion, reflecting the effect of larger
deployment scales. In contrast, the TOPSIS-optimal solution exhibits
intermediate but well-distributed performance across all three in-
dicators, with each metric following the same trend as observed in the
corresponding single-objective solutions. As shown in Fig. 10b, the radar
plots indicate that TOPSIS solutions maintain a relatively balanced
profile under different budget constraints, while achieving SSR levels
close to those of the SSR-optimal solutions.

3.4.3. Comparison with randomly sampled solutions

A total of 30,000 random solutions were generated through unbiased
random sampling, with each building having an equal probability of
being selected. These solutions are approximately uniformly distributed
across the predefined budget intervals. As shown in Fig. 11, the single-
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objective optimization solutions for IRR and SSR exceed the maximum solutions exhibit strict Pareto non-dominance with respect to all
values achieved by random sampling across all budget levels. In random solutions across the three budget intervals (Table 5). No random
contrast, the best CEB obtained from single-objective optimization is solution achieves an improvement in any objective without a simulta-
comparable to the upper bound of the random solutions. neous degradation in at least one other objective. Across all budget

For the multi-objective optimization results, the TOPSIS-optimal levels, the TOPSIS solutions achieve SSR values higher than the
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Table 4 observed among optimization strategies. The CEB-optimal solution
able

Entropy weights, stability ratios and TOPSIS closeness coefficients under
different budget intervals.

Budget Weight of Weight of Weight of TOPSIS Closeness
Interval IRR SSR CEB Coefficient

High 0.181 0.523 0.295 0.700

Medium 0.273 0.354 0.374 0.588

Low 0.219 0.470 0.311 0.701

maximum obtained from random sampling, while their IRR values
remain higher than most random solutions.

3.4.4. Preference of optimization strategies

Fig. 12a illustrates the number of selected buildings and the corre-
sponding budget utilization for the four optimal solutions under
different budget constraints. The CEB-optimal solution consistently
operates close to the upper budget limit and selects the largest number of
buildings, including all available buildings under the high-budget
constraint. In contrast, the IRR-optimal and SSR-optimal solutions
tend to select fewer buildings, resulting in lower budget utilization. The
TOPSIS-selected solution also involves a relatively small number of
buildings but exhibits higher budget utilization than the single-objective
IRR and SSR solutions.

Fig. 12b compares two key building characteristics, namely roof area
and energy intensity, for each solution across budget intervals. Energy
intensity is defined as the ratio of first-year PV generation to rooftop
area. Under the low-budget constraint, pronounced differences are

10

consistently selects buildings with relatively small roof areas and low
energy intensity, exhibiting the smallest average roof area of no more
than 125 m? and the lowest energy intensity of no more than 92.05
kWh/m? In contrast, the IRR-optimal solution shows substantially
higher values for both indicators, with an average roof area of at least
426.66 m? and an energy intensity of at least 138.99 kWh/m? In the
medium and high budget scenarios, the TOPSIS-optimal solution pre-
sents relatively higher roof area and energy intensity compared to other
solutions, although these differences are not statistically significant.

Fig. 13 shows the deployment results of the four strategies under the
low-budget scenario, with buildings selected by multiple strategies
specifically marked; only two buildings are chosen by all four strategies
and nine are selected by any three, indicating low overlap and distinct
selection preferences across objectives.

3.5. Sensitivity analysis

3.5.1. Sensitivity analysis results for initial layout generation

Sensitivity tests were performed to examine the influence of two key
geometric parameters, namely the offset range and the expansion ratio,
on the initial layout generation stage. The tests were conducted under
controlled conditions: a fixed random seed, layout generation on 20
randomly selected buildings, and all other parameters held constant.
The results are summarized in Table 6. For the expansion ratio, the
maximum panel count was attained at 10 %. Any further increase in the
ratio only resulted in longer computational time without additional
gains in panel quantity. For the offset range, computational duration
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Fig. 11. Comparison between optimization solutions and randomly sampled solutions under different budget intervals.

remained stable, while the panel count increased and reached its overhead.

maximum when the range expanded to +5 m. Thus, a 10 % expansion

ratio and a +5 m offset range were selected as optimal parameters, 3.5.2. Sensitivity analysis of entropy-weighted TOPSIS decision-making
achieving the maximum panel count without additional computational To assess the robustness of the multi-objective decision-making

11
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Table 5
Performance comparison between the TOPSIS-selected solution and randomly
sampled solutions under different budget intervals.

