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A B S T R A C T

The increasing frequency and spatial-temporal expansion of hot weather driven by climate change pose signif
icant challenges to restorative environments in urban settings, negatively impacting stress relief and cognitive 
improvement. Therefore, it is crucial to enhance adaptation to dynamic outdoor thermal variations and 
improving health benefits. This study extracts thermal environmental trends, fluctuations, and lag features along 
park walking routes using time series analysis to analyze the impact of thermal changes on perceived restoration. 
Additionally, the deep learning models are used to identify visual factors, exploring how these elements mitigate 
thermal discomfort in dynamic thermal environments and enhance perceived restoration. The findings reveal 
that ground interface richness is a key factor in reducing the negative effects of rising air temperature and solar 
radiation trends. The incorporation of colorfulness, leisure facilities, plant community complexity, and an orderly 
spatial structure can buffer the impact of sharp thermal environmental fluctuations, enabling individuals to 
maintain a relatively stable perception of restoration. Moreover, low transparency—indicating reduced visual 
permeability and a higher sense of enclosure—effectively reduces the lagged effects of high temperatures and 
intense solar radiation. Compared to conventional physical adaptation pathways that adjust thermal parameters, 
this study proposes a sensory-mediated adaptation strategy as a flexible and cost-effective complementary 
approach for shaping thermally resilient communities.

1. Introduction

The accelerated process of urbanization has made residents more 
susceptible to psychological fatigue and mental stress (White et al., 
2021). Prevalence of major mental disorders (including anxiety disor
ders, psychosis, mood disorders and addictions) is significantly higher in 
urban areas than in non-urban areas (Alleyne et al., 2013; Luo & Jiang, 
2022; Wu et al., 2024). Consequently, integrating mental health con
siderations into urban planning and developing restorative urban envi
ronments have become crucial strategies for improving overall 
well-being (Wu et al., 2024). Among these restorative environments, 

urban parks serve as a key component, proven to be effective in allevi
ating mental stress, reducing psychological fatigue, and mitigating 
negative emotions (Akpınar, 2021; Liu L et al., 2022; Song et al., 2024a; 
Wang et al., 2016).

The concept of restorative environments emerged in the late 1980s 
and has gained increasing relevance in environmental behavior and 
landscape studies over the past few decades (Bornioli & Subiza-Pérez, 
2023; Liu L et al., 2022). “Restorative environment” refers to a setting 
that enables individuals experiencing resource depletion to initiate 
psychological and/or physiological recovery processes under specific 
environmental conditions (Stigsdotter et al., 2017; Wu et al., 2024). The 
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Kaplans emphasized that contact with restorative settings can replenish 
depleted attention resources and relieve mental fatigue, which laid the 
foundation for the Attention Recovery Theory (ART) (Kaplan, 1989, 
1995, p. 360). Similarly, Ulrich's Stress Recovery Theory (SRT) suggests 
that restorative environments facilitate recovery from all forms of stress, 
extending beyond the alleviation of attention fatigue (Ulrich, 1979; 
Ulrich et al., 1991). According to existing theories and assessment tools, 
the restoration of an environment can be broadly categorized into two 
domains: psychological and physiological. Physiological restoration 
primarily refers to the regulation of human physical health by envi
ronmental factors. In current studies, wearable physiological monitoring 
devices are commonly used to assess stress recovery. Frequently 
employed physiological indicators include electrodermal activity (EDA), 
electromyographic feedback (EMG), salivary cortisol concentration, and 
cardiovascular parameters such as heart rate (HR), heart rate variability 
(HRV), and blood volume pulse (BVP) (Annerstedt et al., 2013; Dimi
trov-Discher et al., 2023; Gu et al., 2025b; Liu L et al., 2022). Psycho
logical restoration is primarily reflected in the reduction of negative 
emotions and the recovery of attention. Among the commonly used 
tools, the Perceived Restorativeness Scale (PRS) developed by Hartig 
et al. (1997) effectively measures individuals' perceptions of restorative 
environmental qualities, including being away, extent, fascination, and 
compatibility. However, as the PRS is limited to evaluating environ
mental settings, it is not suitable for assessing changes in restorative 
states over time (Ha & Kim, 2021; Van Den Berg et al., 2003). In addi
tion, the Profile of Mood States (POMS) have also been used to specif
ically assess emotional recovery (Song et al., 2024b, 2025). 
Furthermore, the Restorative Outcome Scale (ROS) has been 
employed to evaluate psychological responses, reflecting feelings of 
relaxation and calmness, attention restoration, and clearing one's 
thoughts (Bielinis et al., 2018a; Elsadek et al., 2019; Korpela et al., 
2010). The measurement of restoration in this study was also based on 
the ROS.

Against the backdrop of global warming, climate adaptation 
strategies should be integrated into restorative studies to enhance 
urban resilience and sustainable development. Over the past few 
decades, the frequency and spatial extent of hot events have 
increased significantly and are projected to continue rising in the 
future (Chen Y et al., 2025; He et al., 2024; Perkins-Kirkpatrick & Lewis, 
2020). Moreover, high-density urban development and the expan
sion of impervious surfaces have exacerbated the urban heat island 
(UHI) effect, further elevating urban temperature levels (Song et al., 
2024a; Wong & Chen, 2008). The increasing prevalence of hot events 
not only intensifies thermal discomfort but also negatively impacts 
the mental health of urban residents (Chu et al., 2024; Jiang et al., 
2024; Song et al., 2024a). As a result, traditional restorative studies 
that have primarily focused on visual aspects are no longer suffi
cient and the influence of thermal factors should be incorporated 
to better address the challenges posed by rising temperatures.