Comparison Metric Low Medium High
Aspect Budget Budget Budget
Random Number of random 9900 9937 10163
solution set solutions within the
budget interval
Number of random 0 0 0
solutions that strictly
dominate the TOPSIS
solution
Single- Proportion of random 98.5 99.9 100
indicator solutions outperformed by
comparison the TOPSIS solution (IRR,
%)
SSR (%) 100 100 100
CEB (%) 17.4 13.2 4.6

process, a sensitivity analysis was conducted on the entropy-derived
objective weights used in the TOPSIS evaluation. The analysis focuses
on whether small perturbations in weight allocation would lead to
different optimal solution selections. Specifically, the baseline entropy
weights were subjected to random perturbations within +£10 %. For
each budget interval, the perturbation process was repeated 100 times,
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and the TOPSIS optimal solution was re-identified in each trial. The
results, summarized in Table 7, indicate that the stability ratio remains
high across all budget intervals (>0.83), demonstrating that the TOPSIS-
optimal solutions are insensitive to moderate weight variations. This
confirms the robustness of the entropy-weighted TOPSIS decision-
making process and supports the reliability of the reported multi-
objective optimal solutions.

3.5.3. Sensitivity analysis results for optimization and decision-making
To examine the performance of the proposed optimization

Table 6
Sensitivity analysis of geometric parameters in initial layout generation.

Parameter type Parameter value Number of panels Total duration (s)

Expansion ratio 0 % 490 150.62
10 % 494 173.55
25 % 492 210.18
50 % 494 289.62
100 % 492 477.89
Offset range (+m) 1 476 172.38
2 484 172.48
5 494 172.93
10 494 172.97
15 494 172.22
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Fig. 12. Building selection characteristics of different optimization strategies under varying budget constraints. a) number of selected buildings and budget utili-

zation. b) roof area and energy intensity of selected buildings.
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Fig. 13. Rooftop PV deployment results under the low-budget constraint. a) CEB-optimal. b) IRR-optimal. ¢) SSR-optimal. d) TOPSIS-optimal.
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Table 7
Stability of the TOPSIS decision under different budget levels.

Budget level Number of Pareto solutions Stability ratio*
Low 25 100 %
Medium 36 83 %

High 209 100 %

* Stability ratio is defined as the proportion of weight-perturbation trials in
which the TOPSIS-selected optimal solution remains unchanged.

framework under parameter variations, sensitivity analyses were con-
ducted for two key parameters: feed-in tariff price and PV module effi-
ciency. Based on realistic ranges observed in practice, both parameters
were perturbed by +10 %, and the medium-budget interval was selected
as the representative test scenario. For single-objective optimization
with IRR as the target metric, Fig. 14 shows that the IRR-optimized
solutions consistently exceed the best-performing random solutions
under all tested variations of feed-in tariff and PV module efficiency. At
the multi-objective level, the TOPSIS-selected solutions exhibit robust
performance under all parameter perturbations, consistently out-
performing the majority of random solutions in at least two objectives
(Table 8).

4. Discussion
4.1. Rooftop area availability assessment based on spatial constraints

Compared with conventional utilization-factor approaches, which
typically assume that 60 % or more of rooftop areas are suitable for PV
installation in dense urban contexts (Wang et al., 2022, Yuan et al.,
2016), the available rooftop proportion identified in this study is sub-
stantially lower at 46.51 %. This highlights the importance of explicit
rooftop-level modeling that accounts for shading, rooftop obstacles, and
maintenance access requirements, leading to a more conservative but
realistic estimation of deployable PV potential. Shadow areas and
mandatory maintenance pathways constitute the largest shares of
excluded rooftop areas, indicating that urban morphology and
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Fig. 14. Sensitivity analysis of optimized solutions compared with random
sampling benchmarks.
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Table 8
Single-indicator superiority of the TOPSIS solution under parameter
perturbations.
Parameter category Scenario IRR (%) SSR (%) CEB (%)
Electricity price —-10 % 100* 99.9 19.8
Base 99.9 100 13.2
10 % 91.1 100 42.7
PV efficiency -10 % 74.9 97.5 88.5
Base 99.9 100 13.2
10 % 62.5 95.1 98.3

* Values indicate the proportion of randomly sampled solutions that are out-
performed by the TOPSIS-soptimal solution for each individual indicator.

regulatory constraints play a dominant role in limiting rooftop PV
deployment. The spatial overlap among exclusion categories further
suggests that integrated rooftop and architectural design, such as coor-
dinating equipment placement with access routes or optimizing roof
geometry, may enhance rooftop PV potential.

4.2. Implications of optimization strategy comparison

The comparison among single-objective optimization, multi-
objective optimization, and random sampling underscores the impor-
tance of optimization strategy selection in rooftop PV deployment.
Single-objective approaches consistently outperform random sampling
in their targeted metric, confirming their effectiveness when a specific
performance priority is predefined. However, they inevitably sacrifice
non-optimized objectives, limiting their suitability in contexts requiring
balanced outcomes. For instance, Ren et al. (2023) used an ILP-based
strategy to compare heuristics prioritizing either total solar potential
or rooftop energy intensity, showing that single-criterion optimization
often compromises overall generation efficiency or cost-effectiveness. In
contrast, strategies that explicitly balance competing objectives yield
more robust system-level performance. Notably, the TOPSIS-optimal
solutions maintain stable, non-inferior performance across all budget
scenarios and outperform most random solutions in at least two objec-
tives, demonstrating the advantage of the proposed hybrid framework in
delivering balanced, decision-relevant outcomes under realistic budget
constraints.