As outdoor spaces represent non-steady-state environments, the contin
uous and complex dynamic changes in environmental conditions along a 
walking route can influence individuals' immediate perceptions in dynamic 
scenarios (Peng et al., 2022). Among them, Dzyuban et al. (2022) inves
tigated thermal alliesthesia in the context of outdoor walks and found that 
even subtle microclimatic variations—such as slight changes in wind speed 
and solar radiation—could enhance participants' thermal comfort and 
produce pleasurable sensations. Similarly, Lyu et al. (2022) simulated two 
scenarios—one with shade and another with direct solar exposure—to 
examine the relationship between thermal alliesthesia and restorative bene
fits. In addition, various thermal environmental factors influencing walking 
experiences have been identified. For instance, Zhao, Xu, et al. (2024)
emphasized that the dynamic variations and non-uniform distribution of 
radiant temperature are critical factors influencing pedestrians' thermal 
comfort. Dzyuban et al. (2022) investigated the impact of prior walking 
segments on pedestrians' perceived pleasantness by utilizing the mean 
physiological equivalent temperature (PET) of previously traversed 

routes. Ji et al. (2024) highlighted that the physiological and psycho
logical responses of the human body under dynamic solar radiation 
exposure differ significantly from those under steady-state solar radia
tion exposure. Moreover, the lagged effects of thermal environments on 
human perception have been observed. Ji et al. (2017) demonstrated 
that the sequence of exposure to different temperatures influences pe
destrians’ thermal perception. When the environment shifts from cold or 
hot conditions to a neutral state, individuals tend to perceive a notice
able improvement in thermal comfort. Notably, the decrease in thermal 
sensation caused by cold stimulation was more pronounced than the 
increase caused by hot stimulation, indicating that people are more 
likely to perceive positive changes when thermal conditions improve. 
Xie et al. (2022) found that the perceptions are affected by the past 
20–35s short-term thermal history. However, a comprehensive investi
gation in dynamic changes of different thermal factors is still needed. 
Furthermore, although previous research has advanced the mathemat
ical modeling of perception (Ji et al., 2024a; Xu et al., 2022), it primarily 
focused on physical environmental parameters and gave little attention 
to other sensory stimuli.

Multisensory interaction serves as a crucial mechanism for regulating 
perceptual experiences and can serve as an effective adaptation strategy for 
addressing climate change and adverse thermal environments. Environmental 
multisensory input is not just a superimposition of individual sensory expe
riences, but functions as an integrated whole and affects an individual's 
overall perceptions (Lin, 2004; Schreuder et al., 2016). For instance, Chang 
et al. (2023) found that enhancing the comfort of olfactory stimuli can 
reduce the effects of high temperatures and improve emotional states. Simi
larly, a field study conducted in hot climatic regions revealed a significant 
interaction between Universal Thermal Climate Index (UTCI) and visual 
factors in shaping thermal comfort perceptions (Lam et al., 2020). Another 
field study along urban roadways found that despite the limited shading ca
pacity of cherry trees, their aesthetic and symbolic significance contributed to 
a restorative experience comparable to that provided by densely shaded 
roadside trees (Elsadek et al., 2019). Previous studies also highlighted that 
the presence of lush vegetation and water bodies in hot summer conditions 
may enhance visual comfort, thereby increasing acceptance of the thermal 
environment and improving overall perceptual outcomes (Zhang T et al., 
2021; Zheng et al., 2025). In addition, some studies have suggested that 
when individuals are exposed to temperatures exceeding 33◦C, manipulating 
visual environments does not alter perceptual outcomes (Dong et al., 2025). 
Although multiple studies have devoted to the interaction between visual and 
thermal environments, they have primarily focused on static scenarios. 
Research on how visual factors mitigate discomfort caused by dynamic 
changes in thermal environments is relatively limited and holds great potential 
as a research area.

Therefore, this study focuses on human walking behavior in urban 
parks, employing a time-series analysis to extract dynamic features of 
the thermal factors. Additionally, it explores how visual and thermal 
environments interact to influence perceived restoration. By offering a 
sensory-mediated climate adaptation strategy, this study provides a 
flexible and cost-effective complementary approach to better shaping 
thermally resilient communities. This research specifically focuses on 
addressing three questions: (1) How do trends in the thermal environ
ment influence perceived restoration, and how do visual factors interact 
with these trends? (2) How do visual factors mitigate thermal discomfort 
caused by significant fluctuations in the thermal environment and 
enhance perceived restoration? (3) Regarding the lagged effect of the 
thermal environment on perceived restoration, how is the regulatory 
role of visual factors manifested? This research contributes to mitigating 
the discomfort caused by dynamic variations in outdoor thermal envi
ronments through the visual elements and organization along the route, 
thereby promoting human well-being and urban sustainability in the 
context of intensifying global warming.
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2. Theoretical basis and feature extraction

2.1. Overview of time series research

In outdoor walking scenarios, environmental changes exert contin
uous and cumulative effects on individuals’ perceptions. However, 
traditional statistical methods such as mean and standard deviation are 
insufficient to capture such complex dependencies. Time series analysis 
serves as an essential tool for capturing the dynamic variations of data over 
time and extracting key temporal characteristics (Zhang W et al., 2023). It 
enables the identification of patterns, reveals underlying structures and de
pendencies, and enhances our understanding of how variables evolve over 
time (Gupta & Udrea, 2013; Rentala et al., 2024; Tahir et al., 2024). This 
approach offers both theoretical compatibility and technical feasibility 
for uncovering the dynamic relationship between environmental 
changes and perceived restoration.

In recent years, time series analysis has become an increasingly valuable 
approach for capturing environmental dynamics and understanding their 
effects on human perception and behavior. On the one hand, most time series 
studies commonly employ deep learning models for forecasting future trends. 
For example, Liu et al. (2024) utilized time series models to predict the di
versity of window-opening behavior, and (Gustin et al., 2018) applied time 
series methods to forecast indoor temperatures during heatwaves. One the 
other hand, with growing emphasis on understanding underlying mecha
nisms, some scholars have adopted a statistical approach by using time series 
analysis to support the exploration of perceptual processes. For instance, 
Rentala et al. (2024) extracted time series features—such as trend, fluctu
ation cycles, and irregular variations—from indoor air and skin temperature, 
and further incorporated these factors into regression models with individual 
perceptual scores to identify the regulatory role of dynamic environmental 
characteristics on thermal perception. In another experimental study on 
gender differences in thermal perception during sleep, researchers conducted 
time series analysis on winter sleep data from 14 adolescents, focusing on 
trend patterns and the maximum amplitude of overnight skin temperature 
changes (Xu et al., 2025). The findings revealed gender-specific patterns in 
local skin and core body temperatures. Additionally, Iddon et al. (2015)
performed time series analysis on room temperature data from UK hospitals 
and used distributed lag models (DLMs) to capture the effects of thermo
physical factors on spatial temperature. Based on this analysis, the study 
further revealed significant impacts of building orientation and site shading 
on hospital thermal conditions.

In summary, time series analysis serves as a powerful methodological 
tool for mechanism exploration, offering a novel dynamic perspective 
for understanding human–environment interactions, particularly in the 
context of fluctuating outdoor thermal environments. Therefore, this 
study utilizes time series analysis as a computational tool to extract key 
time-series factors that characterize the dynamic variations in environ
mental conditions. Subsequently, we analyze how these dynamic 
changes in environmental factors influence perceived restoration.

2.2. Feature extraction in time series analysis

Based on the fundamental components of time series and the research 
objectives of this study, three core features—trend, fluctuation, and lag fea
tures—were extracted to characterize the dynamic variations of outdoor 
environments (Charfeddine et al., 2023; Hswen et al., 2021; Rentala et al., 
2024; Yu et al., 2020). These features capture the overall direction of 
change, manifestations of non-stationarity, and time-dependent relationships 
in the data, thereby laying the foundation for further investigation into the 
influence of environmental factors on restoration.

2.2.1. Trend
In time series analysis, trend represents the overall direction of data 

point changes over time and is a fundamental component of time series. 
Trends can appear as short-term or long-term patterns, which may 
remain stable or evolve, resulting in increasing, decreasing, or stationary 

trends (Zhang & Qi, 2005). Experimental studies conducted in climate 
chambers have demonstrated that temperature trends significantly in
fluence human thermal perception (Zhang et al., 2017). However, some 
studies suggest that when the rate of temperature change is low, its 
impact on thermal perception may be negligible. For instance, research 
has generally found little or no difference between steady-state and 
transient conditions when the temperature change rate is below 0.5 ◦C/h 
(Vellei et al., 2021).

For each route, the Sieve Bootstrap method is employed to test whether 
the trend follows a linear pattern. If the trend component is determined to be 
linear, it satisfies the following linear regression model: 

T(t) = β0 + β1*t (1) 

Where β1 represents the estimated slope of the trend.
If the trend is nonlinear, a spline regression model is applied to fit the 

nonlinear trend using a three-segment piecewise approach (Harrell, 
2001): 

T(t) = β0 + β1t+ [β2t×(t − k1)]+ [β3t×(t − k2)] + [β4t×(t − k3) (2) 

Where k1, k2, k3 correspond to the 10th, 50th, and 90th percentiles of the 
time index, respectively.

2.2.2. Fluctuation
Fluctuations generally refer to the magnitude of numerical variations 

within a time series, reflecting uncertainty or risk and serving as a pri
mary indicator of non-stationarity in time series data (Mastroeni et al., 
2024; Yao et al., 2024). Specifically, fluctuations can be defined as de
viations of time series values from their mean level, along with the 
temporal distribution patterns of these deviations (Guo et al., 2021; 
Mastroeni et al., 2024). Significant fluctuations in the thermal envi
ronment may have notable effects on system states or human perception. 
Previous studies have investigated step changes in temperature or solar 
radiation, highlighting the impact of sharp fluctuations in the thermal 
environment on overall perceptual experiences (Li et al., 2022; Zhao, 
Zhao, et al., 2024).

For each route, a baseline is first established for the time series, 
defined by the mean (μ), and the dispersion of data around the mean is 
measured using the standard deviation (σ). Based on previous studies, 
the upper baseline limit is set as μ+σ, while the lower limit is set as μ− σ.