4.3. Framework design and practical applicability

The proposed hybrid optimization framework integrates 3D layout
generation with subsequent single- and multi-objective optimization,
effectively decoupling physical feasibility assessment from performance
driven decision-making. By first translating available rooftop areas into
explicit, constructible PV configurations, the framework ensures engi-
neering realism and provides a spatially accurate basis for energy,
environmental, and economic evaluations. The use of binary building-
level selection variables separates layout generation from system-scale
optimization, avoiding direct operations on complex 3D platforms and
significantly reducing computational complexity. This modular design
enables single-objective runs to explore performance extremes under
strict budget constraints, while multi-objective TOPSIS-based selection
identifies balanced trade-offs across all objectives. As demonstrated in
the Shenzhen case study, the approach supports flexible adaptation to
varying budget scenarios, heterogeneous building characteristics, and
evolving policy priorities, offering a scalable and practical pathway for
cluster-scale rooftop PV deployment planning.

4.4. Limitations and potential future work

Despite the advantages of the proposed framework, several limita-
tions remain. First, the rooftop area identification module has limited
adaptability to complex or highly irregular roof geometries and
currently relies on manual input, which constrains automation and
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scalability. Second, each objective dimension in this study is represented
by a single indicator (IRR, SSR, CEB), potentially overlooking other
relevant performance aspects. Third, the current framework does not
consider energy storage integration, which could affect self-
consumption and system flexibility.

Future research could address these limitations by integrating sat-
ellite imagery and shadow simulation to automate and accelerate
rooftop availability assessment, reducing reliance on manual modeling.
Additionally, incorporating energy storage and expanding the set of
performance indicators would enable more comprehensive multi-
objective optimization, supporting enhanced planning and decision-
making for large-scale rooftop PV deployment.

5. Conclusion

In this study, a three-module rooftop PV layout generation and
optimization model is proposed to enhance the efficiency of PV layout
planning for large-scale building cluster. The first module identifies
unsuitable zones in three categories to precisely delineate available
rooftop areas. The second module employs a genetic algorithm within a
parametric 3D modeling environment, incorporating practical PV
deployment constraints to generate an initial layout with a maximum
number of PV panels. Based on this, the third module implements a
hybrid single- and multi-objective optimization framework via binary
programming. By conducting a case study containing 245 real rooftops
in a high-density urban district of Shenzhen, the following major con-
clusions were made.

1) The available area identification module determines viable PV
installation areas by explicitly excluding three types of unavailable
zones: shadowed regions, roof obstacles with surrounding buffer
zones, and maintenance access pathways. Applied to the 245-build-
ing cluster with a total rooftop area of 51,562 m? the module
identified 23,982 m? of technically usable area, yielding an available
area ratio of 46.51 %. This is lower than typical utilization-factor
assumptions, demonstrating that the proposed method provides a
more accurate and conservative basis for practical PV deployment
planning.

The initial layout generation module produces three-dimensional,
engineering-feasible PV layouts by translating available rooftop
areas into explicit deployment configurations. Feasible layouts were
generated for 198 buildings, yielding a total installed PV area of
20,403 m?. These layouts provide the spatial and data foundation
required for subsequent energy, economic, and environmental per-
formance evaluation, enabling optimization analyses.

Comparison with 30,000 randomly sampled solutions demonstrates
the superiority of the proposed optimization framework. Single-
objective optimization solutions for IRR and SSR consistently
outperform the best random solutions, while CEB-optimal solutions
reach comparable maxima. Multi-objective TOPSIS-optimal solution
maintains a well-balanced performance across all three indicators,
showing Pareto non-inferiority relative to the random solutions.
The optimal solutions exhibit clear trends with increasing budget:
IRR and SSR decrease while CEB increases. Specifically, the IRR-
optimal solution declines from 19.2 % to 16.1 %, and the SSR-
optimal solution drops from 33.3 % to 23.3 % as the budget rises.
The CEB-optimal solution prioritizes selecting many small, low-cost
rooftops, whereas the IRR- and SSR-optimal solutions focus on
larger, higher energy-intensity rooftops. The TOPSIS-optimal solu-
tions balance these tendencies, with multi-objective weighting
reflecting a higher priority on SSR in the high- and low-budget sce-
narios, and assigning the highest weight to CEB in the medium-
budget scenario.

2

—

3

-

4

—

In conclusion, the proposed PV layout generation and optimization
model can be used in practice to improve rooftop PV deployment for
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large-scale building cluster, promoting urban decarbonization and sus-
tainable development.
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