If the value of the thermal factor remains within one standard de
viation of the mean, it is classified as a stable fluctuation, i.e.: 

μ − 1σ ≤ Thermal factor ≤ μ + 1σ (3) 

If the value of the thermal factor deviates from the mean by more 
than one standard deviation, it is classified as a sharp fluctuation, i.e.: 

Thermal factor> μ + 1σ/Thermal factor < μ − 1σ (4) 

2.2.3. Lag
The lag feature describes how past values of a variable influence its cur

rent state, making it a fundamental characteristic that distinguishes time 
series data from static data. In this study, lagged effects help reveal the 
delayed relationship between environmental changes and restorative 
perception (Hswen et al., 2021; Wang & Shen, 2024). Existing studies have 
shown that the lagged effect of the thermal environment is closely related to 
human physiological responses (Ji et al., 2024a).

3. Method

3.1. Study site and time selection

The study was conducted in Shenzhen, China, a city characterized by 
a subtropical climate with prolonged periods of high temperatures 
throughout the year. The annual average temperature is 23.3 ◦C, with a 
historical extreme high of 38.7 ◦C. The rainfall is abundant with the 
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mean annual precipitation of 1932.9 mm, and sunshine duration is 
1853.0 h. Fig. 1 presents the multi-year average monthly temperatures 
in Shenzhen from 1991 to 2020 (according to data from Shenzhen Na
tional Basic Meteorological Station of China). The experiments in this 
study were conducted in September, with temperature levels that are 
representative of the typical thermal conditions observed in hot climatic 
regions.

Three urban parks located in the central district of Shenzhen were 
selected as experimental sites. The selection criteria for park samples 
were as follows: (1) The park area was controlled between 3 and 4 ha to 
ensure a moderate experimental scale and facilitate walking-based ex
periments; (2) the parks were surrounded primarily by residential and 
commercial land uses, making them accessible public spaces frequently 
visited by residents; (3) the internal landscape features of the parks were 
diverse, ensuring a rich variety of spatial visual characteristics and 
thermal environmental conditions. Each site includes a designated 
walking route, along which experimental stopping points are distributed 
(Fig. 2).

3.2. Selection and measurement of the environmental factors

Air temperature, wind speed, and solar radiation, the key thermal envi
ronmental factors in architecture and urban studies, were chosen as this 
study's indicators (Jaafar et al., 2022; Li et al., 2024; Xie et al., 2018). A 
handheld TH-PQX5 weather station was used to collect air temperature and 
wind speed data (air temperature measurement range: 40◦C-85◦C,mea
surement accuracy: ±0.3◦C; wind speed measurement range: 0–40 m/s, 
measurement accuracy: ±0.3 m/s). Additionally, a SM206-Solar power 
meter was used to measure solar radiation (measurement range: 0.1-1999.9 
W/m2,measurement accuracy: ± (10 %R + 2 dgt)). During the experiment, 
a researcher accompanied the participant throughout the route to operate the 
instruments and collect microclimate data.

Based on previous research on visual factors and environmental percep
tion, visual features can be categorized into visual element properties and 
visual organizational features (Dong et al., 2024; Torku et al., 2021a). 
Visual element properties refer to properties such as density, color, and ma
terial of spatial elements, while visual organizational features describes the 
arrangement and composition of these elements within a space (Qin et al., 
2023; Torku et al., 2021b, Torku et al., 2021b; Zhang G et al., 2021a). 
Specifically, visual element properties include green view index, leisure fa
cility density, ground interface richness, colorfulness and color harmony. 
Numerous studies have demonstrated the critical role of the green view index 
in enhancing restorative benefits (Kexin, Li, Zheng et al., 2024; Wang et al., 
2016, 2025). Leisure facilities have also been found to shape restorative 
experiences by promoting perceived compatibility and fascination 
(Abdulkarim & Nasar, 2014; Barros et al., 2021). In addition, ground 

interface richness refers to the richness of ground-level elements, such as 
paving materials and vegetation cover. It not only enhances the aesthetic 
value of the environment but also serves as a key factor influencing envi
ronmental preference (Balasubramanian et al., 2022). Furthermore, 
colorfulness refers to the visual diversity of colors present in the environment, 
which is linked to emotional states and environmental evaluations (Cao et al., 
2025; Hao et al., 2024; Ruotolo et al., 2024). The commonly used formula 

of colorfulness is C =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

rg + σ2
yb

√
+ k×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ2

rg + μ2
yb

√
, where σrg and σyb are 

the standard deviations of the red–green and yellow–blue components, 
and μrg and μyb are their corresponding means (Hasler & Suesstrunk, 
2003).

Spatial organizational structure factors include transparency, landscape 
depth, orderliness and plant community complexity. Among them, trans
parency refers to the extent to which sightlines extend within a space, 
reflecting the visual openness and accessibility of the environment. Several 
studies have indicated that lower transparency may alleviate stress by 
directing attention outward or enhancing perceived safety (Buttazzoni & 
Minaker, 2023; Shi et al., 2014). In addition, landscape depth refers to the 
extent of spatial depth covered by the line of sight as it extends into the dis
tance (Tabrizian et al., 2020; Zhang et al., 2024). Orderliness reflects the 
visual coherence generated by the repeated arrangement of spatial compo
nents and is considered an important factor influencing individuals’ cognitive 
load (Hunter & Askarinejad, 2015; Zhang G et al., 2021b). Moreover, 
plant community complexity refers to the spatial compositional complexity of 
the plant community, typically involving the integration of trees, shrubs and 
grasses (Ricotta & Anand, 2006). It is commonly measured using the 
Shannon Diversity Index, which is often applied in ecology and environmental 
science to quantify compositional complexity within a system. The basic form 
of Shannon Diversity Index is H = −

∑
[(pi) × ln(pi)], where H represents 

the diversity score, and Pi indicates the proportion of each vegetation type 
(Zhang X et al., 2023).

Photographs were taken from the center point of every site. The 
camera was positioned at a height of 1.6 m to represent the typical eye 
level of a pedestrian. Images were captured from multiple angles, 
including the front, left, right, upward (top interface), and downward 
(ground interface) views. A deep learning SegFormer model was used to 
identify different categories of visual factors. As illustrated in Fig. 3, 
segformer segments park images into distinct sub-scenes, each representing 
different object categories such as sky, buildings, trees, and grass, etc. Seg
Former is a Transformer-based semantic segmentation model and its hier
archical transformer encoder captures multi-scale features while maintaining 
both global contextual awareness and local details. The ADE-20 K dataset 
released by MIT was used for training (http://groups.csail.mit.edu/visi 
on/datasets/ADE20K/), which is the largest open-source dataset for 
semantic segmentation and scene parsing (Wen et al., 2025; Xie et al., 
2022; Zhou et al., 2019). Specifically, the calculation method for visual 
element properties factors is the proportion of the relevant element in the total 
image. Furthermore, colorfulness indicators were computed using 
MATLAB-based programming. For visual organizational features, trans
parency is calculated as the ratio of elements with an expansive view (e.g., 
road, path, sidewalk, sky, grass, water). Orderliness is measured as the ratio 
of orderly repetitive elements in the image. Plant community complexity is 
determined by shannon entropy. Additionally, landscape depth is estimated 
through monocular depth estimation based on a fully convolutional residual 
network (FCRN) (Fig. 4). This methodology has been demonstrated to be 
a feasible and effective approach for the quantification and assessment 
of visual environmental factors (Zhang et al., 2024; Zhang X et al., 
2023).

3.3. Experimental procedure

Participants were recruited through social media platforms, where 
the research team distributed detailed advertisements targeting student 
populations. A total of 120 participants were recruited for this study, 
with 40 individuals assigned to each park. The sample size was 

Fig. 1. Multi-year (1991–2020) average monthly temperatures for Shenz
hen city.
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determined based on previous studies that had validated similar 
experimental designs with sufficient statistical power (Favero et al., 
2021; Ji et al., 2024b; Zhao, Zhao, et al., 2024). The average age of 
participants was 25 ± 6 years. Individuals were excluded if they met any of 
the following criteria: (1) had underlying health conditions or self-reported 
the use of medication or therapy for stress recovery; (2) had binocular vi
sual acuity (including corrected vision) of 0.8 or higher. The gender ratio of 
the experiment was balanced at 1:1. To minimize the impact of clothing 
insulation differences on individual thermal perception, this study stan
dardized clothing insulation by requiring all participants to wear a 
short-sleeved shirt (Peng et al., 2022). This study was conducted in accor
dance with the ethics regulations of Harbin Institute of Technology.

Participants were allowed to choose their own experimental time to 
ensure that the study aligned with their personal schedules, and they 
had the flexibility to cancel or reschedule their participation if needed. 
Before the study commenced, all participants received a detailed 
explanation of the experiment and signed a written informed consent 
form for voluntary participation. To prevent congestion along the 
experimental route, participants were divided into small groups of up to 
four individuals.

They were required to arrive at the experimental site in advance and 
undergo a 10-min resting adaptation period to stabilize their physio
logical state and acclimate to the environment. During this period, the 
experimenter provided detailed instructions on the experimental pro
cedure and important considerations, and participants were asked to 
complete a basic information questionnaire. Once the experiment began, 
the participant followed a route through the park under the guidance of 
the researcher, sequentially arriving at experimental points character
ized by distinct visual and thermal environmental conditions. The time 
required to walk between consecutive experimental points ranged from 
20 to 30 s. Participants completed the Restorative Outcome Scale (ROS) 
immediately after each environmental exposure to assess acute resto
ration effects. Ultimately, each participant completed the full perceptual 
assessment along the designated experimental route.

The ROS has been proven to be a dependable and valid measurement tool 
(Appendix 1) (Bielinis et al., 2018b; Elsadek et al., 2019). The scale in
cludes three items related to relaxation and calmness, one item addressing 
attention restoration, and two items reflecting the ability to clear one's 
thoughts. Each item was rated by participants on a seven-point Likert scale, 
ranging from 1 (not at all) to 7 (completely). The final score was obtained by 
averaging the responses to the six items.

4. Result

4.1. The influence of thermal environmental trends and visual factors on 
perceived restoration

First, collinearity analysis was conducted using the Variance 
Inflation Factor (VIF) to identify and remove variables with high 
collinearity (VIF > 7.5), thereby enhancing the accuracy and reli
ability of the model (Doan et al., 2025). Next, the main effects and 
interaction effects of the visual-thermal environment on perceived 
restoration were examined based on an Ordinary Least Squares 
(OLS) regression model incorporating interaction terms. 

Y= β0 + β1 Xthermal trend + β2 Xvisual factor + β3
(
Xthermal trend ×Xvisual factor

)
+ ϵ
(5) 

Where β1 represents the coefficient representing the main effect of 
thermal environmental trends; β2 represents the coefficient representing 
the main effect of visual factors; β3 represents the coefficient of the 
interaction term between visual and thermal factors.

Figs. 5 and 6 present the main effects and interaction effects of 
thermal environmental trends with visual element properties and visual 
organizational features, respectively. The findings indicate that both 
temperature trend (B = − 0.64, P = 0.000) and solar radiation trend (B 
= − 0.61, P = 0.000) exhibit a significantly negative main effect, sug
gesting that an increase in temperature and solar radiation adversely 

Fig. 2. Location of experimental sites and walking routes.
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Fig. 3. Identification process of visual elements using SegFormer.

Fig. 4. Monocular depth estimation based on FCRN.
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affects perceived restoration.
Regarding the interaction between temperature trend and visual 

environment, the interaction effect of ground interface richness is sig
nificant (B = 0.12, P = 0.036). Although the main effect of ground 
interface richness is not significant, it moderates the negative impact of 
rising temperatures on restorative benefits. Additionally, as lanscape 
depth increases, the negative effect of temperature on restorative ben
efits intensifies (B = − 0.18, P = 0.021). This suggests that deeper visual 
spaces may amplify discomfort in hot conditions, diminishing the sense 
of restoration. Furthermore, the interaction terms between temperature 
and visual factors, including leisure facility density, transparency, 
orderliness, and plant community complexity did not reach statistical 
significance, indicating an absence of significant interaction effects be
tween these factors and temperature.

Regarding the interaction between solar radiation trend and 
visual element properties, the interaction effects of leisure facility 
density (B = 1.10, P = 0.013), ground interface richness (B = 0.16, P 
= 0.039), and colorfulness (B = 2.66, P = 0.001) are significant. 
These findings suggest that ground interface richness not only 
mitigates the adverse effects of high temperatures but also solar 
radiation. Additionally, increasing the number of leisure facilities 
and plant species also has a positive impact in the context of 
intensified thermal environments. Although previous studies on 
audio-visual interactions have highlighted the contributions of 
these factors, this study provides empirical support for their role in 
multisensory restoration from a thermal perspective (Ha & Kim, 
2021; Liu F et al., 2022). Furthermore, among visual organizational 
features, orderliness (B = 0.74, P = 0.000) and plant community 
complexity (B = 0.40, P = 0.016) exhibit the significant interaction 
with solar radiation trend.

Although the main effect of wind speed trends is significant (B = 0.12, P 
= 0.002), none of the visual factors exhibit statistically significant interaction 
effects with it. This suggests that no visual factor could synergistically enhance 
restoration in conjunction with wind speed, nor can any factor mitigate the 
discomfort associated with a decrease in wind speed.

4.2. The influence of thermal environmental fluctuation and visual factors 
on perceived restoration

Table 1 presents the results of an independent t-test comparing 
routes with sharp fluctuations (increase/decrease) in temperature, wind 
speed, and solar radiation to those with stable fluctuations. The results 
indicate that a sharp increase in temperature (MD = − 0.356, P = 0.000) 
and solar radiation (MD = − 0.442, P = 0.000) significantly reduces 
restorative benefits, and routes with sharp decrease in wind speed (MD 
= 0.644, P = 0.000) negatively impact restoration. These findings sug
gest that dramatic thermal environmental fluctuations heighten thermal 
discomfort, thereby exerting a negative effect on perceived restoration, 
which is consistent with previous research conclusions (Jiang et al., 
2024; Zhang et al., 2017).

In response to fluctuating conditions that can affect the recovery 
experience: large increases in temperature, large decreases in wind 
speed, and large increases in solar radiation, a linear regression model 
with interaction terms was further constructed to explore how visual 
factors interact with these conditions to enhance overall perceived 
restoration. 

Y=β0+β1 Xthermal fluctuation+β2 Xvisualfactor+β3
(
Xthermal fluctuation×Xvisualfactor

)

+ϵ
(6) 

Where β1 represents the coefficient representing the main effect of 
thermal environmental fluctuations; β2 represents the coefficient rep
resenting the main effect of visual factors; β3 represents the coefficient of 
the interaction term between visual and thermal factors.

Figs. 7 and 8 present the interaction effects of thermal environmental 
fluctuations with visual element properties and visual organizational 
features, respectively. Among them, colorfulness exhibits a significant 
interaction with the upward fluctuations in temperature (B = 7.64, P =
0.001) and solar radiation (B = 5.48, P = 0.009). Additionally, orderliness 
(B = 0.99, P = 0.046) demonstrates a significant positive interaction with 

Fig. 5. Interaction heatmap between thermal environment trends and visual element properties.

Fig. 6. Interaction heatmap between thermal environment trends and visual organizational features.

W. Dong et al.                                                                                                                                                                                                                                   Journal of Environmental Psychology 110 (2026) 102931 

7 



sharp decreases in wind speed, indicating that environments with order and 
coherence can stabilize restorative perception under wind speed fluctuations. 
Moreover, leisure facility density (B = 2.27, P = 0.045) and plant com
munity complexity (B = 1.15, P = 0.011) show positive interactions with 
sharp fluctuation in solar radiation, consistent with their contributions 
observed in the trend analysis. In contrast, green view index, ground interface 
richness, transparency, and landscape depth do not exhibit significant in
teractions with any thermal fluctuations.

4.3. The influence of thermal environmental lagged effect and visual 
factors on perceived restoration

The interaction term modeling based on an OLS regression was conducted 
to examine the main effects and interaction effects of the visual environment 
and thermal lagged effect on perceived restoration. Based on previous 
research on the effective lag time of thermal environments on perception 
(Ji et al., 2024; Xie et al., 2022), this study focuses on analyzing how the 
conditions at the preceding point influence restoration at the subsequent 
point. 

Yi = β0 + β1 Xi− 1
thermal factor + β2 Xi

visual factor + β3

(
Xi− 1

thermal factor ×Xi
visual factor

)

+ ϵ
(7) 

Where β1 represents the coefficient representing the main effect of 
preceding thermal environmental factors; β2 represents the coefficient 
representing the main effect of visual factors; β3 represents the coeffi
cient of the interaction term between visual factors and preceding 
thermal factors.

Figs. 9 and 10 present the main effects and interaction effects of 
thermal lagged effects with visual element properties and visual orga
nizational features, respectively. The findings indicate that the main 
effect of preceding temperature (B = − 0.24, P = 0.000) and solar ra
diation (B = − 0.23, P = 0.000) is significant, meaning that they have a 
lagged influence on perceived restoration. However, the lag effect of 
wind speed is not significant. In addition, visual transparency is the only 
visual factor that interacts significantly with both the lagged effects of tem
perature (B = − 1.11, P = 0.001) and solar radiation (B = − 0.80, P =
0.003). Specifically, when individuals experience thermal discomfort due to 
high temperatures or intense solar radiation, a lower level of visual perme
ability at the subsequent site enhances perceived restorative experiences. In 
addition, no significant interaction effects were observed for other visual 
factors.

5. Discussion

We found that the dynamic variations in the thermal environment 

Table 1 
Independent t-test for routes with sharp fluctuations and stable fluctuations.

Group 1 Group 2 Mean Difference T-Statistic P-Value 95 % Confidence Interval

Air temperature Sharp increase fluctuations Stable Fluctuations − 0.356 − 4.018 0.000 [-0.528, − 0.184]
Sharp decrease fluctuations – – – –

Wind speed Sharp increase fluctuations Stable Fluctuations 0.005 0.029 0.976 [-0.290, 0.301]
Sharp decrease fluctuations − 0.644 − 4.70 0.000 [-0.910, − 0.377]

Solar radiation Sharp increase fluctuations Stable Fluctuations − 0.442 − 4.415 0.000 [-0.641, − 0.243]
Sharp decrease fluctuations 0.332 4.035 0.000 [0.166, 0.498]

Fig. 7. Interaction heatmap between thermal environment fluctuations and visual element properties.

Fig. 8. Interaction heatmap between thermal environment fluctuations and visual organizational features.
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have a significant impact on perceived restoration. Specifically, the 
upward trends in temperature and solar radiation are negatively corre
lated with restoration, whereas the upward trend in wind speed shows a 
positive correlation. While prior research has highlighted the adverse 
effects of high-temperature environments on restoration, our study un
derscores that even a slight temperature decrease in high thermal con
ditions can contribute to promoting restoration. The study also found 
that sharp fluctuations in temperature and solar radiation had a signif
icantly negative impact on restorative benefits, which is consistent with 
the conclusions of previous laboratory experiments (Liu et al., 2014; 
Zhang et al., 2017). Furthermore, temperature and solar radiation were 
proved to have a lagged effect on perceived restoration, confirming previous 
research findings (Ji et al., 2024a; Xie et al., 2022). However, no lagged 
effect was observed for wind speed.

Then, we explored how visual factors enhance overall perceived 
restoration to counteract the adverse effects of a dynamic thermal 
environment. Specifically, ground interface richness plays a crucial role 
in alleviating thermal discomfort from rising trends of temperature and 
solar radiation. Variations in texture, color, and form could enhance 
information richness, which reduces cognitive strain and enhances 
restorative experiences (Balasubramanian et al., 2022; Kaplan, 1995; 
Tinio & Leder, 2009). This finding provides a cost-effective alternative 
to traditional physical climate adaptation measures by enhancing 
perceptual experiences without requiring large-scale infrastructure 
construction (Chen et al., 2023; Chen H et al., 2025; Wang et al., 2024). 
Highly orderly environments are typically characterized by clearer 
structural organization and a stronger sense of rhythm, which can 
enhance perceived coherence and reduce cognitive load, thereby 
improving individuals’ tolerance to external heat stress (Nikolopoulou & 
Steemers, 2003; Zhang G et al., 2021a). However, our findings regarding 
ground interface richness and plant community complexity challenge 
the core assumptions of the Perceptual Fluency Account Theory, sug
gesting that classical restoration theories may be insufficient to account 
for the findings. In dynamic thermal environments, the restoration 
process may operate through new cross-theoretical pathways. In this 

context, the Attentional Resource Competition Model posits that 
engaging external stimuli can redirect cognitive resources away from the 
source of discomfort toward alternative sensory inputs and thus alleviate 
negative experiences (Talsma et al., 2010). This mechanism has been 
widely validated in fields such as pain management, clinical interven
tion, and environmental psychology (Eccleston & Crombez, 1999; 
Eysenck et al., 2007; Hoffman et al., 2000). Therefore, 
attention-capturing interfaces may help buffer psychological discomfort 
under high thermal load by redirecting attentional resources, thereby 
enhancing perceived restoration.

The incorporation of colorfulness, leisure facilities, plant community 
complexity, and an orderly spatial structure can buffer the impact of sharp 
thermal environmental fluctuations, enabling individuals to maintain a 
relatively stable perception of restoration. While previous studies on tran
sient environmental changes in climate chambers focused on mitigating 
the adverse effects by controlling temperature step levels, outdoor 
thermal environmental changes are harder to regulate (Zhang et al., 
2017). Thus, modulating perception through visual factors has emerged 
as an innovative approach to improving overall perception. From the 
perspective of ART, environments with high color richness may enhance 
environmental appeal, thereby triggering the soft fascination and reducing the 
adverse impact of fluctuations (Celikors & Wells, 2022; Kaplan, 1995). 
Therefore, the active use of artificial ground murals and floral elements as 
urban color interventions may serve as an effective design strategy. Recent 
studies have demonstrated that cool-colored ground murals can enhance 
restorative experiences by evoking associations with natural elements like 
water and vegetation (Gu et al., 2025a, Gu et al., 2025b). Such in
terventions may serve as effective strategies for visually enhancing thermally 
challenging environments, particularly in densely built urban settings where 
natural elements are limited. Furthermore, an interesting observation is that 
previous studies on visual restoration often emphasized the importance of 
green visibility and natural layouts for restoration (Deng et al., 2020; 
Peschardt & Stigsdotter, 2013; Zhu et al., 2023). In contrast, our study 
does not highlight these factors but instead reveals the significance of leisure 
facilities and spatial orderliness. This suggests that adding green space is not 

Fig. 9. Interaction heatmap between thermal lagged effects and visual element properties.

Fig. 10. Interaction heatmap between thermal lagged effects and visual organizational features.
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the only effective strategy, while optimizing spatial structure and facility 
layout could also help to adapt the dynamic thermal changes.

Low transparency can alleviate the lagged effects of high tempera
tures and intense solar radiation along the movement route. A possible 
explanation for this finding is that limited visibility may reduce in
dividuals' sensitivity to external spatial changes and restrict retrospec
tive attention to previous thermal conditions, thereby weakening the 
perceived continuity of past heat exposure. However, previous studies 
have reported that low-transparency environments may diminish in
dividuals’ perceived safety in park settings, thereby diminishing their 
restoration (Tabrizian et al., 2018). The inconsistency with previous 
studies may indicate that the psychological modulation mechanism of 
spatial transparency differs under thermal stress conditions. Therefore, 
under specific thermal stress conditions, visual enclosure may no longer 
act as a threat to perceived safety, but rather serve as an active factor 
that helps reduce perceived thermal load and promote restoration. This 
conditional effect underscores the importance of considering the inter
action between visual features and climatic contexts in urban spatial 
design.

6. Conclusion

We explored the interactive effects of visual and thermal environ
ments on perceived restoration under the dynamic thermal variations 
along outdoor walking routes. A field-based dynamic walking experi
ment was conducted in three parks in Shenzhen, where visual environ
mental factors, thermal environmental factors, and perceived 
restoration benefits were measured using deep learning models, mea
surement instruments, and perception questionnaires, respectively. 
Based on time-series analysis, we extracted the trends, fluctuations, and 
lagged features of thermal environment dynamics and examined how 
visual factors interact with them to better facilitate perceived restora
tion. The findings indicate that trends and large fluctuations in tem
perature, wind speed, and solar radiation have a significant association 
with restoration. Additionally, ground interface richness moderates the 
discomfort caused by increasing trends of temperature and solar radia
tion. Furthermore, colorfulness, plant community complexity, and 
spatial orderliness mitigate the negative effects of large thermal fluc
tuations and enhance overall perceived restoration. High temperatures 
and solar radiation along walking routes exhibit lagged effects, while the 
low transparency may moderate these negative effects and promote 
restoration.

This study has several limitations. First, the participant recruitment 
process was limited in terms of age range and cultural background. To 
further examine differences in perceived restoration among diverse 
populations, future research should include a more heterogeneous 
sample. Additionally, although the visual-thermal interaction has been 
identified as the most significant sensory factor under high thermal 
conditions, future studies could expand the scope to include auditory 
and olfactory interactions (Bai & Jin, 2023; Lyu et al., 2022). This would 
allow for a more in-depth exploration of the relationships between 
multisensory experiences, sensory interactions, and overall well-being. 
Last but not least, this study did not examine the effects of visual fea
tures on restoration in the absence of weather variables. Future research 
could employ climate-controlled environments to conduct comparative 
experiments with and without thermal stress conditions, thereby clari
fying the underlying mechanisms of visual contributions to restoration. 
Nevertheless, this study proposes climate adaptation strategies through 
multisensory regulation and provides practical, 
implementation-oriented findings to better address dynamic thermal 
variations in outdoor spaces. Incorporating these insights can poten
tially contribute to improved urban health and sustainable development 
in the context of increasing global heat exposure.
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